
TYPE Brief Research Report
PUBLISHED 23 March 2023
DOI 10.3389/fnbot.2023.1127033

OPEN ACCESS

EDITED BY

Emilio Trigili,
Sant’Anna School of Advanced Studies, Italy

REVIEWED BY

Federico Villagra,
Aberystwyth University, United Kingdom
Joana Figueiredo,
University of Minho, Portugal

*CORRESPONDENCE

Tina L. Y. Wu
lee.wu@monash.edu

Dana Kulić
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People with Parkinson’s (PwP) experience gait impairments that can be improved
through cue training, where visual, auditory, or haptic cues are provided to guide
the walker’s cadence or step length. There are two types of cueing strategies:
open and closed-loop. Closed-loop cueing may be more e�ective in addressing
habituation and cue dependency, but has to date been rarely validated with PwP.
In this study, we adapt a human-in-the-loop framework to conduct preliminary
analysis with four PwP. The closed-loop framework learns an individualized
model of the walker’s responsiveness to cues and generates an optimized cue
based on the model. In this feasibility study, we determine whether participants
in early stages of Parkinson’s can respond to the novel cueing framework,
and compare the performance of the framework to two alternative cueing
strategies (fixed/proportional approaches) in changing the participant’s cadence
to two target cadences (speed up/slow down). The preliminary results show
that the selection of the target cadence has an impact on the participant’s gait
performance.With the appropriate target, the framework and the fixed approaches
perform similarly in slowing the participants’ cadence. However, the proposed
framework demonstrates better e�ciency, explainability, and robustness across
participants. Participants also have the highest retention rate in the absence of
cues with the proposed framework. Finally, there is no clear benefit of using the
proportional approach.
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1. Introduction

Parkinson’s Disease (PD) is a progressive neurological disorder that causes a decline in
motor capabilities. In advanced stages of PD, a key symptom known as Freezing of Gait
(FoG) impairs people’s ability to initiate, sustain, and control gait patterns, which reduces
their quality of life (Sweeney et al., 2019). Cueing training can be helpful in improving
gait performance, where people can use visual, auditory, or haptic cues to guide them on
where/when to step (Ginis et al., 2018; Sweeney et al., 2019), thereby reducing the frequency
of freezing and improving the temporal and spatial gait parameters such as speed, step length,
and cadence (Nieuwboer et al., 2007).

Two types of cueing strategies have been identified: open or closed-loop (Muthukrishnan
et al., 2019). The open loop strategy provides cues in a fixed manner that do not change
regardless of the person’s response. The fixed nature of the cue can be the constancy (e.g.,
visual cues at fixed distance, auditory/haptic cues at fixed pace) or its presence (i.e., always
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on). The effectiveness of open-loop strategy has been validated
extensively in a variety of settings with PwP [e.g., home (Nieuwboer
et al., 2007)/clinic (McCandless et al., 2016), short/long term
(Lirani-Silva et al., 2019)], showing that open-loop strategies can
be effective in improving gait parameters in PwP. However, key
weaknesses of open-loop cueing include cue-dependency, where
participants start to rely on cues, or habituation, where cues become
less salient (and therefore less effective) as participants get used to
the cues (Ginis et al., 2018).

Compared to open-loop, closed-loop strategies adjust cues
based on the participant’s real-time performance, which may
address cue-dependency and habituation, and potentially provide
greater gait and postural improvement (Mancini et al., 2018).
Closed-loop cueing requires the participant’s gait performance to
be quantified, which can be measured using smartphones and/or
wearable devices (e.g., Ginis et al., 2016; Chomiak et al., 2019).With
the gait-monitoring capabilities, cues can be provided on-demand,
only when symptoms of freezing occur (Ginis et al., 2016), or can be

synchronized to each step (Mancini et al., 2018). However, many of

these methods focus on the events leading up to the cue provision.
There is a lack of adaptation to change the feedback based on the

user’s response. One example of cue adaptation is Zhang et al.

