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Current wireless-inertial fusion positioning systems widely adopt empirical

propagation models of wireless signals and filtering algorithms such as the Kalman

filter or the particle filter. However, empirical models of system and noise usually

have lower accuracy in a practical positioning scenario. The biases of predetermined

parameters would enlarge the positioning error through layers of systems. Instead

of dealing with empirical models, this paper proposes a fusion positioning system

based on an end-to-end neural network, along with a transfer learning strategy for

improving the performance of neural network models for samples with di�erent

distributions. Verified by Bluetooth-inertial positioning in a whole floor scenario, the

mean positioning error of the fusion network was 0.506m. The proposed transfer

learning method improved the accuracy of the step length and rotation angle of

di�erent pedestrians by 53.3%, the Bluetooth positioning accuracy of various devices

by 33.4%, and the average positioning error of the fusion system by 31.6%. The

results showed that our proposed methods outperformed filter-based methods in

challenging indoor environments.
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1. Introduction

Location navigation service is one of the indispensable technologies for the modern society

and scientific development. However, the current Global Navigation Satellite System (GNSS)

is usually unable to locate effectively indoors due to irregular attenuation of GNSS signals

caused by the occlusion of clouds, building walls, and ceilings. During the last decades, many

efforts have been made to study how to leverage any indoor wireless signals to provide indoor

navigation services, and indoor positioning technology was born. At present, mainstream

indoor positioning technologies include Wi-Fi (Zhuang et al., 2016), Bluetooth (Paterna et al.,

2017), Ultra-wide Band (UWB) (Mahfouz et al., 2008), Lidar (Li et al., 2020), computer

vision (Hwang and Song, 2011), inertial navigation (Kang and Han, 2015; Wu et al., 2019;

Hou and Bergmann, 2021), visible light (Zhuang et al., 2018, 2019; Hua et al., 2021) and

so on. Each positioning technique has its advantages as well as its limitations. For example,

inertial navigation positioning is prone to accumulative errors due to system noise and drift

(Abdulrahim et al., 2010). Modeling signal propagation is challenging for Wi-Fi and Bluetooth

since they are easily affected by occlusions, and traditional positioning algorithms, such as

trilateration positioning (Yang et al., 2020), usually have low positioning accuracy. The current

UWB devices are too expensive to be widely promoted (Alarifi et al., 2016); Lidar is also costly

and has specific requirements for wall reflection coefficient (Roche et al., 2022), so it would fail

under poor lighting conditions. Generally, low-cost, high-precision and high-stable positioning

performance cannot be obtained based on a single positioning system. Therefore, most practical

positioning solutions leverage multiple sensor data from the user’s mobile devices, such as

the gyroscope and accelerometer of the inertial unit, Wi-Fi, and Bluetooth modules in the

smartphone. Many fusion positioning systems have been proposed in recent years, such as the
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fusion of Wi-Fi, Bluetooth, Lidar, and inertial sensor (Chen et al.,

2014; You et al., 2020; Yang et al., 2022).

Current wireless-inertial fusion positioning systems widely adopt

empirical propagation models of wireless signals and filtering

algorithms such as the Kalman filter (KF) or the particle filter (PF).

However, in many practical positioning scenarios, the complexity of

the fusion system or a single system is usually very high. For example,

for pedestrian navigation, it is quite challenging to model a step-

heading estimation system (SHS) or the distribution characteristics

of wireless signals in the environment. Besides, the increase in the

system complexity will enlarge the influence on the parameter error

to the final state estimation. Although many studies apply machine

learning techniques to deal with the complexity of a single positioning

system, fusion is still based on filtering algorithms. However, it is

rather challenging to determine the noise parameters in the filtering

methods, especially the noise of the wireless positioning, which

is irregularly distributed in the whole area. If wireless positioning

adopts the fingerprinting method, the noise should be analyzed area

by area. Furthermore, by assigning specific values to the covariance

matrixes of process and observation, the accuracy of the noise

parameter is compromised. Considering those factors, deep learning

is a more straightforward way to accurately model the noise and

build the whole model at the same time. In this study, we propose

a fusion localization system based on an end-to-end neural network

and a transfer learning strategy for improving the performance of

the neural network model for samples with different distributions.

