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The integration of multiple sensors is a crucial and emerging trend in the

development of autonomous driving technology. The depth image obtained by

stereo matching of the binocular camera is easily influenced by environment and

distance. The point cloud of LiDAR has strong penetrability. However, it is much

sparser than binocular images. LiDAR-stereo fusion can neutralize the advantages

of the two sensors and maximize the acquisition of reliable three-dimensional

information to improve the safety of automatic driving. Cross-sensor fusion is a key

issue in the development of autonomous driving technology. This study proposed

a real-time LiDAR-stereo depth completion network without 3D convolution to

fuse point clouds and binocular images using injection guidance. At the same

time, a kernel-connected spatial propagation network was utilized to refine the

depth. The output of dense 3D information is more accurate for autonomous

driving. Experimental results on the KITTI dataset showed that our method used

real-time techniques e�ectively. Further, we demonstrated our solution’s ability

to address sensor defects and challenging environmental conditions using the

p-KITTI dataset.
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1. Introduction

The key to autonomous driving technology is ensuring safety during driving. Awareness

of the surrounding environment is the basis of various intelligent strategies. Intelligent

cars require the comprehensive analysis of data from various sensors to accurately perceive

their surrounding environment while in motion. Therefore, cross-sensor information fusion

technology is a vital method of improving the ability of 3D information acquisition (You

et al., 2020; Kim et al., 2022). In addition, enhancing the perception of sensors could improve

the safety and stability of automatic driving. It represents the mainstream direction of

development (Cui, 2022; Eom and Lee, 2022).

LiDAR-stereo has been gradually developed in recent years (Cholakkal et al., 2020).

LiDAR has strong penetrability and can directly generate effective point clouds. It is less

affected by environmental disturbances. It consumes less space and is more robust and

stable. However, the LiDAR point cloud of a low-power laser beam is cost-effective but

sparse. Additional information from other sensors can compensate for the loss of 3D data

(Nickels et al., 2003; Badino et al., 2011). Therefore, cross-sensor fusion is essential for

depth completion tasks. Cameras are selected as auxiliary sensors because of their low costs
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and simple structure. At present, deep completion networks

are based on the fusion of a monocular camera and LiDAR.

A monocular camera provides a single sheet of rich color

and edge information for sparse point clouds. According to

this supplementary information, sparsity and incomplete point

clouds can be improved. However, the information provided by

monocular images is limited, as they do not provide true depth

information. The completion results are usually not reliable enough

(Xu and Zhang, 2020; Hu et al., 2021). As for binocular cameras, the

disparity image is obtained by stereo matching (Kendall et al., 2017;

Huang et al., 2020). Binocular cameras have all the advantages of

monocular cameras and contain real 3D information. Therefore,

LiDAR-stereo is the development trend for future automatic

drive sensors.

The LiDAR-stereo system provides vital 3D information for

automatic driving. When point clouds and binocular images are

used in the depth completion task, the integrality of 3D information

can be improved through the integration of rich data. This process

transforms the sparse and incomplete 3D information obtained

from LiDAR into a denser and more effective representation (Park

J. et al., 2020; Zhao et al., 2021; Wei et al., 2022). However, the

current effective method is to structure two or three branches

for the point cloud and binocular image. Features are fused by

constructing the feature cost volume. In addition, 3D convolution

is utilized to extract the overall features (Tran et al., 2014).

Although 3D convolution is effective, it takes up huge amounts

of time and space. It loses real-time performance. The speed of

3D information acquisition by intelligent vehicles while driving

needs to be guaranteed. To find an alternative to 3D convolution,

HIT-Net was proposed by Tankovich et al. (2021) as an efficient

hierarchical iterative tiling concept to infer disparity assumptions.

It successfully improves the speed of stereo matching. Based on

the idea of iterative tiling, we designed a new real-time depth

completion network based on LiDAR-stereo that replaces 3D

convolution with propagated 2D convolution to obtain dense

depth quickly. Unlike the original parallel structure of other fusion

networks, we combined point clouds and stereo-depth images

using the multi-injection method. Point clouds were injected

multiple times to guide the refinement of depth information stage

by stage. It compensated for the errors caused by confusion. In

addition, we designed a convolutional space propagation network

based on kernel connections to further optimize the depth. The

traditional multi-core spatial propagation network adopts a parallel

structure. There was no connection between the different cores.

Large convolution kernels lost some detail at each propagation.

Our structure was able to avoid this phenomenon and expand the

network width to improve results.

2. Related works

Depth sensor and binocular camera data fusion technologies

were initially studied in the field of robotics (Nickels et al., 2003).

They generally adopt the fusion methods of stereo and TOF

cameras. However, because of the uncertainty of the outdoor

environment, these methods cannot be transferred and generalized

to the field of autonomous driving. Researchers have proposed

directly integrating LiDAR data into stereo algorithms to reduce

errors and to increase the density of texture-free regions (Badino

et al., 2011). However, the data obtained through this approach

are limited and lack generalizability. In traditional methods,

probabilistic fusion combines prior information from each sensor

and introduces a probabilistic model that integrates LiDAR

and binocular data. They fuse sparse point clouds with stereo

images to provide accurate, dense-depth images and real-time

uncertainty estimates (Maddern and Newman, 2016). However, the

performance dropped significantly in areas lacking a point cloud.