(2020), where the speed of the cues is adjusted using a proportional-
integral controller to minimize the difference between the user’s

walking speed and target speed. Our previous work proposed a

human-in-the-loop (HIL) optimization strategy that models the
participant’s real-time response to cues (Wu et al., 2021). Recently,
Zhang et al. (2022) developed a framework that can first estimate
the user’s maximum walking speed online, then uses reinforcement
learning and fuzzy logic to adapt an intermediate, guiding speed
to help the participant reach their maximum speed. While all
the aforementioned adaptation strategies have been effective in
changing healthy participants’ gait performance, they have not yet
been validated with PwP or other representative groups (Mancini
et al., 2018).

We adapt the HIL framework and the study methodology

originally evaluated with healthy participants in Wu et al. (2021)
in this case study with PwP. In the HIL framework, a model of the

person’s response to cues is learned online using a Gaussian Process
(GP). The GP model is then used in an optimization function

to generate cues to improve gait performance. Compared to our

previous work, this work evaluates adaptive cue generation for
PwP and provides an analysis of the cue-selection mechanism. The

study utilizes auditory cues due to the low development complexity

(i.e., only needing a speaker, compared to visual/haptics cues that
require other hardware). However, the framework generalizes to

other cueing modalities. As a feasibility study, it is also important

to determine whether PwP in the early stages of the disease can
respond to cues.

Compared to the work by Zhang et al. (2022), the HIL
framework can provide insights into the person’s response to cues
by explicitly modeling the response using GPs. The optimization
framework guarantees that the selected cue is optimal and
personalized given the person-specific cue response model. Finally,
the HIL framework may allow for more practical clinical use, as the
therapist would only need to select a target cadence, rather than
defining the fuzzy rules that are needed for Zhang et al. (2022). The

target selection being grounded in clinical metrics and the ability
for person-specific adaptation are also the advantage of the HIL
framework over the PI controller approach in Zhang et al. (2020),
as the controller gains do not have meaningful clinical associations
and lack the ability to adapt to the user’s real-time condition.

2. Materials and methods

2.1. Summary of proposed framework

The HIL framework consists of three subcomponents:
estimating gait parameters online, learning the individualized
cue-response model, and providing cues using an optimization
function. The framework block diagram is presented in Figure 1A.
An Inertial Measurement Unit (IMU) sensor is used to capture
cadence as the main gait performance metric. Cadence in Hertz
(Hz) is estimated using the canonical dynamical system (CDS)
proposed by Petrič et al. (2011).

To learn the individualized cue-response model, a Gaussian
Process (GP) is used to learn the relationship between the current
cadence as a function of the past cadence and past cue frequency as
shown in Equation (1).

X =

[

ω̂k−1, ck−1

]

, for k ∈ (0, 1, ...,K − 1)

Y =

[

ω̂j

]

, for j ∈ (1, 2, ...,K)

Y = f (X)+ β , (1)

where f (X) ∼ GP(m(X), cov(X,X′))

X andY are the input-output data pairs of the GP, with a total of
K number of pairs. ω̂k is the CDS estimate at the current sampling
index k, which happens every four strides roughly at heel strike. Y
consists of (ω̂j, j ∈ [1, 2, ...,K]) is a vector of current cadence as the
GP output data up to the current index k. X consists of a vector
of past cadences (ω̂k−1) and past cues (ck−1) up to index k − 1,
which are the GP input data. The GP has a mean function,m(X), a
covariance, cov(X,X’), and a constant basis β and is trained online
and used to predict how the participant would respond to a given
cue using Equation (2). This approach is inspired by previous works
implementing the HIL framework for exoskeletons (e.g., Kim et al.,
2017; Zhang et al., 2017).

Finally, a cost function is minimized to provide feedback
as shown in Equation (3) and subject to the constraints in
Equation (4).

