
TYPE Original Research

PUBLISHED 09 February 2023

DOI 10.3389/fnbot.2023.1129720

OPEN ACCESS

EDITED BY

Di Wu,

Chongqing Institute of Green and Intelligent

Technology (CAS), China

REVIEWED BY

Ye Yuan,

Southwest University, China

Linyuan Wang,

National Digital Switching System Engineering

and Technological Research Centre, China

Krishnaraj Nagappan,

SRM Institute of Science and Technology, India

*CORRESPONDENCE

Wei Zhou

zwei@ynu.edu.cn

RECEIVED 22 December 2022

ACCEPTED 24 January 2023

PUBLISHED 09 February 2023

CITATION

Liu R, Jin X, Hu D, Zhang J, Wang Y, Zhang J

and Zhou W (2023) DualFlow: Generating

imperceptible adversarial examples by flow

field and normalize flow-based model.

Front. Neurorobot. 17:1129720.

doi: 10.3389/fnbot.2023.1129720

COPYRIGHT

© 2023 Liu, Jin, Hu, Zhang, Wang, Zhang and

Zhou. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

DualFlow: Generating
imperceptible adversarial examples
by flow field and normalize
flow-based model

Renyang Liu1,2, Xin Jin2,3, Dongting Hu4, Jinhong Zhang2,3,

Yuanyu Wang5, Jin Zhang5 and Wei Zhou2,3*

1School of Information Science and Engineering, Yunnan University, Kunming, China, 2Engineering Research

Center of Cyberspace, Yunnan University, Kunming, China, 3National Pilot School of Software, Yunnan

University, Kunming, China, 4School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC,

Australia, 5Kunming Institute of Physics, Yunnan University, Kunming, China

Recent adversarial attack research reveals the vulnerability of learning-based deep

learning models (DNN) against well-designed perturbations. However, most existing

attack methods have inherent limitations in image quality as they rely on a relatively

loose noise budget, i.e., limit the perturbations by Lp-norm. Resulting that the

perturbations generated by these methods can be easily detected by defense

mechanisms and are easily perceptible to the human visual system (HVS). To

circumvent the former problem, we propose a novel framework, called DualFlow,

to craft adversarial examples by disturbing the image’s latent representations with

spatial transform techniques. In this way, we are able to fool classifiers with

human imperceptible adversarial examples and step forward in exploring the existing

DNN’s fragility. For imperceptibility, we introduce the flow-based model and spatial

transform strategy to ensure the calculated adversarial examples are perceptually

distinguishable from the original clean images. Extensive experiments on three

computer vision benchmark datasets (CIFAR-10, CIFAR-100 and ImageNet) indicate

that ourmethod can yield superior attack performance inmost situations. Additionally,

the visualization results and quantitative performance (in terms of six di�erent

metrics) show that the proposedmethod can generatemore imperceptible adversarial

examples than the existing imperceptible attack methods.
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1. Introduction

Deep neural networks (DNNs) have achieved remarkable achievements in theories and

applications. However, the DNNs have been proven to be easily fooled by adversarial examples

(AEs), which are generated by adding well-designed unwanted perturbations to the original clean

data (Zhou et al., 2019). In these years, many studies dabbled in crafting adversarial examples and

revealed that many DNN applications are vulnerable to them. Such as Computer Vision (CV)

(Kurakin et al., 2017; Eykholt et al., 2018; Duan et al., 2020), Neural Language Processing (NLP)

(Xu H. et al., 2020; Shao et al., 2022; Yi et al., 2022), and Autonomous Driving (Liu A. et al.,

2019; Zhao et al., 2019; Yan et al., 2022). Generally, in CV, the AE needs to meet the following

two properties, one is that it can attack the target model successfully, resulting in the target model

outputting wrong predictions; another one is its perturbations should be invisible to human eyes

(Goodfellow et al., 2015; Carlini and Wagner, 2017).

Unfortunately, most existing works (Kurakin et al., 2017; Dong et al., 2018, 2019) are focused

on promoting the generated adversarial examples’ attack ability but ignored the visual aspects of
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the crafted evil examples. Typically, the calculated adversarial noise

is limited by a small Lp-norm ball, which tries to keep the built

adversarial examples looking like the original image as possible.

However, the Lp-norm limited adversarial perturbations blur the

images to a large extent and are so conspicuous to human eyes

and not harmonious with the whole image. Furthermore, these Lp-

norm-based methods, which modify the entire image at the pixel

level, seriously affect the quality of the generated adversarial images.

Resulting in the vivid details of the original image can not be

preserved. Besides, the adversarial examples crafted in these settings

can be easily detected by the defense mechanism or immediately

discarded by the target model and further encounter the “denied to

service.” All the mentioned above can lead the attack to be failed.

Furthermore, most existing methods adopt Lp-norm, i.e., L2 and Linf -

norm, distance as the metrics to constraint the image’s distortion.

Indeed, the Lp-norm can ensure the similarity between the clean and

adversarial images. However, it does not perform well in evaluating

an adversarial example.

Recently, some studies have attempted to generate adversarial

examples beyond the Lp-norm ball limited way. For instance, patch-

based adversarial attacks, which usually extend into the physical

world, do not limit the intensity of perturbation but the range

scope. Such as adversarial-Yolo (Thys et al., 2019), DPatch (Liu X.

et al., 2019), AdvCam (Duan et al., 2020), Sparse-RS (Croce et al.,

2022). To obtain more human harmonious adversarial examples

with acceptable attack success rate in the digital world, Xiao et al.