Furthermore, we verified our methods in a Bluetooth-inertial fusion

positioning scenario considering the low cost, quick deployment of

the commercial Bluetooth beacons, and the convenience of leveraging

built-in smartphone sensors. Our contributions are summarized

as follows:

1) An end-to-end trainable neural network-based inertial-wireless

fusion positioning system, namely SmartFPS, is first proposed.

Besides, a training procedure based on multi-task learning is also

proposed. Large field experiments were performed, and results

showed that our method could outperform filter-based fusion

systems by 36.5% when optimal parameters were set for the

particle filter.

2) A transfer learning strategy for SmartFPS is proposed based

on the generative adversarial network (GAN) to deal with

device heterogeneity and other factors in practical positioning

scenarios. Simultaneously training the GAN-based network with

labeled data in the source domain and the unlabeled data

in the target domain improved the positioning accuracy by

over 50%, compared with training SmartFPS with the source

domain dataset.

2. Related works

In wireless-inertial fusion localization systems, the processing

and modeling of inertial sensors, wireless signals, and their fusion

method must be carefully considered. In recent decades, inertial

navigation and indoor wireless positioning have been studied

individually, from empirical modeling to machine learning. Fusion

methods, especially filtering methods, have also improved to cope

with complex processes and non-Gaussian noise. This section will

discuss the development of these three components in fusion

positioning separately to show the advantages of replacing all

empirical models with deep learning.

2.1. Pedestrian inertial navigation

Pedestrian inertial navigation mainly includes the strap-down

inertial navigation system (SINS) (Bortz, 1971) and the step-heading

estimation system (Jirawimut et al., 2003). However, those methods

rely on accurate sensor adjustment or estimation of step length

and direction, which are often corrupted by noise and drift in

inertial systems.

As for SINS, even if there is only a small error in the angle

estimation, the final position result will be affected exponentially

through multi-layer transfer. The effect of this error is especially

severe for low-cost MEMS sensors in smartphones. Usually, the

extended Kalman filter (EKF) can be used to lower this error.

One measure to deal with the drift problem is to close the

integrating loop periodically by imposing external constraints on the

system. The most widely used constraint method is the zero velocity

update (ZUPT) (Foxlin, 2005). ZUPT is based on the sensor being at

rest and can be applied during the stance phase, provided the sensor

is attached to the foot. ZUPT is easily incorporated into the INS

structure by representing ZUPT as a pseudo-measurement of zero

velocity. By applying ZUPT, the open loop integration only occurs

during the swing phase of the foot. For such short durations, the

accumulation of drift is limited, so longer tracking durations are

feasible. However, for reliable output, ZUPT must only be applied

when the foot is completely stationary. Problems can arise when

the sensor is mounted higher than the sole. The peeling motion

associated with the transition from standing to swinging means that

the heel rises soon after the foot lands down, so the sensor in the

midfoot will begin to experience acceleration as the foot lifts. These

small accelerations occur before the strict end of the stance phase,

so it is necessary to account for these errors by applying a non-zero

covariance next to the ZUPT pseudo-measurement.

To simplify the modeling of inertial navigation, a deep learning-

based method, IONet (Chen et al., 2018), was proposed. Unlike the

traditional SHS system, the step length and direction are estimated

by training the neural network with sequential inertial data. Since

the neural network has an excellent capability of non-linear system

modeling, the accuracy of step length and direction estimation is

significantly improved. IONet is formed by a two-layer long short-

term memory neural network (LSTM), a specific neural network

dealing with time series data. The input of the system is the

accelerometer and gyroscope time sequence under a fixed time

window, and the output is the step length and rotation angle. On the

premise that the initial position and direction of the pedestrian are

known, the system could estimate the position and direction through

each step’s estimated step length and rotation angle. Experiment

results showed that the neural network-based method significantly

improved positioning accuracy compared with the PDRmethod. The

method based on the neural network not only enhances positioning

accuracy but also simplifies various complex processes such as data

processing and noise analysis.