ω̂k+1(ω̂k, ck) = f (ω̂k, ck)+ β (2)

J(ω̂k, ck) = (ωtarget − ω̂k+1(ω̂k, ck))
2

ck = argmin
ck

J(ω̂k, ck), subject to (3)

max(−20%ωk,−35%ωbaseline) ≤ ck ≤ min(+20%ωk,+35%ωbaseline)
(4)

Where J is the cost function that minimizes the squared
difference between the target cadence and the predicted cadence to
provide feedback, ck. The cost function is subject to the constraints
in Eq 4, with bounds of ±20% of the current cadence and the
ceiling/floor at ±35% of the person’s baseline cadence (ωbaseline).
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FIGURE 1

(A) HIL framework block diagram and the cueing strategies tested in the experiment. (B–D) Shows data from participants during the experiment. The
x-axis shows the time in seconds and the y-axis is the frequency. (B) Corresponds to P1, (C) for P2, (D) for P3, (E) for P4. For each participant, the left
column shows the UP conditions, and the right column are the DOWN conditions. The first row shows the fixed conditions, the second row the
proportional conditions, and the third row are the adaptive conditions. The goal of the cueing approach is to bring the person’s cadence (black line)
into the blue-shaded acceptable region. The pink line shows the participant’s baseline cadence. The dots show the frequency of the cues when they
are played. The target cadence is listed at the top for each participant.

The constraints for the cost function were reduced compared to our
work in Wu et al. (2021). The constraint prevents the cues from
changing to the theoretical maximum/minimum in one iteration

to prevent participants from needing to change their gait rapidly
which may increase tripping risks. At runtime, the optimizer relies
on the GP having learned the cue-response model, which requires
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training samples. A random exploration is initiated at the start of
the experiment for each participant to collect samples until the
gradient can be estimated, which leads to two-phase behavior that
we called the exploration and the converged phases. The GP is
trained continuously regardless of the phase, but we analyze the
performance of the framework with respect to these two phases,
where the exploration is the first 70 seconds of the experiment,
and the converged phase is as the GP prediction error becomes
sufficiently low as shown in Figure 3J.

2.2. Experimental conditions

2.2.1. Cueing strategies
The experiment compares three different cueing strategies:

fixed, proportional, and adaptive. The fixed cue condition provides
cues with frequency at the target cadence, representing the current
state-of-the-art open-loop cueing strategy. In the proportional
condition, cue frequency proportional to the error between
the current cadence and the target cadence is provided. The
proportional condition represents a one-size-fits-all closed-loop
cueing strategy as a constant error gain is used for all participants.
The error gain was set to 0.5, as determined empirically in Wu
et al. (2021). Finally, the adaptive cue provides cues using the HIL
framework described in Section , which allows personalized cues to
be provided. A summary of the cueing strategies can be found in
Figure 1A.

2.2.2. Target cadence selection
As the PD participants of the current study do not experience

gait impairment, the goal is to alter their baseline walking to a new
cadence. This is similar to the usage of cues during FoG, where cues
are used to guide the patient to a non-freezing pace. Two target
cadences (i.e., UP/DOWN speed conditions) are set based on each
participant’s baseline cadence, ωbaseline. In this study, the targets
are ±15%ωbaseline for the first two participants. We observe during
the experiment that both participants were unable to respond to
the +15% conditions and lower the targets to ±10%ωbaseline for
the next two participants. The targets have been used in previous
studies (e.g., Arias and Cudeiro, 2008; Hoppe et al., 2020). To
account for natural variation in the walking and the gait estimation
error, the target cadence constraint is relaxed to an acceptable
boundary during implementation. Thismeans cues would only play
if the participant’s cadence falls out of the boundary. The bounds
are±10%ωtarget for the first two participants with±15%ωbaseline as
the target. The next two participants have the ±10%ωbaseline as the
targets with the bounds of ±5%ωtarget . The acceptable boundary
tightens for the later two participants to avoid the overlap with
the baseline cadence. The change in acceptable boundary range
enforces a minimum of 5% cadence change for all participants.
The acceptable boundary check occurs every 4 strides, during
which 8 beats are provided, to allow time for the participant to
converge to the new cadence. The combination of targets and
cueing approaches result in a total of 6 experimental conditions.

