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Yangming Li*
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This invited Review discusses causal learning in the context of robotic intelligence.

The Review introduces the psychological findings on causal learning in human

cognition, as well as the traditional statistical solutions for causal discovery and

causal inference. Additionally, we examine recent deep causal learning algorithms,

with a focus on their architectures and the benefits of using deep nets, and discuss

the gap between deep causal learning and the needs of robotic intelligence.
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1. Introduction

Intelligent robots infer knowledge about the world from sensor perception, estimate
status, model the world, and plan and execute tasks. Although intelligent robots have
achieved remarkable progress in the past two decades, improving their reliability in the real
world remains a challenge. The challenges are rooted in the wide variance of environments
and robotic tasks and the uncertainties of the world, sensor observation, models, status, and
the execution of tasks.

Robots achieve intelligence through the use of knowledge or methods that learn
knowledge from data. Early intelligent robots and some state-of-art applied intelligent
robots are programmed with knowledge and rules for making decisions based on
dynamic observations. This type of achieved intelligence has predictable performance
and is explainable; however, it often lacks adaptiveness as the program complexity grows
exponentially with respect to the complexity of tasks. Additionally, robots can use artificial
intelligence (AI) algorithms (to learn from data) to achieve intelligence. These methods
are considered similar to how humans achieve intelligence and are considered a possible
solution that breaks the bottleneck of applicability, scalability, and online learning. However,
as today’s AI methods demonstrate superior performance in terms of “interpolating” data,
these methods still have difficulty in finding knowledge and reasoning.

Humans, or even animals, effortlessly understand the world from an early age and
build up prior knowledge quickly to make causal decisions in daily life. We can use the
perception of an object’s physical properties as an example. Even infants demonstrate
instinctual behavior when inspecting a new toy with their hands and eyes in tandem with
learning the toy’s properties (Smith et al., 2020). Robots, in comparison, still have problems
understanding and operating the most commonly used objects in daily life. Although it is
clear that causality is critical from low-level visual perception to high-level decision-making,
state of art robots rarely establish the causal relationship and utilize it to improve intelligence.
However, there are examples of “causal” relationships improving robotic intelligence. For
example, simultaneous localization and mapping (SLAM) explicitly utilizes the fact that
causal relationships of robot movements causally change observations and use a Bayesian
network to improve mapping and localization simultaneously (Thrun et al., 2005).
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Causal learning consists of causal discovery and causal
inference. Classical causal learning methods include causal
discovery, which learns cause-effect relationships, and causal
inference, which estimates the level of impact that changes
in factors have on each other. Traditional causal learning
algorithms mainly use statistical theories and tools. With the
development of deep-learning technology, there are trends
that use deep learning to improve causal learning with high-
dimensional data and big data and trends that use causal
learning to improve deep-learning model expandability,
extrapolation capability, and explainability. Although these
emerging techniques are not developed and have not yet been
tested on intelligent robots, they do have great potential to
improve robotic intelligence and expand the applicability of
intelligent robots. This paper incompletely but systematically
reviews causal cognition, causal learning, and deep causal learning,
and discusses the need for deep causal learning in robotic
intelligence. The rest of the Review is organized as follows: the
section “Causal Cognition and Intelligence” briefly introduces
causal cognition from the psychological perspective, the section
“Causal Learning” presents statistical causal discovery and causal
inference, the “Deep Causal Learning” section discusses deep
causal learning for robotic intelligence, and the final section
presents conclusions.

2. Causal cognition and intelligence

Although there is much debate about the mechanism
of cognition, modern physiological studies generally support
that the way in which humans cognize causal regularities
is more sophisticated than that of any other animal on
the planet (Penn and Povinelli, 2007). Causal cognition has
major differences with associative learning, as it can improve
inferences from non-obvious and hidden causal relationships
(Kuhn, 2012). Learning causal relationships is critical for humans
(Spelke et al., 1992; Kuhn, 2012), as it confers an important
advantage for survival (Legare et al., 2017; Bender and Beller,
2019).

It is clear that to achieve or avoid an outcome, one may want
to predict the probability that an effect will occur given that a
certain cause of the effect occurs. It remains unclear as to how the
input non-causal empirical observations of cues and outcomes yield
output values. Studies have shown that causal cognition emerges
early in development (Bender and Beller, 2019). Researchers are
amazed by how children learn so much about the world so quickly
and effortlessly (Gopnik et al., 2004; Sobel and Legare, 2014).
Studies have demonstrated that infants as young as 4.5 months
register particular aspects of physical causality (Leslie and Keeble,
1987; Spelke et al., 1992; Needham and Baillargeon, 1993; Hespos
and Baillargeon, 2001), toddlers recognize various causal relations
in the psychological domain, especially about others’ desires and
intentions (Wellman, 1992; Bonawitz et al., 2010), and preschoolers
understand that biological and psychological events can rely on
non-obvious hidden causal relations (Gelman and Wellman, 1991;
Tooby et al., 1994). Adults use substantive prior knowledge about
everyday physics and psychology to make new causal judgments
(Ahn et al., 2000).

3. Causal learning

As presented in the previous section, causal learning is
associated with human intelligence and has been widely studied.
Traditional causal learning uses statistical methods to discover
knowledge from data and perform causal inference. These methods
are widely used in the field of medical science, economics,
epidemiology, etc, but are rarely used in the domain of intelligent
robotics (Guo et al., 2020; Yao et al., 2021a).

3.1. Causal discovery

Causal discovery learns the causal structure that represents the
causality between observations X, treatments t, and outcomes y.

Traditional causal discovery relies on statistically verifying
potential causal relationships or estimating functional equations
to establish causal structures. Generally, there are four types
of representative algorithms for traditional causal discovery:
constraint-based algorithms and the score-based algorithms, which
rely on statistical verification, functional causal model-based
algorithms, which rely on functional estimation, and hybrid
algorithms, which fuse multiple algorithms (Guo et al., 2020).