With the rise and development of deep learning, neural networks

were utilized to complete 3D information based on multi-source

information fusion.

2.1. LiDAR-mono fusion

The basic framework of a color image and point cloud

fusion is widely used in many depth completion tasks. The

color image serves as a helpful guide to refine the depth

image as supplementary information. One approach, known as

Convolutional Spatial Propagation Network (CSPN), employs

cyclic convolution operations to propagate and refine the depth

image by learning the affinity between the adjacent pixels through

a deep convolutional neural network (Cheng et al., 2018, 2019a).

In addition, CSPN integrates sparse-depth samples into the

propagation process and employs 3D convolution to generate a

dense depth map. Furthermore, CSPN++ further improves its

effectiveness and efficiency by learning the adaptive convolution

kernel size and propagation iteration times (Chen et al., 2018).

Spade was proposed as a sparse-depth data processing method

with optional dense RGBS that can effectively learn sparse features

without the additional validity masks (Jaritz et al., 2018). Ma

et al. (2019) proposed Sparse2Dense++ as a method to develop

a self-supervised training framework and deep regression model

to learn the direct mapping from sparse depth and color images

to dense depth. Chen et al. (2018) designed a depth estimation

model that is robust to common measurement errors for both

indoor and outdoor scenes. They chose a pre-fusion strategy.

NConv-CNN processes the image and sparse-depth mapping in

parallel and utilizes normalized convolution to handle the highly

sparse depth and confidence (Eldesokey et al., 2020). Fusion-

Net improves accuracy to account for confidence masks for the

uncertainty in each mode of depth prediction (Van Gansbeke

et al., 2019). DeepLiDAR estimates the surface normal as an

intermediate representation to produce dense depth. It predicts a

confidence mask to handle mixed LiDAR signals that occlude near

the foreground boundary (Qiu, 2019). Estimating color images and

surface normals is combined with the learned attention map to

improve depth accuracy at long distances. DDP was proposed as a

prior conditional network to associate probabilities with each given

depth value through probabilistic priors of depth (Yang et al., 2019).

It is combined with a likelihood term using sparse measurements.

However, because monocular cameras cannot directly obtain 3D

information, these networks mostly utilize the color, texture, and

area information of images, which cannot truly compensate for the

missing depth.
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2.2. LiDAR-stereo fusion

Binocular images have more information than monocular

images. The disparity can be obtained directly through the left and

right image pairs. The most difficult part is fusing 3D information

from multi-source sensors.

Cost volume was widely utilized in processing non-single

input to fuse information from two images or multiple sources

(Zhang et al., 2019). Therefore, most LiDAR-stereo fusion methods

build a variety of cost volumes and then refine the depth in

different ways. One notable example is the CCVNorm approach,

which involves fusing point cloud information and applying

conditional cost volume normalization to enhance the fusion

effect (Wang et al., 2019). Another method, SDC-Net, employs a

unique hierarchical and geometrically inspired framework for deep

completion learning (Choi et al., 2021). The virtual right image

was inferred from the left image and point cloud, leading to depth

completion by simulating stereo matching. However, it adds to the

complexity of the network. Mai et al. (2021) proposed SLS-Fusion,

a sparse LiDAR and stereo fusion network, and applied it to 3D

object detection. They proposed multiple jump fusions to gradually

construct the cost volume. Sparse and accurate point clouds guide

the correspondence of stereo images in a unified 3D volume space.

Unlike the existing fusion strategies, VPN directly embeds the

point cloud into the cost volume, which can disseminate effective

information to the nearby voxels in the cost volume and reduce

uncertainty (Choe et al., 2021). FastFusion was proposed as a

binary neural network integrating stereo-matching information

as input (Meng et al., 2021). Meng et al. fused stereo-matching

data and sparse point cloud data-based LiDAR aggregation. It is a

two-stage fusion network. The networks mentioned above achieve

better results. However, they built the cost volume that needs

3D convolution to extract multi-source features. It consumes a

large amount of time and space. Real-time performance cannot be

guaranteed in real-time autonomous driving.

Therefore, using new fusion and optimization methods

to replace cost volume is key to solving the accuracy and

speed problems of deep completion networks based on LiDAR-

stereo fusion. In addition to constructing cost-effective volumes,

researchers have recently attempted other methods to quickly fuse

LiDAR and stereo with less time consumption. CenterFusion was

proposed as an intermediate fusion method that uses a frustum-

based approach to correlate LiDAR detection with the central point

of the corresponding target. A point cloud feature map is used

to supplement image features and improve the accuracy of 3D

target detection (Nabati and Qi, 2020). MVAF-Net was proposed

as an attentive pointwise weighting module and helps to learn

structure information by an adaptive fusion method of multi-view

features (Wang et al., 2020). HDE-Net directly combines point

cloud results from the LiDAR and the semi-global matching results

from the binoculars. It encodes the complementary features of

sparse 3D LiDAR and dense stereo depth in an enhanced manner

(Park K. et al., 2020). However, it is not an end-to-end network.