2.3. Participants

Four participants with PD were recruited by a clinician at the
Movement Disorder Clinic, Kingston Center. Participants needed
to have Hoehn and Yahr score1 of less than or equal to two
regardless of medication state to participate and have no hearing
impairments/allergies to adhesives. The criterion excludes those
who experience gait impairment based on the clinician’s assessment
(i.e., freezing of gait, tremor in the lower legs, may be at risk of falls)
in this feasibility study. All participants were tested during their
subjective medication-ON state (if they are on medication). The
study (ID 22556) was approved by the Monash University Human
Research Ethics Committee.

2.4. Protocol

Participants watched an introductory video at the start of the
experiment. Participants provided consent once they had a chance
to have their questions addressed. Different from the previous
study, the IMU sensor was fixed onto what participants self-
reported as the more disease-affected leg. A familiarization session
was provided where participants practiced syncing to 88 beats
per minute. Instructions were given to sync each step to a beat.
Afterwards, participants were told walk at their comfortable and
natural pace for 7 minutes to measure ωbaseline. Participants filled
in a demographic survey after the baseline measurement. The 6
experiment conditions were then provided in random order and
blinded from the participants. During the experiment, cues were
played based on the condition described in Section for the first
6 min (as per the standard 6-min Walk Test). No cues were
played in the last minute of the condition to examine retention.
Participants were instructed to sync their walking to cues to the
best of their ability, but were not explicitly told to maintain the
new cadence in the absence of beats. The researcher walked a
few steps behind the participant throughout the experiment to
provide support if needed. Participants were given breaks while
they filled in a survey between experiments, which included filling
in a NASA Task Load Index (TLX) and if/how the participants
thought their gait changed during each experiment. The break was
extended on demand to avoid fatigue. Once participants completed
all experiment conditions, an exit interview was conducted to fill
in a system usability scale (SUS) and gather information on the
participant’s qualitative experience, followed by a debrief session.
The debrief explained the conditions of the experiment and the
participants also had a chance to review their data in relation to
the goal and the experimental conditions. The study took 1.5 hours
to complete.

1 Hoehn and Yahr score (HY) is a clinical scale that is used to classify

the motor function of Parkinson’s Disease. The scale rating goes from 1

to 5 and the progression in the HY score corresponds to more severe

motor impairment (Bhidayasiri and Tarsy, 2012). Functionally, HY ≤ 2 means

participants can perform their daily routine independently or with minimal

assistance.
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FIGURE 2

(A) Mean percent change from baseline for each participant. For P1&P2 (shown in yellow), ωtarget is 15%. ωtarget is 10% for P3&P4 (in blue). The left
panel shows the UP conditions and the right are the DOWN conditions. Data with similar values may be overlapping (e.g., P2&P3 in E-Exp, Up). (B)
Percent on time during the first 6 min of the experiment. (C) Cadence variability computed using the coe�cient of variation during the first 6 min of
the experiment. (D) Cadence variability during the retention phase (last minute of the experiment). (E) Decay rate computed by fitting an exponential
function to the data from the last provided cue (see orange lines in Figures 1B–D). (F) Task Load Index for the participants.

2.5. Materials

The same setup in Wu et al. (2021) was used and summarized
below. The motion data was recorded using an IMU sensor from
the WaveTrack Inertial System at 285 Hz (Cometa Systems, Milan,
IT) and streamed wirelessly into a custom C# program. The C#
program ran on a laptop (Windows 10, i7 core with noGPU), which
controlled the timing of the auditory cues played from a speaker
(Phillips BT50A). The program also interfaced with MATLAB,
where the Statistics and Machine Learning and Optimization

Toolboxes were used for theHIL framework. The GPwas initialized
with X = [0,0], Y = [0] for each participant.

2.6. Analysis

No statistical analysis was conducted due to the small sample
size. The analysis will focus on reporting the individual raw
data and metrics, combined with the participant’s subjective
ratings.
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3. Results

3.1. Demographics

Four participants enrolled in the study (2M/2F; age 70 ± 5;
height 165.25 ± 12.1; weight 64.25 ± 16.31; years since diagnosis
3.5 ± 1.5). The participants’ self-reported lower body symptoms
are as follows, with the number of participants who reported in
brackets: stiffness (1), slowed movement (2), trouble balancing
(2), and dyskinesia (1). One participant does not experience any
symptoms and others indicated that these symptoms rarely occur.
All participants exercise 3+ times a week, with the most common
exercise being walking (4), strength/resistance training (2), and
stretching/balance training (2). No participant had prior experience
with strategy training (i.e., visual cueing, audio cueing, haptic
feedback, vibration therapy).