Inspired by IONet, a new system, namely RoNIN, was proposed

to improve the positioning performance of deep learning-based

inertial navigation (Herath et al., 2020). This study investigated three
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network structures: the ResNet network, the LSTM network, and

the temporal convolutional network (TCN). Another difference from

IONet is that the output of the system proposed in this study is a

velocity vector. Acquiring ground truth labels in large environments

is challenging, and the study used the Tango system by attaching an

Android phone to the front of the body. Another Android phone

was held in one hand to collect inertial data. The pre-processing of

inertial data was explained in detail in this study. A spatiotemporal

calibration process was introduced to calibrate inertial data and

ground truth from two devices. Verified by amassive dataset in a large

environment, the results showed that the positioning accuracy of the

proposed system was much higher than IONet.

2.2. Indoor positioning based on wireless
signals

Wireless signal-based positioning systems generally build

positioning models based on features such as received signal strength

(RSS), angle of arrival (AOA), and time of flight (TOF). However,

due to the advantage of simple implementation, most wireless-based

positioning solutions adopt the RSS feature. RSS-based wireless

positioning algorithms generally have three types: proximity (Yu

et al., 2020), trilateration, and fingerprinting.

The Proximity method is the simplest positioning method that

determines whether the receiving device is close to a wireless beacon

according to the RSS value and directly uses the position of the beacon

as the position of the receiving device. Therefore, the positioning

accuracy of the proximity method is usually low. However, the

proximity method has the advantage of high robustness. Although

the RSS of the wireless signal will fluctuate, the RSS value after a

smoothing process is within a fixed range when the device is very

close to the wireless beacon.

The RSS-based trilateration estimates a device’s location based

on the RSS values of three or more wireless beacons. Due to the

fluctuation of RSS, the circles of three distances estimated by the

RSS values do not intersect at the same point but overlap in an area.

Usually, non-linear optimization methods can solve this position,

such as least squares. For trilateration positioning, the positioning

accuracy depends on at least three line-of-sight (LOS) wireless

signals. In practical positioning scenarios, due to the consideration

of deployment costs, the distance between wireless beacons is large,

and inevitably, there will be environmental interference or occlusion.

Therefore, it is challenging to collect three LOS signals continuously.

Even though three LOS signals exist, the signal-to-noise ratio (SNR)

is low in specific locations due to high noise and weak signal. As a

result, trilateration positioning often has low robustness.

Fingerprint positioning technology is widely used to solve the

problem of wireless positioning under a low SNR. Fingerprint

positioning technology mainly collects RSS values from different

wireless beacons at various locations in the scene in the offline

stage, and the combination of these measurement values becomes the

fingerprint information of the location. After deploying the system,

the RSS combination of online measurements (obtained in real time)

is compared with offline measurements to estimate user location.

Many machine learning methods, such as K-nearest neighbors

(KNN) and support vector machine (SVM), and deep learning

methods, such as multi-layer perceptron (MLP), can be used to solve

fingerprint matching problems. Fingerprint localization algorithms

usually need to survey the environment to obtain fingerprints or

characteristics of the environment, so it is also called scene analysis

localization technology.

2.3. Fusion algorithms based on filtering
methods

The filtering algorithm is one of the most widely used fusion

algorithms in mainstream indoor fusion positioning systems. At

present, the filtering algorithms applied in the positioning fusion

algorithm mainly include (1) the discrete Bayesian filter (Fox et al.,

2003); (2) the Kalman filter; (3) the particle filter (Chen et al., 2022).

The Kalman filter also includes the extended Kalman filter (Ozbek

et al., 2010), the unscented Kalman filter (UKF) (You et al., 2020),

and so on. All of the filters have their advantages and drawbacks.

The Kalman filter is theoretically the best estimate for unimodal

linear systems with Gaussian noise but not for non-Gaussian non-

linear systems. To address this limitation, various improved Kalman

filter algorithms, such as the extended Kalman filter and the

unscented Kalman filter, were proposed in subsequent research.

Since the extended Kalman filter is a first-order estimation

for non-linear systems, it cannot achieve good performance for

strongly non-linear systems. Therefore, second-order and third-

order extended Kalman filters are proposed. In addition, the extended

Kalman filter cannot guarantee the convergence of the algorithm. The

algorithm will diverge if the initial state quantity error is significant

or the process model is incorrect.

UKF can handle non-linear, continuous, multivariate problems.

The sigma points specifically proposed in UKF can also estimate a

certain degree of non-Gaussian noise but cannot accurately estimate

complex non-Gaussian distribution.