LiDAR-stereo-Net was proposed as an unsupervised and pre-fusion

network (Cheng et al., 2018, 2019b). The input of the network is

the image pairs and sparse-depth images. It solves the problem of

misalignment between LiDAR noise points and binocular sensors

by introducing a new ”feedback loop“ to connect a network of

inputs and outputs. LiDAR-stereo was proposed as a self-supervised

training method to obtain effective depth information. It adopted

the feature fusion strategy and only merged three kinds of feature

information in the fusion stage of the network (Zhang et al., 2020).

SLF-Net generated a coarse disparity image by fusing a point cloud

projection with a color image (Zhang et al., 2022). Stereo fusion and

edge sense refinement make the depth discontinuities consistent

with the edges in the image. It relies excessively on the accuracy

of color images. Once the target was obscured, the edge-sensing

optimization lost its effect. Although the speed of these networks

was higher, the accuracy was not good enoughwith the single fusion

mode. Our network (RLS-Net) was proposed as a parallel fusion to

replace lost volume and improve effectiveness from global and local

perspectives. The advantages were as follows:

(1) We designed a new LiDAR-stereo depth completion network for

autonomous driving. The multi-injection method guides multi-

source 3D information fusion and updating to improve the

effectiveness of global depth.

(2) We proposed a kernel-connected convolutional spatial-

propagation network. Parallel independent convolution kernels

were concatenated to expand the network width and refine the

edges of local depth.

(3) The experiments on the KITTI dataset showed that the dense

and complete depth image obtained by our real-time network

works well.

3. Methodology

The structure of our network is shown in Figure 1. The network

consists of four modules: the feature extractor module, the injected

guided initialization module, the injected guided update module,

and the kernel-connected depth refinement module. The feature

extractor adopted a U-shaped structure.Weights were shared based

on similarities in information from multiple sources. The multiple

injection guidance module is described in Sections 3.1.1 and 3.1.2.

The point cloud information was initialized, and the guided depth

was updated according to the injection strategy. In addition, we

proposed a spatial propagation network of kernel connections to

optimize depth, which is described in Section 3.2.

The data flow process in the network is as follows: first, the

sparse-depth image was obtained by mapping the 3D point cloud

to the 2D plane that aligns with the binocular image. Second, we

transformed three images from different sources into three feature

images through the feature extraction module. The features were

then fused into the following injection guide module and estimated

to be a coarse-depth image. Finally, the depth image was improved

using the refinement module.

3.1. Multiple injected guidance

HIT-Net was proposed for multi-resolution initialization,

differentiable 2D geometry propagation, and bending mechanisms
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FIGURE 1

The structure of our network. The inputs of the network are the sparse depth image from LiDAR and the image pair from the binocular camera. The

output is the dense depth image. Initially, the multi-source images get the corresponding features through the feature extractor with shared weight.

Then, the coarse depth is obtained by initializing and iteratively updating the depth information under the guidance of the features of the point cloud.

Finally, the depth is optimized in the refinement module to obtain the dense depth image.

to accelerate and replace 3D convolution (Tankovich et al., 2021).

It effectively avoids the consumption of the cost. We applied

similar ideas to LiDAR-stereo fusion networks that completed

depth information. As shown in (b) and (c) of Figure 1, sparse-

depth images guided the fusion of information from multiple

sources with injections. It consisted of two steps: initialization

and updating.

3.1.1. Initialization
The feature extractor converted sparse point cloud images

S ∈ R
B,1,H,W and binocular images L,R ∈ R

B,3,H,W into feature

images Fj ∈ R
B,Cj ,Hj ,Wj , where R is the dimension domain of

the feature, B is the batch size, C is the number of channels,

H and W are the width and height. j represents the structure

of multiple resolutions. The three types of information were still

image-based data structures with multiple channels. However, it

saved the feature representation rather than the pixel information.

The feature images were preprocessed into the required structure

to meet the initialization needs. They can be expressed as

σ s
i ∈ R

B,Cs ,
H

2i+1 ,
W

2i+1 , σ l
i ∈ R

B,Cl ,
H

2i+1 ,
W

2i+1 , σ r
i ∈ R

B,Cr ,
H

2i+1 ,W (1)

We represent the feature vectors as a confluent tile hypothesis

with autonomous learning ability. Unlike the old construction, we

considered the sparsity of the point clouds, which can be regarded

as a concrete representation of the relative absence and sparsity

of the point cloud. We innovatively obtained binocular images

and point clouds while also measuring the difference in gradients

between them to formulate a testable hypothesis.

The initial depth of the binocular images and the initial sparsity

of the point cloud can be obtained from the physical model. As

shown in Figure 2A, the corresponding disparity can be obtained

for stereo vision by finding the corresponding points in the scene

of the l binocular images. The depth of the scene can be calculated

from the baseline b and focal length F, which is Z =
bf
d
.

Because there was a one-to-one correspondence between depth

and disparity, depth could be represented by the disparity in deep

learning networks. Feature images of different scales were obtained

using the multi-resolution feature extractor for shared weights (a

specific combination of complex convolution). According to the

feature information, the initial binocular disparity defined by one

norm concerning HIT-Net zi
0 can be expressed as

z0i ∈ R
B,Cd ,

H

2i+1 ,
W

2i+1 =

argmin
∥

∥

∥
σ l
i ∈ R

B,Cl ,
H

2i+1 ,
W

2i+1 − pad(σ r
i ) ∈ R

B,Cr ,
H

2i+1 ,W
∥

∥

∥

1
(2)

where pad() is the fill method.