(2018) proposed the stAdv to generate adversarial examples by spatial

transform to modify each pixel’s position in the whole image. The

overall visual effect of the adversarial example generated by stAdv is

good. However, the adversarial examples generated by stAdv usually

have serration modifications and are visible to the naked eye. Later,

the Chroma-Shift (Aydin et al., 2021) made a forward step by

applying the spatial transform to the image’s YUV space rather than

RGB space. Unfortunately, these attacks have destroyed the semantic

information and data distribution of the image, resulting that the

generated adversarial noise that can be easily detected by the defense

mechanism (Arvinte et al., 2020; Xu Z. et al., 2020; Besnier et al., 2021)

and leading the attack failed.

To gap this bridge, we formulate the issue of synthesizing invisible

adversarial examples beyond noise-adding at pixel level and propose

a novel attack method called DualFlow. More specifically, DualFlow

uses spatial transform techniques to disturb the latent representation

of the image rather than directly adding well-designed noise to the

benign image, which can significantly improve the adversarial noise’s

concealment and preserve the adversarial examples’ vivid details at

the same time. The spatial transform can learn a smooth flow field

vector f for each value’s new location in the latent space to optimize an

eligible adversarial example. Furthermore, the adversarial examples

are not limited to Lp-norm rules, which can guarantee the image

quality and details of the generated examples. Empirically, the

proposed DualFlow can remarkably preserve the images’ vivid details

while achieving an admirable attack success rate.

We conduct extensive experiments on three different computer

vision benchmark datasets. Results illustrate that the adversarial

perturbations generated by the proposed method take into account

the data structure and only appear around the target object.

We draw the adversarial examples and their corresponding noise

from the noise-adding method MI-FGSM and the DualFlow in

Figure 1. As shown in Figure 1, our proposed method slightly

alters this area around the target object, thus ensuring the

invisibility of the adversarial perturbations. Furthermore, the

statistical results demonstrate that the DualFlow can guarantee

the generated adversarial examples’ image quality compared to the

existing imperceptible attack methods on the target models while

outperforming them both on the ordinary and defense models

concerning attack success rate. The main contributions could be

summarized as follows:

• We propose a novel attack method, named DualFlow, which

generates adversarial examples by directly disturbing the latent

representation of the clean examples rather than performing an

attack on the pixel level.

• We craft the adversarial examples by applying the spatial

transform techniques to the latent value to preserve the details

of original images and guarantee the adversarial images’ quality.

• Comparing with the existing attack methods, experimental

results show ourmethod’s superiority in synthesizing adversarial

examples with the highest attack ability, best invisibility, and

remarkable image quality.

The rest of this paper is organized as follows. First, we briefly

review the methods relating to adversarial attacks and imperceptible

adversarial attacks in Section 2. Then, Sections 3 and 4, introduce

the preliminary knowledge and the details of the proposed DualFlow

framework. Finally, the experimental results are presented in Section

5, with the conclusion drawn in Section 6.

2. Related work

In this section, we briefly review the most pertinent attack

methods to the proposed work: the adversarial attacks and the

techniques used for crafting inconspicuous adversarial perturbations.

2.1. Adversarial attack

Previous researchers contend that deep neural networks (DNN)

are sensitive to adversarial examples (Goodfellow et al., 2015), which

are crafted by disturbing the clean data slightly but can fool the well-

trained DNN models. The classical adversarial attack methods can

be classified into two categories, white-box attacks (Kurakin et al.,

2017; Madry et al., 2018) and black-box attacks (Narodytska and

Kasiviswanathan, 2017; Bai et al., 2023). In white-box settings, the

attackers can generate adversarial examples with a nearly 100% attack

success rate because they can access the complete information of the

target DNNmodel, while for the physical world, the black-box attack

is more threatening to the DNN applications because they don’t need

too much information about the DNN models’ details (Ilyas et al.,

2018, 2019; Guo et al., 2019).

2.2. Imperceptible adversarial attacks

Recently, some studies have attempted to generate adversarial

examples beyond the Lp-norm ball limit for obtaining humanly

imperceptible adversarial examples. LowProFool (Ballet et al., 2019)

propose an imperceptibility attack to craft invisible adversarial
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FIGURE 1

The adversarial examples generated by the MI-FGSM (Aydin et al., 2021) and the proposed DualFlow for the ResNet-152 (He et al., 2016) model.

Specifically, the first column and the second column are the adversarial examples and their corresponding adversarial perturbations generated by

MI-FGSM, respectively. The middle column is the clean images. The last two columns are the adversarial perturbations and their corresponding

adversarial examples, respectively.

examples in the tabular domain. Its empirical results show that

LowProFool can generate imperceptible adversarial examples while

keeping a high fooling rate. For computer vision tasks the attackers

will also consider the human perception of the generated adversarial

examples. In Luo et al. (2018), the authors propose a new approach

to craft adversarial examples, which design a new distance metric

that considers the human perceptual system and maximizes the

noise tolerance of the generated adversarial examples. This metric

evaluates the sensitivity of image pixels to the human eye and can

ensure that the crafted adversarial examples are highly imperceptible

and robust to the physical world. stAdv (Xiao et al., 2018) focuses

on generating different adversarial perturbations through spatial

transform and claims that such adversarial examples are perceptually

realistic and more challenging to defend against with existing defense

systems. Later, the Chroma-Shift (Aydin et al., 2021) made a forward

step by applying the spatial transform to the image’s YUV space

rather than RGB space. AdvCam (Duan et al., 2020) crafts and

disguises adversarial examples of the physical world into natural

styles to make them appear legitimate to a human observer. It

transfers large adversarial perturbations into a custom style and

then “hides" them in a background other than the target object.