The particle filter can handle non-linearity and non-Gaussian

noise. However, at different degrees of non-linearity and non-

Gaussian noise, the number of particles, the particle generation

strategy, and the resampling strategy can significantly affect the

accuracy. Besides, more particles will increase the computational cost

and lower the calculation speed. In addition, the performance of

particle filters in dealing with high-dimensional systems is unstable

because high-dimensional systems can easily lead to excessive

differences in the weight distribution of particles, resulting in the loss

of particle diversity.

In addition to the above filtering algorithms, many studies have

also proposed other well-known algorithms, including the ensembled

Kalman Filter (EnKF) (Hua et al., 2021), the adaptive Kalman Filter

(AKF) (Mehra, 1970), and the switched Kalman Filter (SKF) (Wu

et al., 2004). However, all methods still inevitably suffer from accuracy

and divergence problems.

3. SmartFPS architecture

In this section, the general architecture of SmartFPS is presented

first. Then, the modules of the network are explained separately.

Finally, a multi-task learning-based training method is introduced.
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3.1. System overview

SmartFPS is an end-to-end trainable neural network for the

wireless-inertial fusion navigation system. The inputs of SmartFPS

are the inertial signal sequence and the wireless signal sequence.

The outputs of SmartFPS are the current pedestrian position and

direction. The structure of the fusion positioning system is illustrated

in Figure 1. SmartFPS is formed by four modules: (1) inertial encoder,

which is a feature extraction module of inertial navigation data based

on the LSTM network; (2) wireless encoder, a wireless positioning

module based on convolutional neural network (CNN); (3) attention

layer; (4) fusion decoder, a fusion positioning module based on

LSTM network. The output of the inertial encoder is the latent

space tensor of step length and rotation angle, and the output of

the wireless encoder module is the extracted wireless signal feature

information rather than the final position information. The outputs

of the modules pass through the attention layer, then to the fusion

localizationmodule. The fusion decodermodule uses the hidden state

of the last timestep as the initial state and finally estimates the position

and direction.

Compared with the filtering fusion positioning system, the fusion

positioning system based on the whole network structure has the

following advantages:

1) The fusion positioning system with a complete network structure

can realize end-to-end computing output, which is easier to train

and deploy than the positioning system with networks fused by

filtering algorithms. Each positioning network of the network

and filtering algorithm need to output noise matrixes during

training, and the noise matrix is difficult to represent by individual

parameters for complex systems. Therefore, such training

and fusion methods are complicated, and the implementation

is cumbersome.

2) Compared with the Kalman filter, SmartFPS does not require all

noises to be white noise, and there is no need to pre-determine the

noise coefficient. It can approximate any white noise or colored

noise through data training.

3) The fusion positioning system with a complete network structure

is faster than the particle filter, and the time cost of SmartFPS

estimation is generally in milliseconds. In contrast, the time cost

of the particle filter will be much higher if the number of particles

is large. The particle filter will also cause problems such as loss

of diversity over time, so parameters such as particle resampling

need to be adjusted.

3.2. Inertial encoder

The inertial encoder network in the fusion positioning network

is an inertial navigation feature extraction network based on

the Bi-LSTM network. Its input is the 6-axis accelerometer

and gyroscope data in the inertial unit of the smart device,

and the signal data set at 1 step can be expressed as (accx,

accy, accz, gyrox, gyroy, gyroz). The LSTM network generally

processes a time series of data, which in this research scenario

are the accelerometer and gyroscope data in a time window.

The length of the window can be selected according to

different application scenarios. For example, in this study, a

time window of 1 s is used by considering the frequency of

pedestrian steps.

One primary concern for the inertial encoder is its objective,

which represents its physical meaning and may influence the fusion

performance. In fact, the inertial encoder derives from former studies

of deep learning-based inertial navigation. We carefully select the

objective of the inertial encoder among all the related works, such

as IONet (Chen et al., 2018) and RoNIN (Herath et al., 2020), and

adopt the step length and the rotation angle as IONet did. It is

noted that RoNIN assigned the velocity vector (vx, vy) as the output

and achieved excellent performance in accuracy. However, this may

cause a problem when the pedestrian keeps walking straightly at a

constant speed. In this case, the velocity vector should be possible

in all directions so that the trained network is not decoupled from

the map. We also found that the trained inertial network with this

objective is difficult to fuse with the wireless encoder. The author

of RoNIN, although not discussing this point in their work, may

have tried to fix this issue by randomly rotating the inertial data

for data augmentation before training. However, this method could

significantly increase the amount of training data and lower the

training speed, which is cumbersome for model transfer learning in

a new scenario. Unlike RoNIN, we adopt the step length and the

rotation angle, which are completely decoupled from the map.