3.1.1. Constraint-based algorithms
Constraint-based algorithms analyze conditional independence

in observation data to identify causal relationships. This family of
algorithms often uses statistical testing algorithms to determine the
conditional independence of two variables, given their neighbor
nodes, then further determine the direction of the causality.

Mathematically, we can use three variables X, Y , and Z to
explain constraint-based algorithms. The causal relationship is
verified by conditional independence, for example, X ⊥⊥ Y | Z,
which is equivalent to zero conditional information I[X;Y |Z] = 0.
This is defined as faithfulness in causal learning, as explained in
Definition 3.1. If the three variables are discrete, χ2 and G2 can
verify the conditional independence based on the contingency table
of X, Y , and Z. If the three variables are linear and multivariate
Gaussian, we can verify the conditional indecency by a test if the
partial correlation is zero. For other circumstances, it often needs
extra assumptions to ensure the verification is computationally
tractable.

Definition 3.1. (Faithfulness). Conditional independence between a

pair of variables, xi ⊥⊥ xj|x
− for xi 6= xj, x− ⊆ X\{xi, xj}, can be

estimated from a dataset X iff x− d-separates xi and xj in the causal

graph G = (V , E).

The conditional independence is symmetric, and additional
tests are required to determine the orientations of edges.WhenX ⊥
⊥ Y |Z, there are three possible graphical structures, including two
chains (X ← Z ← Y and X → Z → Y) and a fork X ← Z → Y .
The determination of which structures are induced based on the
adjacency among variables, the background knowledge, etc. When
X 6⊥⊥ Y | Z it is a collision structure (X→ Z← Y).

Constraint-based algorithms use assumptions to improve
efficiency and effectiveness for causal discovery from data. For
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example, the Peter-Clark algorithm assumes i.i.d. sampling and
no latent confounders, which prunes edges between variables
by testing conditional independence based on observation data,
and determines and propagates the orients to form the directed
acyclic graph (DAG) (Spirtes et al., 2000). The inductive causation
algorithm assumes stable distributions (Definition 3.2), tests
conditional independence to find the associative relationship
between variables, finds collision structures, determines orients
based on a variable’s adjacency, and propagates directions (Pearl,
2009).

Definition 3.2. (Stable distribution). A distribution is stable if a

linear combination of two independent random variables with this

distribution has the same distribution, up to location and scale

parameters.

Other constraint-based algorithms focus on weakening
assumptions, thereby extending causal discovery methods to
other distribution families (Sejdinovic et al., 2013; Ramsey, 2014;
Glymour et al., 2019), causal discovery from data with unobserved
confounders (Spirtes et al., 2013; Guo et al., 2020).

3.1.2. Score-based algorithms
Score-based algorithms learn causal graphs by maximizing the

goodness-of-fit test scores of the causal graph G given observation
data X (Spirtes et al., 2000). Because these algorithms replace
the conditional independence tests with the goodness-of-fit tests,
they relax the assumption of faithfulness (Definition 3.1) but
often increase computational complexity. This is because the
scoring criterion S(X,G) enumerates and scores the possible
graphs under parameter adjustments. For example, the popular
Bayesian information criterion adopts the score function S(X,G) =
log P(X|θ̂ ,G) − J/2 log(n) to find the graph that maximizes the
likelihood of observing the data, while the number of parameters
and the sample size is regularized, where θ̂ is the maximum
likelihood estimation of the parameters and J and n denote the
number of variables and the number of instances, respectively
(Schwarz, 1978).

It is not tractable to score all possible causal graphs given
observation data because it is NP-hard (Chickering, 1996) and NP-
complete (Chickering, 1996). In practice, score-based algorithms
use heuristics to find a local optimum (Chickering, 2002; Ramsey
et al., 2017). For example, the greedy equivalence search algorithm
uses Bayesian-Dirichlet equivalence score SBD:

SDB(X,G) = log
J∏

j= 1

0.001(rj−1)qj
qj∏

k= 1

Ŵ(10/qj)

Ŵ(10/qj + Njk)

rj∏

l= 1

Ŵ(10/ri/qi + Njkl)

Ŵ(10/ri/qi)
, (1)

To score a graph G, where rj and qj signify the numbers of
configurations of variable xj and the numbers of configurations of
parent set Pa(xj), respectively, Ŵ(·) denotes the gamma function,
Njkl denotes the number of records of xj = k, and Pa(xj) is in the
k-th configuration.

Widely used score-based algorithms optimize the searching and
scoring process based on assumptions, such as linear-Gaussian

models (Fukumizu et al., 2007), discrete data (Heckerman et al.,
1995), and sparsity (Zheng et al., 2020). Additionally, there
are studies on relaxing the assumptions for causal discovery
from non-linear and arbitrarily distributed data (Huang et al.,
2018). Compared with constraint-based algorithms, score-based
algorithms can compare the output models in the space searched
for model selection.

3.1.3. Functional causal models-based algorithms
Functional causal models-based algorithms represent the causal

relationship with functional equations (Define 3.3).

Definition 3.3. (Functional equation). A functional equation

represents a direct causal relation as y = fθ (X, n), where X is the

variables that directly impact the outcome y, n is noise with n ⊥⊥ X,

and fθ is the general form of a function.

Causal discovery with functional equations can be expressed
as sorting causal orders (which variables depend on which) from
observation data. We use a linear non-Gaussian acyclic model to
explain the process with a simple linear case x = Ax + µ, where x
denotes the variable vector, A denotes the adjacency matrix, and
µ denotes the noise independent of x. With this representation,
the causal discovery is the equivalent of estimating a strictly
lower triangle matrix A that determines the unique causal order
k(xi), ∀xi ∈ mathbfx, which can be performed in the form of matrix
permutation as described by Shimizu et al. (2006).