Moreover, its experimental results that AEs produced by AdvCam

are well camouflaged and highly concealed in both digital and

physical world scenarios while still being effective in deceiving

state-of-the-art DNN image detectors. SSAH (Luo et al., 2022)

crafts adversarial examples and disguises adversarial noise in a low-

frequency constraints manner. This method limits the adversarial

perturbations to the high-frequency components of the specific image

to ensure low human perceptual similarity. The SSAH also jumps out

of the original Lp-norm constraint-based attack way and provides a

new idea for calculating adversarial noise.

Therefore, crafting adversarial examples, especially for the

imperceptible ones, poses the request for a method that can efficiently

and effectively build adversarial examples with high invisibility and

image quality efficiently and effectively. On the other hand, with

the development of defense mechanisms, higher requirements are

placed on the defense resistance of adversarial examples. To achieve

these goals, we learn from the previous studies that adversarial

examples can be gained beyond noise-adding ways. Hence, we are

well motivated to develop a novel method to disturb the original

image latent representation obtained by a well-trained normalizing

flow-based model, and then apply a well-calculated flow field to it

to generate adversarial examples. Our method can build adversarial

examples with high invisibility and image quality without losing

attack performance.

3. Preliminary

Before introducing the details of the proposed framework, in this

section, we first present the preliminary knowledge about adversarial

attacks and normalizing flows.

3.1. Adversarial attack

Given a well-trained DNN classifier C and a correctly classified

input (x, y) ∼ D, we have C(x) = y, where D denotes the accessible

dataset. The adversarial example xadv is a neighbor of x and satisfies

that C(xadv) 6= y and ‖xadv − x‖p ≤ ǫ, where the ℓp norm is

used as the metric function and ǫ is usually a small value such as

8 and 16 with the image intensity [0, 255]. With this definition, the

problem of calculating an adversarial example becomes a constrained

optimization problem:

xadv = arg max ℓ

‖xadv−x‖p≤ǫ

(C(xadv) 6= y), (1)
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Where ℓ stands for a loss function that measures the confidence of

the model outputs.

In the optimization-based methods, the above problem is solved

by computing the gradients of the loss function in Equation (1)

to generate the adversarial example. Furthermore, most traditional

attack methods craft adversarial examples by optimizing a noise δ

and adding it to the clean image, i.e., xadv = x + δ. By contrast,

in this work, we formulate the xadv by disturbing the image’s latent

representation with spatial transform techniques.

3.2. Normalizing flow

The normalizing flows (Dinh et al., 2015; Kingma and Dhariwal,

2018; Xu H. et al., 2020) are a class of probabilistic generative

models, which are constructed based on a series of entirely reversible

components. The reversible property allows to transform from the

original distribution to a new one and vice versa. By optimizing

the model, a simple distribution (such as the Gaussian distribution)

can be transformed into a complex distribution of real data. The

training process of normalizing flows is indeed an explicit likelihood

maximization. Considering that the model is expressed by a fully

invertible and differentiable function that transfers a random vector

z from the Gaussian distribution to another vector x, we can employ

such a model to generate high dimensional and complex data.

1 Specifically, given a reversible function F :R
d → R

d and two

random variables z ∼ p(z) and z′ ∼ p(z′) where z′ = f (z), the change

of variable rule tells that

p(z′) = p(z)

∣

∣

∣

∣

det
∂F−1

∂z′

∣

∣

∣

∣

, (2)

p(z) = p(z′)

∣

∣

∣

∣

det
∂F

∂z

∣

∣

∣

∣

, (3)

Where det denotes the determinant operation. The above equation

follows a chaining rule, in which a series of invertible mappings can

be chained to approximate a sufficiently complex distribution, i.e.,

zK = FK ⊙ . . . ⊙ F2 ⊙ F1(z0), (4)

Where each F is a reversible function called a flow step. Equation

(4) is the shorthand of FK(Fk−1(. . . F1(x))). Assuming that x is the

observed example and z is the hidden representation, we write the

generative process as

x = Fθ (z), (5)

Where Fθ is the accumulate sum of all F in Equation (4). Based on

the change-of-variables theorem, we write the log-density function of

x = zK as follows:

− log pK(zK) = − log p0(z0)−

K
∑

k=1

log

∣

∣

∣

∣

det
∂zk−1

∂zk

∣

∣

∣

∣

, (6)

Where we use zk = Fk(zk−1) implicitly. The training process of

normalizing flow is minimizing the above function, which exactly

maximizes the likelihood of the observed training data. Hence, the

optimization is stable and easy to implement.

TABLE 1 The notations used in this paper.

x clean example C the classifier zadv the disturbed

latent value

xadv adversarial

example

L loss function δ the noise

y clean label F Pretrained Flow

Model

f the flow field

t the target label z the latent value N (·) the four

neighborhood

3.3. Spatial transform

The concept of spatial transform is firstly mentioned in Fawzi

and Frossard (2015), which indicates that the conventional neural

networks are not robust to rotation, translation and dilation. Next,

Xiao et al. (2018) utilized the spatial transform techniques and

proposed the stAdv to craft adversarial examples with a high fooling

rate and perceptually realistic beyond noise-adding way. StAdv

changes each pixel position in the clean image by applying a well-

optimized flow field matrix to the original image. Later, Zhang et al.

(2020) proposed a new method to produce the universal adversarial

examples by combining the spatial transform and pixel distortion,

and it successfully increased the attack success rate against universal

perturbation to more than 90%. In the literature (Aydin et al., 2021),

the authors applied spatial transform to the YUV space to generate

adversarial examples with higher superiority in image quality.

We summarized the adopted symbols in Table 1 to increase

the readability.