However, as shown in Figure 2B, the vehicle-borne LiDAR

components handled the vehicle-borne LiDAR components

emitting lasers within a field angle. At the same time, the

receiving components received the laser that was reflected within

the receiving range. Information about the reflected object can

be obtained from the correlation between the emitted laser

and the reflected laser. Therefore, the point cloud formed by

LiDAR was composed of points. The depth of information was

reliable. However, the fewer beams of LiDAR, the lower the point

cloud density. 3D information could be effectively identified. We

processed the point cloud with the same feature extractor to obtain

the sparse multi-resolution feature of the point cloud. The point

cloud corresponded to the left image, and the sparsity gradient si
0

was defined as
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FIGURE 2

Depth measurement model of stereo matching and point cloud scanning. (A) is the model of a binocular camera, the lower dot is the target point,

and the upper two dots are the two cameras (B).

si
0 ∈ R

B,Cs ,
H

2i+1 ,
W

2i+1 =

cat(σ l
i ∈ R

B,Cl ,
H

2i+1 ,
W

2i+1 , σ s
i ∈ R

B,Cs ,
H

2i+1 ,
W

2i+1 ) (3)

where cat() is the connection method.

In addition, the closer to the depth of the real multi-source

sensor, the better the fusion effect. From the perspective of sensor

fusion, is the correspondence between multi-source information

and the fusion state of LiDAR and binocular. The difference

between the x and y directions was set to 0 in the initialization,

which is dix
0 = diy

0 = 0. They were updated and refined through

subsequent cycles.

The initial tile hypothesis consisted of four vectors. We set the

number of resolution layers as N and the scale as i ∈ 1, · · · ,N.

Therefore, combining these feature vectors above, the initial tile

hypothesis of scale i is defined as

Ti
0 ∈ R

B,C, H

2i+1 ,
W

2i+1 = {zi
0, si

0, dix
0, diy

0} (4)

where zi
0 is the initial depth of the binocular, si

0 is the sparsity

of the point cloud. dix
0 and diy

0 are the ladder differences between

the two in the x and y directions.

3.1.2. Updating
Tile hypotheses are gradually improved through spatial

communication and information fusion in the updating process. It

consisted of three steps: self-updating Ṫm
i , depth updating T̈m

i , and

point cloud updating
...
T
m
i . It is shown in Figure 3.

Initially, because of the sparsity of the point cloud, there may

be some error in the difference between the point cloud and the

binoculars in the iteration. On the contrary, the overall information

in the binocular images was denser and more reliable. Therefore,

for the self-updating process, we focused on the depth disparity

of the same tile hypotheses. Disparity and gradients in the x

and y directions were updated. In the local 4× 4 windows, the

self-updating result Ṫm
i was obtained by collecting gradients in x

and y directions. The tile hypotheses-based self-updating can be

expressed as

Ṫm
i

{

d, dix, diy
}

∈ R
B,C, H

2i+1 ,
W

2i+1 =
∑

win
h,w

4×4
{

d + dix(h−
3
2 )+ diy(w− 3

2 )
}

, (5)

where m is the update times, and win() is the local

setting window.

Subsequently, for binocular images, we scaled the hypotheses

tiles to match the feature pyramid’s scale. The output was based on

the left image. Therefore, the right image was biased concerning

depth, and the left image was consistent. Each pixel in the output

image was located at the corresponding pixel point in the input

image according to the flow value. This process is known as

“warping” in optical flow. We mapped the virtual optical flow value

represented by the feature image on the right with the photometric

consistency. The tile hypotheses based on depth updating T̈m
i can

be expressed as

T̈m
i ∈ R

B,C, H

2i+1 ,
W

2i+1 = conv
h,w

4×4
{

σ l
i , flow(Ṫ

m
i , σ

r
i )
}

=

conv
h,w

4×4
{

σ l
i , (Ṫ

m
i

{

h+ u,w+ u
}

)
}

, (6)

where flow() is the wrap method of optical flow, conv() is

convolution, σ l
i the left feature image, σ r

i is the right feature image,

and u is the offset of the mapping.

Finally, we added point cloud information using the injection

method. The reliability of the information decreased gradually

due to the upsampling, which caused the resolution to increase

gradually. Therefore, we added point cloud features gradually

in the process of upsampling to optimize the high-resolution

information. The tile hypotheses based on point cloud updating can

be expressed as

...
T i

m
∈ R

B,C, H

2i+1 ,
W

2i+1 = cat (T̈m
i , σ

s
i ) (7)
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FIGURE 3

Schematic diagram of triple updating. Tile hypotheses are the majority of feature representation and update for depth images. The arrow from top to

bottom in the direction of the update. The binocular image is injected in the depth updating. The point cloud is incorporated into the point cloud

updating.is the model of LiDAR, the lines are waves.

The coarse-depth image Dori ∈ R
B,1,H,W can be obtained

through three update steps, and the number of iterations

can be set freely. However, the resolution changes cause the

local information to be unstable. Therefore, we opted to do

local optimization.