Functional causal models-based algorithms have demonstrated
effectiveness in producing unique causal graphs. For example, the
post-non-linear causal model learns the causal relationship that
can be represented by a post-non-linear transformation on a non-
linear effect of the cause variables and additive noises (Zhang
and Hyvarinen, 2012). This algorithm can be further improved
with independent component analysis (Taleb and Jutten, 1999) and
relaxed by a warped Gaussian process, with the noise modeled
by the mixture of Gaussian distributions (Zhang et al., 2015).
Compared with the constraint-based and score-based algorithms,
functional causal models-based algorithms are able to distinguish
between different DAGs from the same equivalent class.

3.1.4. Hybrid algorithms
Hybrid algorithms combine multiple algorithms to overcome

problems that exist in constraint-based or score-based algorithms.
For example, Tsamardinos et al. (2006) use the max-min parents
and children algorithm (constrained-based) to learn the skeleton of
the causal graph and uses a Bayesian scoring hill-climbing search
(score-based) to determine the orients of edges. Wong et al. (2002)
use the conditional independence test to learn the skeleton of the
causal graph and use a metric to search good network structures.

3.2. Causal inference

Causal inference is the process of estimating the changes of
outcomes y given treatments t. Before we discuss causal inference
algorithms, we need to first define the metrics (Definition 3.4) for
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measuring causal inference. ATE, ATT, CATE, and ITEmeasure the
treatment effects of the population, the treated group, a subgroup
of a given feature x, and individuals, respectively.

Definition 3.4. (Treatment Effect).

• Average Treatment Effect (ATE): ATE = E[Y(w = 1)− Y(w =
0)].

• Average Treatment Effect on the Treated Group (ATT): ATT =

E[Y(w = 1) | w = 1]− E[Y(w = 0) | w = 1].
• Conditional Average Treatment Effect (CATE): CATE =

E[Y(w = 1) | X = x]− E[Y(w = 0)|X = x].
• Individual Treatment Effect (ITE): ITEi = Yi(w = 1) −

Yi(w=0).

Causal inference estimates the treatment effects for specific
groups. However, the different distributions of groups and the
existence of confoundersmake the task very challenging. According
to the methodological differences, existing classical algorithms
for addressing these problems can be grouped into reweighting-
based algorithms, stratification-based algorithms, batching-based
algorithms, and tree-based algorithms.

3.2.1. Reweighting-based algorithms
Reweighting-based algorithms assign appropriate weights to

the samples to create pseudo-populations or reweight the covariates
to mitigate the differences in the distributions between the treated
groups and the control groups. These algorithms are designed
to address the selection bias between the treated groups and the
control groups.

Both sample and covariate reweighting are used to address
selection bias. The inverse propensity weighting algorithm is one of
the pioneering works on reweighting samples. This algorithm uses
propensity scores (Definition 3.5) to find the appropriate weights
for samples as r = T/e(x) + (1 − T)/(1 − e(x)), where T is the
treatment.

Definition 3.5. (Propensity Score). Propensity score e(x) is the

conditional probability of assignment to a particular treatment given

a vector of observed covariates e(x) = Pr(T = 1|X = x).

With the reweighting, the ATE is defined as ˆATE =

1/NT
∑NT

i=1 TiY
F
i /ê(x) − 1/NC

∑NC
i=1(1 − Ti)YF

j /(1 − ê(x)). This
method is sufficient for removing bias; however, it heavily relies
on the correctness of propensity scores (Robins et al., 1994). Along
the lines of propensity score-based sample reweighting, the doubly
robust estimator combines the propensity score weighting with the
outcome regression to remain unbiased, as long as the propensity
score or outcome regression is correct (Figure 1; Robins et al.,
1994), the overlap weights algorithm solves the extreme propensity
score problem by reducing the weights of the unites that locate in
the tails of the propensity score distributions (Li F. et al., 2019).

The covariate reweight algorithms learn sample weights from
data through regression. To reweight a covariate, Hainmueller
(2012) uses a maximum entropy reweighting scheme to calibrate
sample weights to match the moments of the treated group and the
control group and minimizes information loss by keeping weights
close to the base weights.

FIGURE 1

Doubly robust estimator. m(·) can be an arbitrary function.

Additionally, there are algorithms that balance distributions
with both covariate and sample reweighting. The covariate
balancing propensity score estimates the propensity score by
solving E[Wix̃i/e(xi;β) + (1 − Wi)x̃i/(1 − e(xi;β))] to measure
the probability of being treated and the covariate balancing
score and improves the empirical performance of propensity
score matching (Imai and Ratkovic, 2014). Data-driven variable
decomposition (D2VD) balances distribution by automatically
decomposing observed variables confounders, adjusted variables,
and irrelevant variables (Kuang et al., 2017b). Differentiated
confounder balancing (DCB) selects and differentiates confounders
and reweights both the sample and the confounders to balance
distributions (Kuang et al., 2017a).

3.2.2. Stratification-based algorithms
Stratification-based algorithms split observations into

subgroups, which are similar under certain measurements. With
subgroups that have balanced distributions, ATE is estimated
as τ̂ strat =

∑
j = 1Jq(j)Ȳt(j)− Ȳc(j). For example, if a model

can predict the strata in which subjects always stay in the study
regardless of which treatment they were assigned, then the
data from this strata is free of selection biases (Frangakis and
Rubin, 2002; Jin and Rubin, 2008). The stratification can be
performed on samples on the basis of the propensity score to
improve the estimation robustness, as explained in the marginal
mean weighting through stratification algorithm (Hong, 2010).
Additionally, the stratification algorithms can be combined with
propensity score-based algorithms to preprocess data to remove
imbalances of pre-intervention characteristics (Linden, 2014).