4. Methodology

In this section, we propose our attack method. First, we take an

overview of our method. Next, we go over the detail of each part step

by step. Finally, we discuss our objective function and summarize the

whole process as Algorithm 1.

4.1. The DualFlow framework

The proposed DualFlow attack framework can be divided into

three parts, the first one is to map clean image x to its latent

space z by the well-trained normalizing flow model. The second

part is to optimize the flow field f , and apply it to the images’

latent representation z and inverse the transformed z to generate its

corresponding RGB space counterpart xt . Note that step 2 needs to

be worked in an iterative manner to update the flow field f guided

by the adv_loss until the adversarial candidate xt can fool the target

model. Finally, apply the optimized flow field f to the image’s latent

counterpart z and do the inverse operation of normalizing flow to

obtain the adversarial image. The whole process is shown in Figure 2.

4.2. Normalizing flow model training

As introduced in Section 3.2., the training of the normalizing

flow is to maximize the likelihood function on the training data
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FIGURE 2

The framework of proposed DualFlow. x represent the image, among them, x0 is the benign image, xadv is the corresponding adversarial counterpart; z is

the hidden representation of the image; F is the well-trained Normalize Flow model and C is the pre-trained classifier; f is the flow field need to be

optimized and ⊗ represents the spatial transform operation.

with respect to the model parameters. Formally, assume that the

collected dataset is denoted by x ∼ X. The hidden representation

follows the Gaussian distribution, i.e., z ∼ N (0, 1). The flow

model is denoted by F, parameterized θ , which have x = Fθ (z)

and z = F−1(x). Then, the loss function to be minimized is

expressed as:

L(θ; z, x) = − log p(x|z, θ) = − log pz(F
−1
θ (x))− log

∣

∣

∣

∣

∣

det
∂F−1

θ (x)

∂x

∣

∣

∣

∣

∣

,

(7)

By optimizing the above objective, the learned distribution p(x|z, θ)

characterizes the data distribution as expected.

In the training process, we use the Adam algorithm to optimize

the model parameters; while the learning rate is set as 10−4, the

momentum is set to 0.999, and the maximal iteration number

is 100,000.

4.3. Generating adversarial examples with
DualFlow

For a clean image x, to obtain its corresponding adversarial

example xadv, we first calculate its corresponding latent space vector

z by performing a forward flow process via z = Fθ (x). Once the z

is calculated, we can disturb it with the spatial transform techniques,

the core is to optimize the flow filed vector f , which will be applied

to z to get the transformed latent representation zst according to x. In

this paper, the flow filed vector f is directly optimized with the Adam

optimizer iteratively. We will repeat the above process to optimize

flow field f until zst becomes an eligible adversarial latent value, that

is, make the zst becomes zadv. Finally, when the optimal flow filed f

is calculated, we restore the transformed latent representation zadv
to the image space through the inverse operation of the normalizing

flow model, that is, xadv = Fθ (zadv), to get its perturbed example xadv
in pixel level.

Moore specifically, the spatial transform techniques using a flow

field matrix f = [2, h,w] to transform the original image x to xst
(Xiao et al., 2018). In this paper, we adopt the spatial transform

from the pixel level to the latent space. Specifically, assume the latent

representation of input x is z and its transformed counterpart zst , for

the i-th value in zst at the value location (uist , v
i
st), we need to calculate

the flow field matrix f i = (1ui,1vi). So, the i-th value zi’s location in

the transformed image can be indicated as:

(ui, vi) = (uist + 1ui, vist + 1vi). (8)

To ensure the flow field f is differentiable, the bi-linear

interpolation (Jaderberg et al., 2015) is used to obtain the four

neighboring values surrounding the location (uist + 1ui, vist + 1vi)

for the transformed latent value zst as:

zist =
∑

q∈N (ui ,vi)

zq(1− |ui − uq|)(1− |vi − vq|), (9)

WhereN (ui, vi) is the neighborhood, that is, the four positions (top-

left, top-right, bottom-left, bottom-right) tightly surrounding the

target value (ui, vi). In our adversarial attack settings, the calculated

zst is the final adversarial latent representation zadv. Once the f has

been computed, we can obtain the zadv by applying the calculated flow

field f to the original z, which is given by:

zadv =
∑

q∈N (ui ,vi)

zq(1− |ui − uq|)(1− |vi − vq|)), (10)

and the adversarial examples xadv can be obtained by:

xadv = clip(F−1(zadv), 0, 1), (11)
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Where clip(·) is the clip operation to keep the generated value

belonging to [0, 1].

4.4. Objective functions

Taking the attack success rate and visual invisibility of the

generated adversarial examples into account, we divide the objective

function into two parts, where one is the adversarial loss and the other

is a constraint for the flow field. Unlike other flow field-based attack

methods, which constrain the flow field by the flow loss proposed in

Xiao et al. (2018), in our method, we use a dynamically updated flow

field budget ξ (a small number, like 1 ∗ 10−3) to regularize the flow

field f . For adversarial attacks, the goal is making C(xadv) 6= y. We

give the objective function as follows:

for un-targeted attacks:

Ladv(X, y, f ) = max[C(Xadv)y −max
k6=y

C(Xadv)k, k], s.t.‖f ‖ ≤ ξ .

(12)

for target attacks:

Ladv(X, y, t, f ) = min[max
k=t

C(Xadv)k − C(Xadv)y, k], s.t.‖f ‖ ≤ ξ .

(13)

The whole algorithm of LFFA is listed in Algorithm 1 for

easy reproducing of our results, where lines 11-18 depict the core

optimization process.