3.2. Kernel-connected depth refinement

CSPN was proposed to enhance local depth information. It

utilizes an anisotropic diffusion process. It learns from a specific

image directly using deep convolution to fuse neighborhood

information and improve efficiency. The coarse-depth image

was put into the module. Moreover, the data structure of the

intermediate variable remained the same during the process. In

addition, the number of channels varied according to the size of the

convolution kernel. The iterative formula of convolutional space

propagation can be expressed as

Di
t+1 ∈ R

B,1,H,W = λi0Di
0 +

∑

j∈N(k)

λijDi
t , (8)

where t is the number of iterations, λ is the weight, and N(k) is

the range of the neighborhood.

PE-Net was proposed to replace the pixel operation with the

tensor operation. The formula was equivalent to

Di
t+1 ∈ R

B,1,H,W = χ(Ai
0, 0)χ(Di

0, 0)+
∑

j∈N(k)

χ(Ai, j)χ(Di
t , j),

(9)

where χ(·) is the vector translation operation and A is

the affinity.

Further, we set p different convolution kernels for parallel space

propagation and summed the results of each branch. The result of

multiple serial and continuous convolution kernels at each scale

Dip
t+1 can be expressed as

Dip
t+1 ∈ R

B,1,H,W = χ(Aip
0, 0)χ(Dip

0, 0)+
∑

jp∈Np(k)

χ(Aip, jp)χ(Dip
t , jp) (10)

However, different convolution kernels were related to each

other, as they convolved around the same range of intersections.

Choosing small convolution kernels may enhance local details.

However, selecting too large a convolution kernel may lead to

more unstable details and blurred edges. Therefore, we fused

convolution kernels of different sizes into different branch kernels

using the interleaved mode. We built the kernel-connected

convolutional space propagation optimization module, which

is shown in Figure 4. The spatial propagation networks of

different convolution kernels were no longer parallel algorithms

but were cross-connected with each other. We integrated small
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FIGURE 4

Schematic diagram of kernel convolution space propagation. Three convolution kernels are taken as examples. The local depth information is

enhanced with the horizontal arrows propagating to the right respectively. There is cross-scale connection guidance between cores of di�erent sizes.

convolution kernels into large convolution kernels to guide the

effect of convolution.

The branch consists of the convolution of itself and other

branches. The improved convolution results at each scale D̂t+1
ip can

be expressed as

D̂t+1
ip ∈ R

B,1,H,W = χ(Aipq
0, 0)χ(Dipq

0, 0)+
∑

jp∈Np(k)

χ(Aip + Aipq , jpq )χ(Dipq
t , jpq ), (11)

where q is the convolution level of the other branches. When

q is 0, it is the same as the original formula. The final dense-depth

image Dfin ∈ R
B,1,H,W is obtained after refinement.

4. Experimental results and discussion

4.1. Dataset and setup

KITTI: We set up the experiment on the KITTI to verify

the effectiveness of deep information processing for autonomous

driving (Geiger et al., 2013). The data were collected using a

Velodyne HDL-64E rotating 3D laser scanner and two PointGray

Flea2 color cameras. It provided color images and corresponding

sparse-depth images. Sparse-depth images were obtained by

projecting 3D LiDAR points onto the corresponding image

frames. In addition, a sparse-depth image had approximately

5% of valid pixels. A ground-truth, dense-depth image had

approximately 16% of valid pixels. KITTI contained 43 k image

pairs for training, 3 k for verification, and 1 k for testing. We

split the validation set into 1 k pairs for validation and 1 k

pairs for testing. Because of the uniqueness of autonomous

driving, there was no depth information in the upper part

of the image. Therefore, the 1,216 × 352 full-resolution

images in the dataset were cropped from the bottom to

1,216× 256.

p-KITTI: We proposed pre-processing binocular data from

KITTI to simulate the missing effect in the real scene. Random s× s

pixels of the binocular images were covered with a black mask. The

other parameters of the images in the dataset remained unchanged.

For example, if s = 100, it meant that 1.6% of the effective pixels

were invalid.

Setup: We trained our network using Pytorch on one NVIDIA

2080 Ti GPU and chose the common settings without any

improvements. We set the loss function as L1 loss, the optimizer as

RMSProp, the constant learning rate as 1×10−3, and the batch size

as 8. In addition, the image size for training was 512×256 images

with random cropping.

Metric: MAE stands for the mean absolute error. It is the mean

of the distance between the model’s predicted value and the true

value. It has a faster convergence, a more stable gradient, and a

relatively robust solution. MSE stands for the mean square error.

It refers to the mean squared difference between the predicted

value of the model and the real sample value. Because its penalty is

squared, it is sensitive to outliers. IMAE stands for the inverse mean

absolute error. IRMSE stands for the inverse root mean square

error. MARE stands for the mean absolute relative error. FPS refers

to the number of frames per second. Error_1px, Error_2px, and

Error_3px are errors of 1, 2, and 3 pixels, respectively. They can

be expressed as
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MAE =
1

n

n
∑

p∈Pv

∣

∣

∣
D
gt
p − Dp

∣

∣

∣
, (12)

MSE =
1

n

n
∑

p∈Pv

(

D
gt
p − Dp

)

2

, (13)

RMSE =

√

√

√

√

√

1

n

n
∑

p∈Pv

(

D
gt
p − Dp

)

2

, (14)

IMAE =
1

n

n
∑

p∈Pv

∣

∣

∣

∣

∣

1

D
gt
p

−
1

Dp

∣

∣

∣

∣

∣

, (15)

IRMSE =

√

√

√

√

√

1

n

n
∑

p∈Pv

(

1

D
gt
p

−
1

Dp

)2

, (16)

MARE =
1

n

n
∑

p∈Pv

∣

∣

∣
D
gt
p − Dp

∣

∣

∣

D
gt
p

, (17)

and

FPS =
1

Time
, (18)

where Pv is the valid pixels, D
gt
p is the true value of the pixel

p, Dp is the predicted value of the pixel p, and n is the number of

points.Time is the running time of inference.