3.2.3. Matching-based algorithms
Matching-based algorithms use specific distance measurements

to match samples in the treatment group with ones in the
control group to estimate the counterfactuals and reduce the
estimation bias of confounders. Matching-based algorithms require
the definition of distance metrics and the selection of matching
algorithms. Euclidean distances and Mahalanobis distances are
commonly used as distance metrics in the original data space, while
transformations, such as propensity score-based transformation,
and observed outcome information are commonly used in the
transformed feature space (Stuart, 2010; Yao et al., 2021a). For
matching algorithms, nearest neighbor, Caliper, stratification, and
kernel-based methods are all widely adopted (Guo et al., 2020).
It is worth noticing that matching-based algorithms can be used
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in data selection, as well as experimental design and performance.
The latter uses matching to identify subjects that have outcomes
that should be collected (Kupper et al., 1981; Reinisch et al., 1995),
which potentially reduces costs and the difficulty in collecting
effective data.

3.2.4. Tree-based methods
A tree structure naturally divides data into disjoint subgroups.

Although the subgroups have similar e(x), the estimation of the
treatment effect is unbiased. Bayesian additive regression trees
(BART), a Bayesian “sum-of-trees” model, is a flexible approach
for fitting a variety of regression models while avoiding strong
parametric assumptions. With BART, the treatment y is the sum
of subgroups as y = g(x;T1, θ1) + · · · + g(x;Tn, θn) + σ , where
σ is Gaussian white noise (Chipman et al., 2010). Similarly, the
classification and regression trees (CART) algorithm also splits
data into classes that belong to the response variable. CART is
different from BART in that it recursively partitions the data space
and fits a simple prediction model for each partition (Loh, 2011).
Causal forests ensemble multiple causal trees to achieve a smooth
estimation of CATE. Causal forests are based on Breiman’s random
forest algorithm and maximize the difference across splits in the
relationship between an outcome variable and a treatment variable
to reveal how treatment effects vary across samples (Wager and
Athey, 2018).

4. Deep causal learning

Deep learning (DL) has successfully attracted researchers from
all fields as it demonstrates the power and the simplicity of learning
from data (Goodfellow et al., 2016). The majority of existing
DL algorithms use specialized architecture to establish end-to-
end relationships from observation data, e.g., convolutional neural
networks (CNN) for data with spatial locality, recurrent neural
networks (RNN) for data with sequential or temporal structure,
transformers for data with context information, autoencoders
for data that need compressed representation, and generative
adversarial networks for data that need domain adaption (LeCun
and Bengio, 1995; Graves, 2012; Kingma and Welling, 2013;
Vaswani et al., 2017; Goodfellow et al., 2020). Despite the
remarkable success DL has achieved, some challenges remain, such
as model expandability, extrapolation capability, and explainability.
Causal learning (CL), on the other hand, discovers knowledge,
explains prediction, and has extendable structures, but struggles
with high dimensional data and scalability problems. Therefore,
complementing DL with CL, and vice versa, can be a way
forward. Actually, recent studies have made great progress and
have demonstrated the advantages of deep causal learning in that
prior knowledge can be used to disentangle modeling problems
and reduce data needs (Parascandolo et al., 2018; Bengio et al.,
2019; Yang et al., 2020), it has superior performance at extrapolating
unseen data (Martínez and Marca, 2019; Pawlowski et al., 2020a),
can modularize learning problems, incrementally learns from
multiple studies (Kaushik et al., 2019; Singla et al., 2019; Pawlowski
et al., 2020b), and demonstrates potential as a solution to artificial
general intelligence (Pearl, 2009; Guo et al., 2020).

Below, we introduce some of the representatives in plain
language, with a focus on the network architecture and the benefits
of using the architecture. Because the algorithms we review share
many common characteristics, such as most of them using two
or more neural networks and most of the representation learning
involving CNN, we categorize the algorithms into the following
categories to maximize the uniqueness among the categories.

4.1. Using DL for learning representation

Balancing neural networks and balancing linear regression
are pioneering works that use deep neural networks to solve the
problem of causal learning from high dimensional data (Johansson
et al., 2016). These algorithms learn a representation g :X → R

d

through deep neural networks or feature reweighting and selection,
then based on the features g(X), learn the causal effect h :Rd ×

T → R. These models learn balanced representations that have
similar distributions among the treated and untreated groups and
demonstrate effectiveness in cases that have one treatment.

Similarity-preserved individual treatment effect (SITE) uses
two networks to preserve local similarity and balances data
distributions simultaneously (Yao et al., 2018). The first network
is a representation network, which maps the original pretreatment
covariate space X into a latent space Z. The second network
is a prediction network, which predicts the outcomes based on
the latent variable Z. The algorithm uses position-dependent
deep metric and middle point distance minimization to enforce
two special properties on the latent space Z, including the
balanced distribution and preserved similarity. The adaptively
similarity-preserved representation learning method for causal
effect estimation (ACE) preserves similarity in representation
learning in an adaptive way to extract fine-grained similarity
information from the original feature space and minimizes the
distance between different treatment groups, as well as the
similarity loss during the representation learning procedure (Yao
et al., 2019a). ACE applies balancing and adaptive similarity
preserving (BAS) regularization to the representation space. The
BAS regularization consists of distribution distance minimization
and adaptive pairwise similarity preservation, thus decreasing the
ITE estimation error.

Johansson et al. (2018) presented a theory and an algorithmic
framework for learning to predict outcomes of interventions
under shifts in design changes in both intervention policy and
feature domain. This framework combines representation learning
and sample reweighting to balance source and target designs,
emphasizing information from the source sample relevant to the
target. As a result, this framework relaxes the strong assumption of
having a well-specified model or knowing the policy that gave rise
to the observed data.