3.2. Cueing strategies comparison

3.2.1. Mean percent change from baseline
The mean percent change from the baseline (δ̄BL) is shown in

Figure 2A. This metric is an indicator of whether the approach is
able to sustainably influence the person’s cadence. We hypothesize
that a positive percent change from baseline will be observed in
the UP conditions and a negative percent change for the DOWN
conditions. For instance, the δ̄BL for P1&P2 (in yellow) would be
close to +0.15 in the right panel and –0.15 in the left panel in
Figure 2A. The comparison focuses on the converged adaptive cue
after the model has been learned in the exploration phase.

In the UP conditions, P1’s cadence does not reach +0.15
regardless of the cueing approach. The behavior can also be seen in
the raw data, where the participant’s cadence (black line) is always
below the baseline cadence (pink line) for the UP conditions (left
column) in Figure 2B. For the DOWN conditions, while the target
of –0.15 was not reached for all approaches, the adaptive-DOWN
condition showed the largest mean percent change from the target
as seen in Figure 2A.

The cadence for P2 is similar to the baseline across all UP
conditions (Figure 2A), even during the exploration phase of the
adaptive condition where a series of random cues is provided.
This is illustrated in Figure 1C, where the random cues are seen
within the first 50 s of the adaptive approach (last row), but
the participant’s cadence tracks the baseline (i.e., the black line
oscillates around the pink line). The largest change is seen around
350 s in the Fixed-UP condition in Figure 1C. The cadence dropped
because it was the first condition and the participant paused
walking when the cue stopped playing for the first time. The most
significant change in δ̄BL is in the adaptive-down condition, where
P2 responded best to the slower cue provided in the adaptive
condition compared to the fixed/proportional approach.

For P3&P4, the target is set to ±10%, meaning the blue shapes
in Figure 2A should ideally be close to +0.1/–0.1 for the right/left
panel. The target was lowered for P3&P4 after observing that the
first two participants were unable to reach the fast target. The
adaptive approach for P3&P4 in both UP/DOWN conditions is
comparable to the state-of-the-art fixed approach in terms of δ̄BL.

In the UP condition, the converged adaptive approach achieves
the highest mean percent change from baseline for P3 and P4,
especially for P3 as the participant had the highest δ̄BL among all
conditions and all participants.

3.2.2. Percent on
The percent on metric examines the percentage of time the

cue is provided in the first 6 min of the study, which is shown
in Figure 2B. The metric is a measure of cue efficiency. The
participant’s cadence did not converge to the cues despite the
constant presence of cues in the UP conditions for P1&2. For P3&4,
the adaptive-UP condition requires the least percent on time to
keep participants at the target boundary.

In the DOWNconditions, the converged adaptive condition (F-
Cvg in Figure 2B) shows good performance across all participants.
Despite the fixed-DOWN (Figure 2B) condition having the lowest
percent on time among the three, it is ineffective for P2. The
proportional cue has a similar percent on time between the
UP/DOWN conditions for P3&4, but is drastically different
between the UP/DOWN conditions for P1&2 (i.e., always on for
UP, relatively low for DOWN).

3.2.3. Gait variability
The coefficient of variation of the participant’s cadence is

computed for the first 6 min of the experiment (Figure 2C) and
during the retention phase from the last cue to the end (Figure 2D),
following the definition in Lo et al. (2017). The variability is the
highest during the adaptive condition exploration phase when
cues with the largest variance are provided (see Figures 1B–E).
The proportional approach has the lowest variability, as cues of
similar frequencies are provided. In the fixed/converged-adaptive
approaches, the variability is similar in the UP conditions, but
the adaptive DOWN has a higher variability. This might be
due to the adaptive approach undergoing a second exploration,
which happened in both P3&4. P1’s variability s also high in the
adaptive down condition as the participant’s cadence experience
sharp changes (sudden dip in cadence when cues are provided, see
Figure 1B).