4.2. Results of the experiment

4.2.1. KITTI dataset
The effect of deep completion based on LiDAR-stereo for

autonomous driving is shown in Figure 5. The depth image is more

dense and accurate due to information from multiple sources. In

the first image of the road ahead, cyclists, vans, and pillars were

evident on both sides of the road. In the second image, there were

many cars parked to the left and right, which was clear in the

FIGURE 5

Results of our network on KITTI. (a) is the sparse point cloud from the LiDAR, (b) is the left image of the binocular camera, (c) is the right image of the

binocular camera, (d) is the dense depth image completed by our network, and (e) is the ground truth of the dense point cloud.
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TABLE 1 Comparison of real-time network e�ect on KITTI.

Model Input IRMSE IMAE RMSE MAE Rank Time (ms) FPS (Hz)

PASM-Net Stereo 3.75 1.69 2.3082 0.6991 7.000 0.061 16.41

S2D LiDAR 3.21 1.35 0.9544 0.2585 3.375 0.040 25

HMS-Net 2.93 1.14 0.9375 0.2585 4.625 0.020 50

S2D(RGB) LiDAR+Mono 2.80 1.21 0.8147 0.2499 2.250 0.080 12.50

SLS-Fusion 2.72 1.28 0.8452 0.3074 3.250 - -

HDE-Net LiDAR+Stereo 3.39 1.38 2.0212 0.5005 6.000 0.045 22.22

RLS-Net(Ours) 1.78 0.82 0.9036 0.2289 1.500 0.067 14.93

The bold numbers are the best.

TABLE 2 Comparison of fusion network results on KITTI.

Model Input IRMSE IMAE RMSE MAE Rank1 Rank2 Time(s) FPS (hz)

PSM-Net Stereo 4.27 3.02 2.9328 1.2398 - - 0.358 2.79

GA-Net 3.08 1.31 1.5292 0.4487 - - 2.439 0.41

AA-Net+ 2.97 1.23 1.3966 0.3934 - - 0.234 4.27

CSPN LiDAR+Mono 2.93 1.15 1.0196 0.2795 6.000 - 1.000 1

CSPN++ 2.07 0.90 0.7437 0.2093 2.875 - 0.200 5

ACM-Net 2.08 0.90 0.7449 0.2061 3.125 - 0.200 5

NLSPN 1.99 0.84 0.7417 0.1996 1.500 - 0.220 4.55

Guide-Net 2.36 0.99 0.8578 0.2340 4.750 - 0.153 6.51

LiStereo LiDAR+ Stereo 2.19 1.10 0.8322 0.2839 - 5.750 - -

VPN 1.88 0.99 0.6362 0.2051 - 3.000 1.408 0.71

SLF-Net 1.77 0.88 0.6411 0.1970 - 2.250 0.163 6.14

CCVNorm 1.40 0.81 0.7493 0.2525 - 2.500 1.011 0.99

SDC-Net 2.04 0.82 0.7524 0.2384 - 3.875 0.34 2.94

RLS-Net(Ours) 1.78 0.82 0.9036 0.2289 2.750 3.625 0.068 14.71

The bold numbers are the best.

depth image. The results of the comparison with other networks

are shown in Tables 1, 2. The difference between the methods in

Tables 1, 2 is running time. The speeds of the methods in the two

tables were set at different levels.

The comparison of accuracy on KITTI between our network

and other real-time networks is shown in Table 1. As can

be observed, the depth completion improved with input

diversification. Only LiDAR input had good real-time performance.

The FPS could reach more than 25. However, the accuracy was

very low. LiDAR-monocular input can serve as a balance with less

promotion. Because of the additional information in a color image,

the metrics of S2D(RGB) decreased by approximately 0.41 (13%),

0.21 (10%), 0.1397 (15%), and 0.0086 (3%), respectively. However,

the speed was reduced by half. It was difficult to meet the real-time

requirements of LiDAR-stereo input. Speed and accuracy cannot

be ensured without effective fusion and optimization. Therefore,

we comprehensively considered the factors affecting speed and

the optimization methods to improve global and local accuracy.

Our network achieved higher accuracy and still has real-time

performance of 14.93Hz. It has abilities that other LiDAR-stereo

networks do not possess. Compared with S2D, the metrics of our

network decrease by 1.43 (45%), 0.53 (39%), 0.0508 (5%), and

0.0296 (11%), with the 0.027 s going up. In addition, we used the

Friedman test to compare the effects of these networks and validate

the statistical significance of the above results (Shang et al., 2021;

Yuan et al., 2022). We summarized each network’s average rank in

terms of the four metrics in Table 1. The results showed that our

network achieves the best results using real-time methods.

Other LiDAR-mono and LiDAR-stereo networks focus more

on improving accuracy. The comparison of accuracy is shown

in Table 2. Our network had an absolute advantage in speed.