4.2. End-to-end deep causal inference

Shalit et al. (2017) proposed treatment-agnostic representation
networks (TARNETs) to estimate ITE based on the Rubin
potential outcomes framework under the assumption of strong
ignorability. This algorithm uses integral probability metrics to
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measure distances between distributions and derives explicit
bounds for the Wasserstein and maximum mean discrepancy
(MMD) distances. Therefore, this algorithm is an end-to-
end regularized minimization procedure that fits the balanced
representation of the data and a hypothesis for the outcome.
Based on this work, Hassanpour and Greiner (2019a) proposed
a context-aware importance sampling reweighting scheme to
estimate ITEs, which addresses the distributional shift between
the source (outcome of the administered treatment appearing in
the observed training data) and target (outcome of the alternative
treatment) that exists due to selection bias. Perfect matching
augments samples within a minibatch with their propensity-
matched nearest neighbors to improve inference performance
in settings with many treatments (Schwab et al., 2018). Perfect
matching is compatible with other architectures, such as the
TARNET architecture, and extends these architectures to any
number of available treatments. Additionally, perfectmatching uses
the nearest neighbor approximation of precision in the estimation
of heterogenous effects with multiple treatments to select models
without requiring access to counterfactual outcomes.

Alaa et al. (2017) modeled the inference of individualized
causal effects of a treatment as a multitask learning problem. The
algorithm uses a propensity network and a potential outcomes
network to estimate ITE (Definition 3.4). The propensity network
is a standard feedforward network and is trained separately to
estimate the propensity score e(xi) (Definition 3.5) from (xi, ti).
By assigning “simple models” to subjects with very high or very
low propensity scores (e(xi) close to 0 or 1), and “complex
models” to subjects with balanced propensity scores (e(xi) close
to 0.5), it alleviates the selection bias problem. The potential
outcomes network is a multitask network that models the potential
outcomes E[Y(1)|xi

i and E[Y(0)|xi
i as two separate but related learning

tasks; therefore, the treatment assignments and the subjects’
characteristics are fully utilized.

4.3. Autoencoder-based algorithms

Causal effect variational autoencoder (CEVAE) uses variational
autoencoder (VAE) structures to estimate individual treatment
effects (Louizos et al., 2017). The algorithm uses an inference
network (Figure 2B) and a model network (Figure 2A) to
simultaneously estimate the unknown latent space summarizing
the confounders and the causal effect, based on latent variable
modeling. Because the algorithm uses the two networks to utilize
both the causal inference with proxy variables and latent variable
modeling, its performance is competitive with the state-of-the-art
methods on benchmark datasets and has improved robustness on
the problems with hidden confounders.

The deep-treat algorithm uses two networks for constructive
effective treatment policies by addressing the problems of the biased
observed data and unavailable counterfactual information (Atan
et al., 2018). The first network is a bias-removing autoencoder,
which allows the explicit trade-off between bias reduction
and information loss. The second network is a feedforward
network, which constructs effective treatment policies on the
transformed data.

Task embedding-based causal effect variational autoencoder
(TECE-VAE) scales CEVAE with task embedding to estimate
the individual treatment effect using observational data for the
applications that have multiple treatments (Saini et al., 2019).
Additionally, TECE-VAE adopts the encoder-decoder architecture.
The encoder network takes input X to generate distribution for z.
The decoder network uses z to reconstruct features X, treatments
t, and outcomes y. TECE-VAE uses information across treatments
and is robust with unobserved treatments.

The conditional treatment-adversarial learning based matching
method (CTAM) uses treatment-adversarial learning to effectively
filter out the nearly instrumental variables for processing textual
covariates (Yao et al., 2019b). CTAM learns the representations
of all covariates, which contain text variables, with the treatment-
adversarial learning, then performs nearest neighbor matching
among the learned representations to estimate the treatment effects.
The conditional treatment adversarial training procedure in CTAM
filters out the information related to nearly instrumental variables
in the representation space; therefore, the treatment discriminator,
the representation learner, and the outcome predictor work
together in an adversarial learning manner to predict the treatment
effect estimation with text covariates. To be more specific, the
treatment discriminator is trained to predict the treatment label,
while the representation learner works with the outcome predictor
to fool the treatment discriminator.

Reducing selection bias-net (RSB-net) uses two networks to
address the selection bias problem (Zhang et al., 2019). The
first net is an autoencoder that learns the representation. This
autoencoder uses a Pearson correlation coefficient (PCC) based
on regularized loss and explicitly differentiates the bias variables
with the confounders that affect treatments and outcomes and the
variables that affect outcomes alone. Therefore, the confounders
and the variables affecting outcomes are fed into the second
network, which uses the branching structure network to predict
outcomes.

The variational sample reweighting (VSR) algorithm uses a
variational autoencoder to remove the confounding bias in the
applications with bundle treatments (Zou et al., 2020). VSR
simultaneously learns the encoder and the decoder by maximizing
the evidence lower bound.

4.4. Generative adversarial nets-based
algorithms

Generative adversarial nets for the inference of individualized
treatment effects (GANITE), as suggested by the name, infer the
ITE based on the generative adversarial nets (GANs) framework
(Yoon et al., 2018). The algorithm uses a counterfactual generate,
G, to generate potential outcome vector ỹ based on features X,
treatments t, and factual outcome yf . Then, the generated proxies
are passed to an ITE generator that generates potential outcome
ŷ based on feature X. As a generative adversarial net (Goodfellow
et al., 2020), GANITE uses a discriminator for G, DG, and a
discriminator for I, DI to boost the training performance for the
generators. DG maps pairs (X, ȳ) to vectors in [0, 1]k with the i−th
component to represent the probability that the i−th component
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FIGURE 2

Causal e�ect variational autoencoder (Louizos et al., 2017). q(·) is a tractable distribution that approximates the true distribution p(·). X, t, and y are

observations, treatments, and outcomes, respectively. (A) Model net. (B) Inference net.

of ỹ is the factual outcome. Similarly, DI maps a pair x, y∗ to [0, 1]
representing the probability of y∗ being from the data D̃.