Input: Xtr: a batch of clean examples used for training;

α: the learning rate; T: the maximal training

iterations; Q: the maximal steps for attack; ξ:

the flow budget; Xte: a clean example used for test;

C: the target model to be attacked.

Output: The adversarial example xadv is used for attack.

Parameter: The flow model Fθ.

1: Initialize the parameters of the flow model Fθ;

2: for i = 1 to T do

3: Optimize Fθ according to Equation (6);

4: if Convergence reached then

5: break;

6: end if

7: end for

8: Obtain optimized Fθ;

9: Compute the hidden representation of examples in Xte

via z = F−1(xte);

10: z
′

0 = z

11: Initialize the flow filed f with zeros;

12: for i = 1 to Q do

13: Optimize f via Equations (12) or 13;

14: Compute the adversarial example candidate x
′

i via

Equation (11);

15: if Successfully attack C by x
′

i then

16: xadv = x
′

i

17: break.

18: end if

19: end for

Algorithm 1. DualFlow attack.

5. Experiments

In this section, we evaluate the proposed DualFlow on three

benchmark image classification datasets. We first compare our

proposed method with several baseline techniques concerned with

Attack Success Rate (ASR) on clean models and robust models on

three CV baseline datasets (CIFAR-10, CIFAR-100 and ImageNet).

Then, we first provide a comparative experiment to the existing attack

methods in image quality aspects with regard to LPIPS, DISTS, SCC,

SSIM, VIPF and et al. Through these experimental results, we show

the superiority of our method in attack ability, human inception and

image quality.

5.1. Settings

Dataset
We verify the performance of our method on three benchmark

datasets for computer vision task, named CIFAR-101 (Krizhevsky

and Hinton, 2009), CIFAR-1001 (Krizhevsky and Hinton, 2009) and

ImageNet-1k2 (Deng et al., 2009). In detail, CIFAR-10 contains 50,000

training images and 10,000 testing images with the size of 3x32x32

from 10 classes; CIFAR-100 has 100 classes, including the same

number of training and testing images as the CIFAR-10; ImageNet-

1K has 1,000 categories, containing about 1.3M samples for training

and 50,000 samples for validation. In particular, in this paper, we

extend our attack on the whole images in testing datasets of CIFAR-

10 and CIFAR-100, in terms of ImageNet-1k, we are using its subset

datasets from ImageNet Adversarial Learning Challenge, which is

commonly used in work related to adversarial attacks.

All the experiments are conducted on a GPU server with 4 * Tesla

A100 40GB GPU, 2 * Xeon Glod 6112 CPU, and RAM 512GB.

Models
For CIFAR-10 and CIFAR-100, the pre-trained VGG-19

(Simonyan and Zisserman, 2015), ResNet-56 (He et al., 2016),

MobileNet-V2 (Sandler et al., 2018) and ShuffleNet-V2 (Ma N.

et al., 2018) are adopted, with top-1 classification accuracy 93.91,

94.37, 93.91, and 93.98% on CIFAR-10 and 73.87, 72.60, 71.13, and

75.49% on CIFAR-100, respectively, all the models’ parameters are

provided in the GitHub Repository3. For ImageNet, we use the

PyTorch pre-trained clean model VGG-16, VGG-19 (Simonyan

and Zisserman, 2015), ResNet-152 (He et al., 2016), MobileNet-V2

(Sandler et al., 2018) and DenseNet-121 (Huang et al., 2017),

achieving 87.40, 89.00, 94.40, 87.80, and 91.60% classification

accuracy rate on ImageNet, respectively. And in terms of robust

models, they include Hendrycks2019Using (Hendrycks et al., 2019),

Wu2020Adversarial (Wu et al., 2020), Chen2020Efficient (Chen

et al., 2022) and Rice2020Overfitting (Rice et al., 2020) for CIFAR-10

and CIFAR-100, And Engstrom2019Robustness (Croce et al., 2021),

Salman2020Do_R18 (Salman et al., 2020), Salman2020Do_R50

(Salman et al., 2020), and Wong2020Fast (Wong et al., 2020) for

1 http://www.cs.toronto.edu/~kriz/cifar.html

2 https://image-net.org/

3 https://github.com/chenyaofo/pytorch-cifar-models
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ImageNet. All the models we use are implemented in the robustbench

toolbox4 (Croce et al., 2021) and the models’ parameters are also

provided in Croce et al. (2021). For all these models, we chose their

Linf version parameters due to most baselines being extended Linf
attacks in this paper.

Baselines
The baseline methods are FGSM (Goodfellow et al., 2015), MI-

FGSM (Dong et al., 2018), TI-FGSM (Dong et al., 2019), Jitter

(Schwinn et al., 2021), stAdv (Xiao et al., 2018), Chroma-Shift (Aydin

et al., 2021), and GUAP (Zhang et al., 2020). The experimental results

of those methods are reproduced by the Torchattacks toolkit5 and the

code provided by the authors with default settings.

Metrics
Unlike the pixel-based attack methods, which only use Lp norm

to evaluate the adversarial examples’ perceptual similarity to its

corresponding benign image. The adversarial examples generated

by spatial transform always use other metrics referring to image

quality. To be exact, in this paper, we follow the work in Aydin

et al. (2021) using the following perceptual metrics to evaluate the

adversarial examples generated by our method, including Learned

Perceptual Image Patch Similarity (LPIPS) metric (Zhang et al., 2018)

and Deep Image Structure and Texture Similarity (DISTS) index

(Ding et al., 2022). LPIPS is a technique that measures the Euclidean

distance of deep representations (i.e., VGG network Simonyan and

Zisserman, 2015) calibrated by human perception. LPIPS has already

been used on spatially transformed adversarial examples generating

studies (Jordan et al., 2019; Laidlaw and Feizi, 2019; Aydin et al.,

2021). DISTS is a method that combines texture similarity with

structure similarity (i.e., feature maps) using deep networks with

the optimization of human perception. We used the implementation

of Ding et al. for both perceptual metrics (Ding et al., 2021).