Some metrics of our real-time network were better than those

of some non-real-time networks. The metrics of CCVNorm had

the best performance. For the closer metrics, IMAE decreased

by approximately 0.01(1%), and MAE decreased by ∼0.0236(9%)

compared to our method. However, the running time of our

network was 0.943s shorter than that of CCVNorm. Our network

was 15 times faster. For the statistical analysis, Rank 1 represented

a statistical comparison of our network with other LiDAR-Mono

networks. Rank 2 represented a statistical comparison of our

network with other LiDAR-stereo networks. The results of our

network are in the middle of the non-real-time algorithm ranking.
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However, it is worth noting that our network ran much faster than

other networks.

4.2.2. P-KITTI dataset
In addition, another vital advantage of the fusion of binoculars

and point clouds was the ability to avoid sensor defects and

environmental impacts. The official KITTI dataset selects images

and point clouds from complete and clear datasets. It was

not affected by any unforeseen circumstances. The results with

the original data cannot reflect its universality and robustness.

Therefore, we pre-processed the images of KITTI and assumed

TABLE 3 Comparison results on p-KITTI.

Model IRMSE IMAE RMSE MAE

Stereo Image_2_cut 10.873 3.424 3.476 1.009

Difference −8.408 −2.137 −2.080 −0.556

Image_3_cut 24.061 5.948 3.810 1.119

Difference −21.596 −4.661 −2.414 −0.6664

Image_2+3_cut 13.751 4.528 18.289 4.945

Difference −11.286 −3.241 −16.893 −4.492

LiDAR+Stereo Image_2_cut 1.794 0.834 0.970 0.250

Difference −0.014 −0.014 −0.066 −0.182

Image_3_cut 1.807 0.838 0.942 0.251

Difference −0.027 −0.018 −0.038 −0.183

Image_2+3_cut 1.952 0.861 1.659 0.269

Difference −0.172 −0.041 −0.755 −0.201

that the defects of the sensor led to large holes in the binocular

images. We demonstrated the advantages of multi-sensor fusion in

Table 3. The results of LiDAR-Stereo fusion were better than those

of a single sensor with the problem data. On some measures, the

gap was even nearly 100 times greater. Multi-source sensors greatly

improved the robustness of the algorithm.

More details are shown in Figure 6. When the problem data

were input into the stereo-matching network, the single sensor had

a strong dependence on the data. The depth information cannot

be compensated for by the network with pixel loss. As a result, the

depth image appeared with large white holes and was affected by the

perception of the environment. However, our networks based on

multi-source sensors can greatly improve the defect. The depthmap

was still nicely completed because of the addition of information

regarding LiDAR.

4.3. Results of the experiment

4.3.1. Injection-guided initialization
There were various multi-source sensor fusion methods. We

compared common input and feature fusion methods with our

injection fusion. As shown in Table 4, the input and feature fuses

produced worse results. It was caused by the lack of accurate

correspondence between different sources of information. 3D

convolution can alleviate it but at a huge time cost. Information

mismatches are more common in real-life situations. Therefore, if

we want to ensure real-time performance, these two fusionmethods

are not applicable. Injection fusion has no such problem. We

gradually learned how to match multiple sources of information

through the network rather than match information at the

beginning. The time only increased by 0.002 s to integrate LiDAR

FIGURE 6

Results of our network using problem data. p_l and p_r were obtained after the left and right images were pre-processed. Stereo is the depth image

obtained by stereo matching. Stereo+LiDAR is the depth image obtained by our network based on LiDAR-Stereo.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1124676
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wei et al. 10.3389/fnbot.2023.1124676

TABLE 4 Results of the injected guided initialization and updating module.

Model IRMSE IMAE RMSE MAE MARE Time(s)

RLS-Net_ori 2.4654 1.2870 1.3961 0.4526 0.0191 0.062

+ input fusion 3.9963 1.6608 1.6104 0.4420 0.0213 0.063

+feature fusion 4.3087 2.1358 1.8819 0.5987 0.0285 0.066

+ injected fusion 2.2307 1.0676 1.2501 0.3648 0.0154 0.064

+ updating 1.9252 0.9301 0.9643 0.2880 0.0128 0.066

The bold numbers are the best.

FIGURE 7

The e�ects of the injected guided initialization module. The first row is the colored left image. The second line is the result before adding the

module. The third line is the result of adding the module. (a) and (b) are two details that are cropped and enlarged for obvious display.

FIGURE 8

The e�ects of the injected guided updating module. (a) is the sparse point cloud. (b, c) are the left and right image pairs. (d) is the result before

adding the module, and (e) is the result after adding the module.
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TABLE 5 Results of the injected guided updating module.

Model Error_3px Error_2px Error_1px

RLS-Net_ori 0.0058 0.0105 0.0327

+ injected fusion 0.0041 0.0071 0.0179

+ updating 0.0028 0.0050 0.0140

The bold numbers are the best.

TABLE 6 Results of the kernel-connected depth refinement module.