The causal effect generative adversarial network
(CEGAN) utilizes an adversarially learned bidirectional
model along with a denoising autoencoder to address the
confounding bias caused by the existence of unmeasurable
latent confounders (Lee et al., 2018). CEGAN has two
networks: a prediction network (consisting of a generator, a
prediction decoder, an inference net, and a discriminator),
and a reconstruction network (a denoising autoencoder
that has an encoder that is used as the generator in the
prediction network).

SyncTwin constructs a synthetic twin that closely matches the
target in representation to exploit the longitudinal observation
of covariates and outcomes (Qian et al., 2021b). SyncTwin uses
the sequence-to-sequence architecture with an attentive encoder
and an LSTM decoder to learn the representation of temporal
covariates and then constructs a synthetic twin to match the target
in representations for controlling estimation bias. The reliability of
the estimated treatment effect can be assessed by comparing the
observed and synthetic pretreatment outcomes.

The generative adversarial de-confounding (GAD) algorithm

estimates outcomes of continuous treatments by eliminating the

associations between covariates and treatments (Kuang et al., 2021).

First, GAD randomly shuffles the value of covariate X into X′ to

ensure X′ ⊥⊥ T, where T is the treatments. Second, GAD reweights

samples in X so the distribution of X is identical to X′. GAD

then eliminates the confounding bias induced by the dependency
between T and X.

Adversarial balancing-based representation learning for
causal effect inference (ABCEI) uses adversarial learning to
balance the distributions of covariates in the latent representation
space to estimate the conditional average treatment effect
(CATE) (Du et al., 2021). ABCET uses an encoder that is
constrained by a mutual information estimator to minimize
the information loss between representations and input
covariates to preserve highly predictive information for causal
effect inference. The generated representations are used for
discriminator training, mutual information estimation, and
prediction estimation.

4.5. Recurrent neural networks-based
algorithms

The recurrent marginal structural network (RMSM) uses
recurrent neural networks to forecast a subject’s response to
a series of planned treatments (Lim, 2018). RMSM uses the
encoder-decoder architecture. The encoder learns representations
for the subject’s current state by using a standard LSTM to
predict one-step-ahead outcome ( ˆYt+2) given observations of
covariates and actual treatments. The decoder forecasts treatment
responses on the basis of planned future actions by using
another LSTM to propagate the encoder representation forwards
in time.

The counterfactual recurrent network (CRN) uses
a recurrent neural network-based encoder-decoder to
estimate treatment effects over time (Bica et al., 2020b). The
encoder uses domain adversarial training to build balancing
representations of the patient’s history to maximize the
loss of the treatment classifier and minimize the loss of
the outcome predictor. The decoder updates the outcome
predictor to predict counterfactual outcomes of a sequence of
future treatments.

The time series deconfounder uses a recurrent neural network
architecture with multitask output to leverage the assignment
of multiple treatments over time and enable the estimation
of treatment effects in the presence of multi-cause hidden
confounders (Bica et al., 2020a). The algorithm takes advantage
of the patterns in the multiple treatment assignments over time to
infer latent variables that can be used as substitutes for the hidden
confounders. It first builds a factor model over time and infers
latent variables that render the assigned treatments conditionally
independent; then, it performs causal inference using these latent
variables that act as substitutes for the multi-cause unobserved
confounders.

4.6. Transformer-based algorithms

CETransformer uses transformer-based representation
learning to address the problems of selection bias and unavailable
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FIGURE 3

Intelligent robots observe to learn, plan for interaction, and revise to improve.

counterfactual (Guo et al., 2021). CETransformer contains
three modules, including a self-supervised transformer for
representation learning, which learns the balanced representation,
a discriminator network for adversarial learning to progressively
shrink the difference between treated and control groups in
the representation space, and outcome prediction, which uses
the learned representations to estimate all potential outcome
representations.

4.7. Multiple-branch networks and
subspaces

The dose response network (DRNet) uses neural networks
to estimate individual dose-response curves for any number of
treatments with continuous dosage parameters (Schwab et al.,
2020). DRNet consists of shared base layers, k intermediary
treatment layers, and k ∗E heads for the multiple treatment setting,
where k denotes the number of treatments and E defines the dosage
resolution. The shared base layers are trained on all samples, the
treatment layers are only trained on samples from their respective
treatment category, and a head layer is only trained on samples that
fall within its respective dosage stratum.

Disentangled representations for counterfactual regression
(DR-CFR) disentangles the learning problem by explicitly
identifying three categories of features: the ones that only
determine treatments, the ones that only determine outcomes,
and the confounders that impact both treatments and outcomes
(Hassanpour and Greiner, 2019b). Three representation learning
networks are trained to identify each of the three categories of
factors, and the identified factors are fed into two regression
networks to identify two types of treatments and two logistic
networks to model the corresponding behavior policy.

Decomposed representations for counterfactual regression
(DeR-CFR) disentangles the learning problem by explicitly dividing
covariants into instrumental factors, confounding factors, and
adjustment factors (Wu A. et al., 2020). DeR-CFR has three
decomposed representation networks for learning the three
categories of latent factors, has three decomposition and balancing

regularizers for confounder identification and balancing of the
three categories of latent factors, and has two regression networks
for potential outcome prediction.

Neural counterfactual relation estimation (NCoRE) explicitly
models cross-treatment interactions to learn counterfactual
representations in the combination treatment setting (Parbhoo
et al., 2021). NCoRE uses a novel branched conditional neural
representation and consists of a variable number of shared base
layers with k intermediary treatment layers, which are then merged
to obtain a predicted outcome. The shared base layers are trained
on all samples and serve to model cross-treatment interactions,
and the treatment layers are only trained on samples from their
respective treatment category and serve to model per-treatment
interactions.