During the retention phase when no cue was played, the
cadence variability is generally low except for P3 in Fixed UP, P2
in Fixed UP, and P1 in Fixed DOWN. P3 had the highest variability
as the participant’s cadence varied from the UP target to a value
lower than the baseline. P2 had a high variability in Fixed UP
due to the participant stopping/starting as described in Section .
While a manual offset is applied to skip the pause/start, the data
should be considered an outlier. P1 in Adaptive DOWN also had
high variability due to the larger variance around t=350s. Overall,
the variability is higher when cues are played, as participants
actively change their cadence to match the cue. The variability is
immediately decreased when there is no cue.

3.2.4. Decay rate
An exponential function of the form of y = αe−ηx + γ is fitted

to the cadence data from the last provided cue to the end of the
experiment to examine the rate at which participants settle to a
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FIGURE 3

A case study using data from P3 adaptive-DOWN condition in Figure 1C. (A) Cadence over time in the experiment. (B) The GP prediction error, which
is calculated at every 4 strides. (C) Shows the final 3D cue response model, where the X axis is ωk, Y axis is ck and the Z axis is ωk+1. Samples are
plotted in blue circles. ωtarget is plotted as the yellow horizontal plane. (D–F) Shows the cost function at the start, middle, and end of the experiment.
The middle part is selected to explain the second exploration phase. The cost function is plotted over the absolute maximum and minimum cue
range (dotted purple line), where the active cost function defined by Equation (4) is plotted as solid blue. The initial guess provided to the optimizer is
plotted as a yellow circle, and the final provided cue is an orange square. (D) Shows the cost function at the start. (E) Shows the selection of cues
given the poor representation and poor optimizer’s initial guess. (G) Shows the final shape of the cost function, which has a minimum that is close to
ωtarget. (G–I) Shows the GP mean and variance at start/middle/end. (J) The average GP prediction error for all participants. The exploration phase (i.e.,
first 70 seconds) is shaded in pink. The prediction error and variance decrease significantly during exploration.

cadence in the absence of cue. The absolute value of the decay rate,
η, is presented in Figure 2E. The function is plotted in orange in
Figures 1B–E. Participants can settle back to their baseline cadence
(e.g., P3, Proportional UP in Figure 1D), a faster cadence (e.g., P4,
Adaptive UP in Figure 1E), or a slower cadence (e.g., P1, Adaptive

UP in Figure 1B). A higher value would indicate a faster settlement.
A low value indicates a minimal change from the baseline or from
a new cadence.

Overall, the decay rates for the fixed and proportional
approaches in UP have a higher variance compared to the adaptive
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condition. The results can be attributed to participants not being
responsive to cues (e.g., P1&P2) or the fast pace being hard for
participants to maintain (as the cadence for P3&4 both drop
significantly once the cue is removed). There is no clear difference
between the cueing approaches in the UP conditions. In the down
condition, the adaptive approach on average has the lowest decay
rate, as well as the lowest variance. Since participants are all able to
slow down, the result suggests that participants are able to better
maintain the new DOWN target using the adaptive approach. The
proportional approach in the DOWN condition again had the
largest variance and the fastest average decay rate.

3.3. Adaptive framework cue-selection
mechanism: Strengths and limitations

The mechanism of the adaptive framework is discussed in
this section with illustrations shown in Figure 3, considering the
Adaptive-DOWN condition for P3, shown in Figure 3A. The
condition is interesting as the framework undergoes 2 exploration
periods (once at the start and once at t≈260s).

The initial exploration phase lowers the prediction error as
seen in Figure 3B, until reaching t≈260s, k≈60 in B. GP undergoes
another exploration period until the prediction error settles again.
In the analysis, we visualize the cost function at each ωk at k =

5, 60, 94 (index for start/second exploration/end) (Figures 3D–F)
and the corresponding GP realization (Figures 3G–I).