Moreover, we use other metrics like Spatial Correlation Coefficient

(SCC) (Li, 2000), Structure Similarity Index Measure (SSIM) and

Pixel Based Visual Information Fidelity (VIFP) (Sheikh and Bovik,

2004) to assess the generated images’ qualities. SCC reflects the

indirect correlation based on the spatial contiguity between any two

geographical entities. SSIM is used to assess the generated images’

qualities concerning luminance, contrast and structure. VIFP is used

to assess the adversarial examples’ image quality. The primary toolkits

we used in the experiments of this part are IQA_pytorch6 and

sewar7.

5.2. Quantitative comparison with the
existing attacks

In this subsection, we will evaluate the proposed DualFlow and

the baselines FGSM, MI-FGSM, TI-FGSM (Dong et al., 2019), Jitter,

stAdv, Chroma-shift and GUAP in attack success rate on CIFAR-10,

4 https://github.com/RobustBench/robustbench

5 https://github.com/Harry24k/adversarial-attacks-pytorch

6 https://www.cnpython.com/pypi/iqa-pytorch

7 https://github.com/andrewekhalel/sewar

CIFAR-100 and the whole ImageNet dataset. We set the noise budget

as ǫ = 0.031 for all Linf -based attacks baseline methods. The other

attack methods, such as stAdv and Chroma-shift, follow their default

settings in the code provided by the authors.

Tables 2–4 show the ASR of DualFlow and the baselines on

CIFAR-10, CIFAR-100 and ImageNet, respectively. As the results

illustrated, DualFlow can perform better in most situations on the

three benchmark datasets. Take the attack results on ImageNet as

an example, refer to Table 3. The BIM, MI-FGSM, TI-FGSM, Jitter,

stAdv, Chroma-shift and GUAP can achieve 91.954, 98.556, 93.94,

95.172, 97.356, 98.678, and 94.606% average attack success rate on

ImageNet dataset, respectively, vice versa, our DualFlow can achieve

99.364% average attack success rate. On the other two benchmark

datasets, CIFAR-10 and CIFAR-100, the DualFlow also can get a

better average attack performance. To further explore the attack

performance of the proposed DualFlow, we also extend the targeted

attack on ImageNet, and the results are presented in Table 4. The

empirical results show that DualFlow can generate more powerful

adversarial examples and obtain a superior attack success rate in

most cases. It can get an ASR range from 94.12 to 99.52% on five

benchmark DL models, but the most competitive baseline MI-FGSM

can achieve an ASR of 83.90 to 99.34%. It is indicated that the

proposed method is more threatening to DNNs and meaningful

for exploring the existing DNNs’ vulnerability and guiding the new

DNNs’ design.

5.3. Attack on defense models

Next, we investigate the performance of the proposed method in

attacking robust image classifiers. Thus we select some of the most

recent defense techniques that are from the robustbench toolbox

as follows, for CIFAR-10 and CIFAR-100 are Hendrycks2019Using

(Hendrycks et al., 2019), Wu2020Adversarial (Wu et al., 2020),

Chen2020Efficient (Chen et al., 2022) and Rice2020Overfitting

(Rice et al., 2020); for ImageNet are Engstrom2019Robustness

(Croce et al., 2021), Salman2020Do_R18 (Salman et al., 2020),

Salman2020Do_R50 (Salman et al., 2020) and Wong2020Fast

(Wong et al., 2020). We compare our proposed method with the

baseline methods.

Following the results shown in Table 5, we derive that DualFlow

exhibits the best performance of all the baseline methods in terms

of the attack success rate in most cases. The attack success rate of

the baseline method stAdv and Chroma-Shift range from 95.41 to

99.12% and 17.22% from 74.80 in ImageNet, respectively. However,

the DualFlow can obtain a higher performance range from 97.50 to

100%. It demonstrates the superiority of our method when attacking

robust models.

5.4. Evaluation of human perceptual and
image quality

Unlike the noise-adding attack methods, which usually use Lp
norm to evaluate the victim examples’ perceptual similarity to its

corresponding benign image. The adversarial examples generated

by noise-beyond ways always use other metrics referring to image

quality. To be exact, we follow the work in Aydin et al. (2021)
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TABLE 2 Experimental results on attack success rate (ASR) of un-targeted attack of CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

VGG19 ResNet56 MobileNetV2 Shu	eNetV2 VGG19 ResNet56 MobileNetV2 Shu	eNetV2

FGSM 55.28 65.58 71.46 54.85 75.42 91.23 90.40 85.72

MI-FGSM 76.43 93.11 94.12 78.47 87.69 99.78 99.47 93.68

TI-FGSM 59.63 71.03 80.01 76.10 83.43 97.46 93.92 92.77

Jitter 83.70 94.87 96.92 86.25 98.31 100.00 99.76 94.63

stAdv 86.04 63.77 69.43 66.11 97.66 93.26 93.55 95.61

Chroma-shift 84.87 68.36 73.57 64.58 98.84 98.37 96.39 96.86

GUAP 82.55 89.34 87.61 87.02 92.26 94.59 96.89 92.20

DualFlow 97.07 95.31 93.65 96.19 99.32 99.02 98.83 97.36

The victim models are VGG19, ResNet56, MobileNetV2 and ShuffleNetV2, respectively, pre-trained by a GitHub Repository, named pytorch-cifar-models. Note that for the FGSM-based baselines,

we synthesize their adversarial examples under Linf -norm=0.031 limitation; the others are not subject to the Linf -norm restrictions. Bold values indicates the best result.