Single-cause perturbation (SCP) uses a two-step procedure to
estimate the multi-cause treatment effect (Qian et al., 2021a). The
first step augments the observational dataset with the estimated
potential outcomes under single-cause interventions. The second
step performs covariate adjustment on the augmented dataset to
obtain the estimator.

Curth and van der Schaar (2021) presented three end-to-
end learning strategies for exploiting structural similarities of
an individual’s potential outcomes under different treatments to
obtain better estimates of CATE in finite samples. The three
strategies regularize the difference between potential outcome
functions, reparametrize the estimators, and automatically learn
which information to share between potential outcome functions.

Deep orthogonal networks for unconfounded treatments
(DONUT) proposes a regularizer that accommodates
unconfoundedness as an orthogonality constraint for estimating
ATE (Hatt and Feuerriegel, 2021). The orthogonality constraint is
defined as < Y(t)− f (X, t) >,T− E[T |X = x]), where < ,̇>̇ is the
inner product.

Subspace learning-based counterfactual inference (SCI) learns
in a common subspace, a control subspace, and a treated subspace
to improve the performance of estimating causal effect at the
individual level (Yao et al., 2021b). SCI learns the control subspace
to investigate the treatment-specific information for improving the
control outcome inference, learns the treated subspace to retain the
treated-specific information for improving the estimation of treated
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FIGURE 4

Robotics is multidisciplinary.

FIGURE 5

Visual tracking in endoscopic surgery.

outcomes, and learns common subspace to share information
between the control and treated subspaces to extract the cross-
treatment information and reduce selection bias.

4.8. Combining DL with statistical
regulators and kernels

The varying coefficient neural network (VCNet) puts forward a
neural network and a targeted regularization to estimate the average
dose-response curve for continuous treatment and to improve
finite sample performance (Nie et al., 2021).

Shi et al. (2019) proposed the Dragonnet to exploit the
sufficiency of the propensity score for estimation adjustment,
and proposed the targeted regularization to induce a bias toward
models. The Dragonnet uses a three-headed architecture to provide
an end-to-end procedure for predicting propensity score and
conditional outcome from covariates and treatment information.
The targeted regularization introduces a new parameter and a new
regularization term to achieve stable finite-sample behavior and
strong asymptotic guarantees on estimation.

Deep kernel learning for individualized treatment effects
(DKLITE2) is a deep kernel regression algorithm and posterior
regularization framework to avoid learning domain-invariant
representations of inputs (Zhang et al., 2020). DKLITE2 works
in a feature space constructed by a kernel function to exploit the

correlation between inputs and uses a neural network to encode the
information content of input variables.

From the above introduction, it is clear that DL architectures
are widely used in CL for reducing dimensionality, processing
temporal data, balancing distributions, and removing confounding
and selection bias. Among the architectures, autoencoder and GAN
are particularly popular. From the application perspective, most of
the above methods focus on estimating ITE, and the methods for
estimating ATE and CATE do exist.

5. Deep causal learning for robotic
intelligence

5.1. Challenges in intelligent robotics

Robotics is challenging. Robots are made up of many different
components, including sensors, actuators, and control systems,
all of which must work together seamlessly to function properly
(Yoshikawa, 1990; Craig, 2005; Smith et al., 2020). Robotic systems
are expensive to design, build, and maintain. Additionally, they are
subject to regulations, standards, and certifications that need to be
adhered to. These challenges require a multidisciplinary approach,
combining expertise in areas such as mechanical engineering,
electrical engineering, computer science, and cognitive psychology
to design and build robots.

Intelligent robotics is built upon robotics and faces additional
challenges as intelligent robots interact with the real world, which
is subject to environmental uncertainties, sensory noises, modeling
uncertainties, execution errors, and unexpected events (Figure 3).
Intelligent robots are multidisciplinary by nature (Figure 4) and
interact with humans in the real world, which is full of unexpected
events. These facts introduce challenges that are being intensively
studied.

• Perception: intelligent robots need to be able to perceive and
understand their environment to navigate and interact with
it. This includes tasks such as object recognition, localization,
and mapping, which can be challenging due to the complexity
of real-world environments and the presence of noise and
uncertainty (Thrun et al., 2005; Li and Olson, 2010; Li et al.,
2014, 2018e).

• Planning and decision making: robots need to be able
to make decisions about how to move and interact with
their environment, based on their perception of it. This
requires the development of advanced algorithms for planning
and decision making, which can be difficult to design and
implement in real-world scenarios (Li et al., 2022; Liu et al.,
2022a,b; Su et al., 2022b).

• Control and actuation: robots need to be able to execute
the decisions made by their planning and decision-making
systems by controlling their movements and interactions with
the environment. This requires the development of robust
control systems and actuators, which can be a challenging task,
especially in highly dynamic and unpredictable environments
(Li et al., 2012b, 2018d; Miyasaka et al., 2020; Qi et al., 2020;
Su et al., 2022a).
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TABLE 1 Visual tracking algorithms for addressing various challenges.