Model IRMSE IMAE RMSE MAE MARE Time(s)

RLS-Net_updating 1.9252 0.9301 0.9643 0.2880 0.0128 0.066

+ KCSPN(12) 1.8910 0.8585 0.8787 0.2380 0.0114 0.067

+ KCSPN(16) 1.7797 0.8162 0.9036 0.2289 0.0108 0.067

+ KCSPN(20) 1.8259 0.8192 1.3711 0.2309 0.0109 0.068

The bold numbers are the best.

information into binocular information. However, the metrics of

the network decreased by 0.2347 (10%), 0.2194 (17%), 0.146 (10%),

0.0878 (19%), and 0.0037 (19%), respectively.

As shown in Figure 7, the cross-sensor 3D information was

fused effectively. The trunk of the color image was buried in (a)

by a background of similar color. Therefore, the binocular images

did not match the depth information of the trunk well. Because the

car was far away and had no clear shape, it was integrated with the

environment in (b) in the depth image. However, binocular images

are no longer the only criterion for judgment with the additional

point cloud information. We obtained a clear view of the tree trunk

and the exact position of the car’s head.

4.3.2. Injection-guided updating
The effect of our network after multiple injection-guided

updates is shown in Table 4. The time of our network increased by

0.002 s, but the metrics of the network decreased by 0.3055(14%),

0.1375(13%), 0.0768(21%), and 0.0026(17%), respectively. The

improvement was remarkable. In this step, the coarse-depth

image was continuously updated with the guidance of point

cloud injection. As shown in Figure 8, the connection between

the handlebar and the hand was ignored because the image

was affected by illumination and occlusion. However, it was

evident in the sparse point clouds. After the injection guidance

update, the depth was gradually optimized and updated with

the fusion of the network. Details of the people and bikes were

clearly shown.

In addition, as shown in Table 5, the pixel error was greatly

reduced because of the point cloud injection. Finally, the pixel

errors of the network decreased by 0.0030 (52%), 0.0050 (52%), and

0.0187 (57%), respectively.

4.3.3. Kernel-connected depth refinement
A kernel-connected convolutional spatial propagation network

requests iteration. The more iterations, the longer the time.

Therefore, it was impossible to increase The Times blindly

if the real-time performance was guaranteed. In addition,

as shown in Table 6, the best results were achieved when

the number was 16. We believe that the error information

was magnified because of the excessive number of iterations,

which affected the quality of the image. The time cost of

our kernel connection optimization module increased by

0.001 s, but the metrics of the network decreased by 0.1455

(8%), 0.1139 (12%), 0.0607 (6%), 0.0591 (21%), and 0.002

(16%), respectively.

As shown in Figure 9, (a) is a bicycle on the side of the road

and (b) is a driving car. We could discover it intuitively from

the color image. However, we could hardly recognize it from

the background in the point cloud of the LiDAR. As shown in

Figure 9, m was the number of iterations. When m = 16, the

color image was better than when m = 12 and m = 20. As m

increased, the proportion of point clouds gradually increased in

the fusion process. The diversity of information was enhanced, and

the target shape was more prominent. However, if the proportion

of point clouds was too large, the accuracy of the fusion depth of

the target was affected, and the result was excessively dependent

on point clouds. Therefore, we chose m = 16 to optimize the

depth image.

5. Conclusion

Aiming at the fusion problem of multi-source sensors

for autonomous driving, we proposed a real-time LiDAR-

Stereo depth information completion network. We initialized

and updated injection-guided tile hypotheses for multiple

network phases instead of 3D convolution. It was not

only more conducive to the global fusion of multi-source

information but also greatly reduced the cost of time

and space. In addition, the spatial propagation network

based on kernel connections effectively refined the local

depth. A series of ablation experiments demonstrated

the effectiveness of our module. Our network was
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FIGURE 9

The e�ects of the injected guided updating kernel-connected depth refinement module. (A) is a bicycle and (B) is a car, both of which are specific

targets for 3D information acquired by sensors. The top left image pair is binocular images. The top right is the point cloud. The following three

images are the fine-depth images obtained at iterations 12, 16, and 20, respectively. The overlapped image at the bottom left is their false-color

image.

proven to be effective and high-speed on the KITTI and

p-KITTI datasets.
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Appendix

Table of Notation.

Symbol Explanation

A affinity

b baseline

B Batch size

C the number of channels

conv() convolution

di
0 the initial binocular disparity

dix
0 the ladder difference between the two in the x direction

diy
0 the ladder difference between the two in the y direction

Dfin the final depth image

D
gt
p the true value of the pixel p

Dp the predicted value of the pixel p

Dori the coarse-depth image

Di convolutional space propagation

F focal length

Fj the feature image with j resolution

flow() the wrap method of optical flow

H height

i scale

L the left image

m the times

n the number of points

N the number of resolution layers

N(k) the range of the neighborhood

p the number of convolution kernels

Pv the set of valid pixels

pad() fill

q the convolution kernels

R the right image

R the data structure of the feature

si
0 the sparsity of the point cloud

s × s the pixels of the left and right images

t the number of iterations

Ti
0 the initial tile hypothesis of scalei

Ṫm
i the result of self-updating

T̈m
i the result of depth updating

...
T
m
i the result of point cloud updating

Time the running time of inference

u the offset of the mapping

W width

(Continued)

(Continued)

Symbol Explanation

win() the local setting window

Z the depth of the scene

zi
0 the initial depth of the binocular

σ l
i left feature image

σ r
i right feature image

σ s
i feature of the point cloud

λ weight

χ(·) the vector translation operation
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