At the start, the GP posterior mean prediction starts off flat
across the range of cues as shown in Figure 3G. During this phase,
the constraints defined in Equation (4) are in effect, causing cues at
the maximum/minimum to be provided, as shown in Figure 3D.

Between 0 and 250 s in Figure 3A, cues with frequency of <1
Hz are provided. Through repeated sampling, GP captures the
participant’s response and the prediction variance also decreases
significantly between Figures 3G, H in the <1 Hz region. This
prediction variance remains large for cues>1 Hz due to the lack
of samples. This demonstrates a limitation of the random initial
exploration technique as it does not adequately cover the state
space, which results in a poor model in regions where there are
insufficient samples. The large uncertainty and the optimizer’s
initial guess leads to the second exploration phase, where the upper
range of the cue is explored, resulting in a cue at the upper bound
to be provided.

The GP visualization toward the end of the session is plotted in
Figure 3I. Once the GP model has low variance across the range of
cues, the cost function minimum approaches ωtarget = 0.9 as seen
in Figure 3F, since the participant is generally responsive to cues
(i.e., able to walk at the pace of the cue). However, the participant
does not synchronize exactly to the cue, so a cue slightly below the
target is more effective. Similarly for the UP condition, the adaptive
framework provides cues at a much higher pace than the fixed
approach. In general, the minimum of the cost function represents
the participant’s best performance in relation to the target given
that the GP has been adequately explored. The continuous learning
ability of the adaptive framework may provide a mechanism to
handle habituation as the framework can alter the cues based on the
current user model. In addition, the explicit modeling of the user’s

response to cues through GP may provide clinicians with insights
about changes in the user’s motor capability and users with better
transparency and explainability. The final cue-response surface of
P3 is plotted in Figure 3C.

3.4. Subjective rating and responses

The Task Load Index (TLX) is administered after each
condition and the result is plotted in Figure 2F. Overall, P1&2 rated
the mental workload for the experiment to be lower compared to
P3&4. The UP and DOWN conditions have similar TLX scores
(UP: 17.83 ± 1.4, DOWN: 15 ± 1.75). The adaptive condition
has the lowest mean in the UP condition despite P3&4 both
experiencing two phases of rapid cue changes. The result is not
due to practice effect. As stated by a participant in the post-
study interview, cue synchronization ‘’[becomes] like a game.”
In each post-condition survey, participants are asked whether
their walking changed compared to normal (in the form of
yes/no). Out of the 24 total experimental conditions across the
4 participants, there are 9 reports (37.5%) for no change in
walking (2 Fixed-UP, 1 Fixed-DOWN, 4 Proportional-UP/DOWN,
2 Adaptive-UP). All participants answered “no” in at least one
condition. All participants felt their gait changed in adaptive-
DOWN (i.e., answered “yes”). PD participants reported no change
at a much higher rate compared to the previous study with healthy
participants (19/150 = 12.7% reported no change; the target is
±20%). In the post-study interview, P1&2 both mentioned that
they thought their natural cadence matched the UP targets, which
was surprising given that these two participants failed to increase
their cadence in response to any cue strategy. The overall cue-
provision system scored an average of 78.75 ± 13.77 out of 100 on
the system usability scale using the calculation detailed in Brooke
(1996). Most participants found the system easy to use, would
like to use the system frequently if they need it in the future but
emphasize on the need for help during initial setup.

4. Discussion

In this experiment, we first evaluate whether participants can
respond to the cue, especially when cues are not fixed. The results
show that all three cueing approaches are able to influence the
participants’ cadences in the DOWN conditions. Specifically, the
adaptive approach performs similarly to the benchmark fixed
approach in slowing the cadence. The benefit of the adaptive
approach is the efficiency and robustness across participants,
meaning it does not cue the participants as frequently in the
converged phase and works equally well across participants as
seen by the low variance in the data. In addition, the adaptive
approach in the DOWN cases has the best retention given by the
lowest decay rate. The better retention could be attributed to the
adaptive condition providing slower cues compared to the other
two strategies, combined with the target being feasible to maintain.
Clinically, the impaired ability to regulate step length could be the
fundamental challenge in PD, which is compensated by the increase
in cadence (Morris et al., 1994). In Morris et al. (1994), the authors
observed improvement in stride length in the −10%ωtarget speed
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FIGURE 4