Sparse Semidense Full-dense

Static Davison et al. (2007), Mur-Artal et al. (2015) Mur-Artal and Tardós (2015),
Wu Y. et al. (2020)

Newcombe (2012)

Dynamic object Saputra et al. (2018), Yu et al. (2018), Milford
and Wyeth (2012), Pepperell et al. (2016)

Wen et al. (2020) Wimbauer et al. (2021), Fehr et al. (2017),
Bârsan et al. (2018)

Low texture Yang et al. (2016), Gomez-Ojeda (2020) Mahmoud et al. (2017) Visentini-Scarzanella et al. (2017), Tateno et al.
(2017), Ma et al. (2019), Lurie et al. (2017)

Image quality Lee et al. (2011) Mur-Artal and Tardós (2015) Seok Lee and Mu Lee (2013), Chen et al. (2019)

Illumination Whelan et al. (2016), Gomez-Ojeda (2020) Mahmoud et al. (2016), Soper et al. (2012),
Okatani and Deguchi (1997)

Failure recovery Williams et al. (2007), Hsiao and Kaess (2019)

Adverse motion Vasconcelos et al. (2019) Ma et al. (2019)

Deformation Lamarca et al. (2020), Turan et al. (2017)

Scene depth Péntek et al. (2018), Ma et al. (2019)

• Interaction with humans: as robots increasingly interact with
humans in shared spaces, it is important to ensure that they
can understand human behavior and communicate effectively.
This requires the development of human-robot interaction
(HRI) algorithms and interfaces (Jin et al., 2018; Khan et al.,
2018; Zhang et al., 2022).

• Understanding domain-specific knowledge: robots need to
understand domain knowledge to accomplish tasks, such as
robotic surgeries. This is especially challenging while the
domain knowledge cannot be formalized as the rules and costs
of collecting data are expensive (Li et al., 2017b, 2018a; Saxena
et al., 2019). In such applications, robots need to learn from
small data and adapt to various tasks (Li et al., 2018b, 2021).

• Safety and reliability: ensuring the safety and reliability of
robots, especially in critical applications, is a major challenge.
This requires the development of robust fault-tolerance and
safety mechanisms, as well as rigorous testing and validation
of the robot’s performance (Li et al., 2013, 2017c; Alemzadeh
et al., 2016; Li, 2019; Li Y. et al., 2019).

• Scalability: developing robots that can operate effectively in
different environments and perform a wide range of tasks is a
difficult challenge. This requires the development of modular
and scalable robot systems that can adapt to different scenarios
(Li et al., 2012a; Li S. et al., 2017; Majumdar et al., 2020).

• Ethical and societal concerns: as robots become more
advanced and autonomous, there are ethical and societal
concerns to be taken into account, such as potential job
displacement, privacy, and security issues (Lin et al., 2014; Xu
et al., 2022).

5.2. Deep causal learning for intelligent
robots

While intelligent robotics has made significant progress in
the past two decades, partially benefiting from the development
of deep learning, intelligent robots are rarely used in real-world

environments. Deep causal learning is a promising solution to the
challenges of intelligent robotics in the real world. Deep causal
learning infers the causal relationships and can provide a better
understanding of the underlying mechanisms that generate the
data, which can greatly improve safety and reliability, and make
the ethical and societal concerns solvable. Deep causal learning
models can be used to identify the most important factors that
influence a particular outcome, thus simplifying the understanding
of domain-specific knowledge. Deep causal learning can be used
to generate counterfactual predictions, which can improve decision
making and enable complimentary perception and understanding.
Most importantly, deep causal learning extracts the structures
of knowledge and enables stackable learning, which improves
perception, control, and scalability.

To further explain how deep causal learning can potentially
break bottlenecks in intelligent robotics, we use three examples, a
low-level visual tracking example, middle-level motion planning,
and high-level task planning to illustrate why we believe that
deep causal learning has the potential to fundamentally change
intelligent robotics.

Visual tracking is an important problem in robotics and is

widely studied in the fields of computer vision, AI, and the

robotics (Figure 5 and Table 1). There are a large number of

results that can address the challenges of illumination changes,

occlusions, lens blur, drastic scene changes, deformation, etc.,

particularly for visual tracking in endoscopic surgeries (Qin et al.,

2019, 2020; Lin et al., 2020; Recasens et al., 2021). However,
visual tracking remains challenging in endoscopic surgeries as

all these adverse factors exist simultaneously and deteriorate
tracking performance. Meanwhile, these adverse factors, along
with the variance of pathology and anatomy, make the need for
training data grow beyond our capacity. Therefore, we believe
that deep causal learning is needed to disentangle the problems
for robots.

Motion planning is widely studied in robotics (LaValle and
Kuffner, 2001; Li et al., 2018c). However, in real-world applications,
intelligent robots not only need to know where to move to and
how to move there but also need to know whether there are
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FIGURE 6

Experts (in green) and novices (in red) show significant di�erences in hand movements.

other application-specific requirements. For example, it has been
well-studied that movement patterns impact surgical outcomes
(Figure 6; Harbison et al., 2017; Li et al., 2017a), but it is not trivial
to plan motions for a robot for various treatment procedures (Li
and Hannaford, 2017, 2018). Therefore, we believe that deep causal
learning, which naturally uses graphical structures to represent
knowledge, can effectively incorporate domain knowledge with
robotic techniques.

Task-level planning involves multiple decision-making and is
specific to applications. For example, robotic surgery, as one of the
most successful real-world applications of robotic technology, is
still fully teleoperated, despite studies showing that many surgical
accidents were caused by the incorrect operation of surgical robots

(Alemzadeh et al., 2016; Su et al., 2020). Although we believe
there are legal and regulatory barriers that prevent the adoption of
autonomous technology, we argue that the main problem is that we
lack the technology to handle environmental and task variance. For
example, robots have problems dynamically adapting to changes
and determining the completeness of surgery (Taylor et al., 2016).

6. Conclusion

Deep Causal Learning has recently demonstrated its capability
for using prior knowledge to disentangle modeling problems
and reduce data needs, improve performance at extrapolating
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unseen data, modularize learning problems, and incrementally
learn from multiple studies. Inspired by these new findings,
this Review incompletely but systematically discusses causal
cognition, statistical causal learning, deep causal learning, and the
need for deep causal learning in intelligent robots and argues
that deep causal learning is the new frontier for intelligent
robot research.
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