TABLE 3 Experimental results on attack success rate (ASR) of un-targeted attack of ImageNet.

GSM MI-FGSM TI-FGSM Jitter stAdv Chroma-shift GUAP DualFlow

VGG16 93.56 98.64 97.16 95.27 97.62 98.62 97.73 99.37

VGG19 95.31 99.42 96.34 91.76 98.74 98.98 96.10 99.43

ResNet152 84 96.82 85.17 94.28 97.46 97.79 88.90 98.63

MobileNetV2 91.92 98.29 91.47 94.99 96.13 99.35 97.60 99.61

DenseNet121 94.98 99.61 99.56 99.56 96.83 98.65 92.70 99.78

The victim models are VGG19, ResNet152, MobileNetV2 and DenseNet121, respectively, which are pre-trained by PyTorch. Note that for the FGSM-based baselines, we synthesize their adversarial

examples under Linf -norm=0.031 limitation; the others are not subject to the Linf -norm restrictions. Bold values indicates the best result.

TABLE 4 Experimental results on the attack success rate of targeted attack on dataset ImageNet.

Methods FGSM MI-FGSM TI-FGSM Jitter stAdv Chroma-Shift DualFlow

VGG16 80.78 73.11 96.34 67.51 54.74 65.10 96.67

VGG19 60.59 49.36 83.90 46.50 53.23 55.39 98.85

ResNet152 80.22 73.93 94.72 70.45 65.87 69.60 94.12

MobileNetV2 72.70 63.94 92.38 60.86 70.63 76.00 99.52

DenseNet121 78.06 74.56 99.34 63.86 75.94 80.79 99.06

The baselines are FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift and DualFlow. Note that for the FGSM-based baselines, we synthesize their adversarial examples under Linf -norm=0.031

limitation; the others are not subject to the restrictions. Bold values indicates the best result.

using the following perceptual metrics to evaluate the adversarial

examples generated by baseline methods and the proposed method,

including Learned Perceptual Image Patch Similarity (LPIPS) metric

(Zhang et al., 2018) and Deep Image Structure and Texture

Similarity (DISTS) index (Ding et al., 2022). In addition, Linf -

norm, Spatial Correlation Coefficient (SCC) (Li, 2000), Structure

Similarity Index Measure (SSIM) (Wang et al., 2004), and Pixel

Based Visual Information Fidelity (VIFP) (Sheikh and Bovik, 2004)

are also involved in evaluating the difference between the generated

adversarial examples and their benign counterparts and the quality of

the generated adversarial examples.

The generated images’ quality results can be seen in Table 6,

which indicated that the proposed method has the lowest LPIPS,

DISTS perceptual loss and Linf (the lower is better) are 0.0188, 0.0324

and 0.1642, respectively, on VGG-19model; and has the highest SCC,

SSIM and VIFP (the higher is better), achieving 0.9452, 0.7876 and

0.8192, respectively, on VGG-19 model. All the empirical data are

obtained on the ImageNet dataset. The results show that the proposed

method is superior to the existing attack methods.

To visualize the difference between the adversarial examples

generated by our method and the baselines, we also draw the

adversarial perturbation generated on NIPS2107 by FGSM, MI-

FGSM, TI-FGSM, Jitter stAdv, Chroma-shift, GUAP and the

proposed method in Figure 3, the target model is pre-trained VGG-

19. The first two columns is the adversarial examples and the

following are the adversarial noises of FGSM, MI-FGSM, TI-FGSM,

Jitter stAdv, Chroma-shift, GUAP and our method, respectively.

Noted that, for better observation, we magnified the noise by a factor

of 10. From Figure 3, we can clearly observe that stAdv and Chroma-

Shift distort the whole image. In contrast, the adversarial examples

generated by our method are focused on the salient region and its

noise is milder, and they are similar to the original clean counterparts

and are more imperceptible to human eyes. These simulations of

the proposed method take place under diverse aspects and the
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TABLE 5 Experimental results on the attack success rate of un-targeted attack on CIFAR-10, CIFAR-100 and ImageNet dataset to robust models.

FGSM MIFGSM TIFGSM Jitter stAdv Chroma-shift DualFlow

CIFAR-10

Hendrycks2019Using 27.06 16.90 18.54 32.67 99.12 20.70 100

Wu2020Adversarial 25.63 16.28 19.10 31.02 99.12 18.36 100

Chen2020Efficient 28.59 18.93 20.94 35.59 99.02 24.90 100

Rice2020Overfitting 27.38 16.87 16.92 33.02 98.93 25.98 100

CIFAR-100

Hendrycks2019Using 37.67 25.57 28.88 48.89 95.41 35.16 100

Wu2020Adversarial 40.13 27.06 30.71 50.13 97.66 30.86 100

Chen2020Efficient 42.24 30.51 34.24 54.66 97.75 34.57 100

Rice2020Overfitting 52.55 38.92 46.63 62.66 97.75 34.67 100

ImageNet

Engstrom2019Robustness 62.92 51.03 65.50 83.85 95.41 22.61 97.50

Salman2020Do_R18 65.61 51.82 62.44 82.09 97.66 42.16 100

Salman2020Do_R50 57.58 44.99 55.66 76.48 97.75 17.22 99.19

Wong2020Fast 61.24 50.08 70.02 82.30 97.75 74.80 97.5

Bold values indicates the best result.