The cost function/GP visualization sets for P1&2 for UP, following the format in Figures 3D–J. For P1, (A) shows the visualization at the start of the
study, (B) shows the visualization at the end of the study. For P2, (C) shows the visualization at the start and (D) at the end.

condition. While later studies have also shown other metronome
settings to be effective (e.g., Willems et al., 2006; Arias and Cudeiro,
2008 tested ranges from −70% to +120%), the implication of the
current study is that by successfully modulating the participant’s
cadence, the step length may be improved. Another clinical aspect
examined is the cadence variability. While cues generally increase
variability (typically associated with the increased risk of falls Lo
et al., 2017), the variability is an intended study effect as participants
need to actively change their pace. In addition, the variability
decreases immediately in the absence of cues, which demonstrates
the short-lasting effect in a single-session study.

As mentioned by Zhang et al. (2022), the target speed selection
during gait rehabilitation is still an open research question.
In our experiment, the performance of the cueing approaches
was impacted by the selection of the initial target, as seen
especially in the UP +15%ωbaseline case for P1&2, where all three
cueing strategies were unsuccessful in influencing the participants’
cadences. When participants are not responsive to cues, the benefit
of the adaptive approach is allowing a better understanding of the
participant’s response landscape. Overall, there is no clear benefit of
the proportional approach based on the metrics of the study.

The GP model combined with the cost function results in the
optimal selection of cue given the constraint in Equation (4). This
is illustrated in Figure 4, where the provided cue (marked in red
x) is the minimum within the constraint boundaries. However, the
boundaries represent a trade-off between safety and convergence.
By limiting the change in cue amplitude, participants do not need
to rapidly change their cadence, which reduces the risk of tripping.
However, the boundary prevents the global minimum from being
selected (as illustrated by the dashed lines in Figure 4). Since P1&2
did not change their cadence during the experiment, the adaptive
approach is therefore stuck within the boundary in Eq. 4. The
convergence of the GP as indicated by the variance is also not as
drastic as in Figure 3I for P3. Overall, in addition to the reliance
on the GP model, the adaptive framework performance may also
be influenced by the optimizer’s initial guess (as seen in Figure 3E),
and the boundary constraint.

The experiment task (i.e., walking and syncing to the beats) may
have been challenging due to dual-task interference and impaired
beat perception, particularly for P1&2. Parkinson’s disease disrupts
the basal ganglia (BG) function in the brain, which is involved in
both motor and other cognitive functions. Particularly, BG is used
to carry out automatic, learned movements such as walking (Wu
et al., 2015). In therapy, cueing can be used to bring attention to
the walking task and therefore bypass the automatic control for
walking. However, when walking while listening to the beats, the
attention may be split between walking and keeping track of the
beats, which may result in decreased performance for both tasks
(i.e., dual-task interference). In addition, Schwartze et al. (2011)
has shown that BG damages can lead to poor beat perception.
PD participants also experience difficulty in acquiring new motor
skills (i.e., sync walking to beats) (Rochester et al., 2010; Wu
et al., 2015) and therefore participants may need more time to
execute the new skills (Ghai et al., 2018), which may explain
why P1&2 were unable to match the UP targets compared to the
DOWN targets.

Potential confounding variables include fatigue and learning
effect. Multiple participants requested a longer break as the
experiment progressed, potentially indicating fatigue. Despite these
factors, no trend is found when ordering the main metrics of
the study by the experimental order, meaning the participant’s
performance did not get better or worse over time. This finding is
consistent with our previous study with healthy participants. The
major limitations of this study are the small sample size and the
lack of an age-matched control group, which we plan to address in
the follow-up study. In addition, further research will need to be
conducted to bridge the perception gap potentially with different
cueing modalities.
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