TABLE 6 Perceptual distances were calculated on fooled examples by FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift, GUAP, and the proposed

DualFlow on ImageNet.

VGG19 ResNet152

LPIPS DISTS Linf SCC SSIM VIFP LPIPS DISTS Linf SCC SSIM VIFP

FGSM 0.3036 0.1916 – 0.5572 0.8273 0.4705 0.2688 0.1679 – 0.5796 0.8348 0.4753

MI-FGSM 0.1962 0.1444 – 0.7135 0.9474 0.6575 0.1589 0.1078 – 0.7180 0.9466 0.6597

TI-FGSM 0.2179 0.1849 – 0.8153 0.9199 0.5576 0.1684 0.1451 – 0.8216 0.9330 0.5943

Jitter 0.2461 0.1617 – 0.6342 0.9076 0.5864 0.2001 0.1305 – 0.6480 0.9107 0.5792

stAdv 0.0581 0.0757 0.2420 0.8954 0.9873 0.7290 0.0490 0.0690 0.2420 0.8954 0.9873 0.7290

Chroma-shift 0.0231 0.5943 0.0275 0.9142 0.9834 0.8079 0.0.0203 0.0246 0.0.2250 0.9126 0.0.9848 0.0.8027

GUAP 0.4349 0.2838 0.4984 0.2768 0.7630 0.2955 0.4205 0.2501 0.6443 0.2289 0.7274 0.2674

DualFlow 0.0188 0.0324 0.1642 0.9451 0.9876 0.8192 0.0169 0.0312 0.1550 0.9451 0.9876 0.8192

Note that for the FGSM-based baselines, we synthesize their adversarial examples under Linf -norm=0.031 limitation; the others are not subject to the restrictions. Bold values indicates the best result.

outcome verified the betterment of the presented method over the

compared baselines.

5.5. Detectability

Adversarial examples can be viewed as data outside the clean

data distribution, so the defender can easily check whether each

input is an adversarial example. Therefore, generating adversarial

examples with high concealment means that they have the same

or similar distribution as the original data (Ma X. et al., 2018;

Dolatabadi et al., 2020). To verify whether the carefully crafted

examples satisfy this rule, we follow (Dolatabadi et al., 2020) and

select LID (Ma X. et al., 2018), Mahalanobis (Lee et al., 2018), and

Res-Flow (Zisselman and Tamar, 2020) adversarial attack detectors

to evaluate the performance of the adversarial examples crafted by

DualFlow. For comparison, we choose FGSM (Goodfellow et al.,

2015), MI-FGSM (Dong et al., 2018), stAdv (Xiao et al., 2018),

and Chroma-Shift (Aydin et al., 2021) as baseline methods. The

test results are shown in the Table 7, including the area under

the receiver operating characteristic curve (AUROC) and detection

accuracy. Table 7, we can find that these adversarial detectors struggle

to detect malicious examples constructed with DualFlow, compared

to the baseline in all cases. Empirical results precisely demonstrate

the superiority of our method, which generates adversarial examples

closer to the distribution of original clean images than other

methods, and the optimized adversarial perturbations have better

hiding ability. The classifier is ResNet-34, and the code used in

this experiment is modified from deep_Mahalanobis_detector8 and

Residual-Flow9, respectively.

6. Conclusions

In this paper, we propose a novel framework named Dual-

Flow for generating imperceptible adversarial examples with strong

attack ability. It aims to perturb images by disturbing their

latent representation space rather than adding noise to the clean

8 https://github.com/pokaxpoka/deep_Mahalanobis_detector

9 https://github.com/EvZissel/Residual-Flow
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FIGURE 3

Adversarial examples and their corresponding perturbations. The first two columns are the adversarial examples, and the followings are the adversarial

noise of FGSM, MI-FGSM, TI-FGSM, Jitter, stAdv, Chroma-shift, GUAP and our method, respectively.

TABLE 7 The detect results of DualFlow and the baselines on CIFAR-10 and CIFAR-100, Where the Chroma represent the Chroma-Shift.

Datasets Methods
AUROC (%) ↑ Detection Acc. (%) ↑

FGSM MI-FGSM stAdv Chroma DualFlow FGSM MI-FGSM stAdv Chroma DualFlow

CIFAR-10

LID 99.67 95.36 82.13 70.61 52.23 99.73 90.42 78.95 65.42 58.42

Mahalanobis 96.54 98.54 85.64 75.61 58.49 90.42 97.26 79.67 76.13 64.23

Res-Flow 94.47 97.59 78.96 72.37 64.95 88.56 91.54 76.38 73.64 59.78

CIFAR-100

LID 97.86 91.67 75.85 73.84 62.37 93.34 82.6 76.71 69.57 57.78

Mahalanobis 99.61 97.64 76.17 72.32 65.48 98.62 92.49 80.65 71.48 63.15

Res-Flow 99.07 99.76 78.53 78.56 65.74 95.92 96.99 83.43 69.72 62.94

↑means that the larger the value, the better the detection method. Bold values indicates the best result.

image at the pixel level. Combining the normalizing flow and the

spatial transform techniques, DualFlow can attack images’ latent

representations by changing the position of each value in the

latent vector to craft adversarial examples. Besides, the empirical

results of defense models show that DualFlow has stronger attack

capability than noise-adding-based methods, which is meaningful for

exploring the DNN’s vulnerability sufficiently. Therefore, developing

a more effective method to generate invisible, both for human

eyes and the machine, is fascinating. Extensive experiments

show that the adversarial examples obtained by DualFlow have

superiority in imperceptibility and attack ability compared with the

existing methods.
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