The objective function of the inertial positioning network is

as follows:

min
θ

L(θ) =
1

n

n
∑

i=1

L(xi,yi; θ)=
1

n

n
∑

i=1

(‖
∼

l−l‖22+λ ‖ d
∼
ϕ−dϕ‖22)

where n represents the number of batch data, θ represents the

network parameters, l represents the step length, dφ represents the

rotation angle, and λ is the weight of the rotation angle loss. The

training target of the entire network includes two parts: step length

and rotation angle. Due to the different physical meanings of the two

parts, the range of values is also different. For example, the maximum

value of the step length is related to the pedestrian step length and

the selected time window size, which often remain in the range of [0,

1], and the value of the rotation angle in this study is in the range

of (−180◦, 180◦], so both ranges should be considered to choose the

value for λ. In our tests, we set λ to 2.

3.3. Wireless encoder

The wireless encoder extracts meaningful characteristics from

the wireless signal sequence and maps them to the latent space.

Different from previous studies, this study uses dynamically collected

wireless time-series signals as input. The input feature is a matrix

composed of the signal sequence of the wireless beacons deployed in

the entire environment within a time window. The input length is the

window size, and the height is the number of wireless beacons. The

output 2D position represents the position in the middle of the time

window. Both generalization performance and training accuracy can

be considered to determine the size of the time window. For example,

the use of an excessively long-time window should be avoided.

The dynamic acquisition of signal data using a long-time window

will cause time dependency, thereby increasing the complexity of

the scenario and reducing the generalization performance of the

wireless location network. Second, due to the noise of the wireless
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FIGURE 1

Architecture of SmartFPS.

signal received by the smartphone, if the time window is too

short, the network learns the noise signal instead of the signal

itself, which will lead to the overfitting of the network. Therefore,

the size of the time window should be carefully selected, and the

optimal solution can be found by the positioning accuracy of the

validation set.

The wireless encoder network is built based on the CNN network.

Since the wireless signal is collected dynamically, the dynamic

sequence generally considers its timing relationship. However,

this network aims to learn the signal itself in the high-noise

signal sequence rather than the timing relationship, which can be

regarded as a filtering process for high-noise signals. The wireless

encoder network mainly includes three convolutional layers, a

maximum pooling layer, a global average pooling layer, and two fully

connected layers.

The size of the convolution kernel of each layer of the wireless

encoder gradually decreases, that is, from global attention to local

attention, and the step length also selects different values for tensors

with different lengths and widths. The loss function of the wireless

location network is as follows:

min
θ

L(θ) =
1

n

n
∑

i=1

L(xi, yi; θ) =
1

n

n
∑

i=1

√

(
∼
x − x)2 + (

∼
y − y)2

θ

where x, y are the two-dimensional position coordinates. It is worth

noting that this network uses the “selu” function as the activation

function for all CNNs. The “selu” function is expressed as follows:

{

a = λz

a = λα(ez − 1)

, z > 0

, z ≤ 0

Compared with the “relu” activation function, “selu” does not

have a dead zone. Compared with sigmoid, it also has the advantage

that the gradient is not easy to vanish. Compared with the “elu”

function, it has the advantage of no parameter selection. The most

important role of “selu” is that it can automatically normalize

the sample distribution to 0 mean and unit variance, thereby

speeding up the network convergence. The function is like the batch
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normalization layer, but there is no need to increase the network

depth. We also found that the “selu” function can improve the

training speed.

3.4. Attention layer

Asymmetric attention layers are mainly based on the local

attention mechanism in deep learning (Vaswani et al., 2017).

The attention mechanism is a concept proposed in natural

language processing, mainly used to implement a contextual logic

between the encoding network and the decoding network. The

attention mechanism generally includes three steps: calculating

the calibration weight through the hidden state, calculating

the softmax weight, and calculating the overall context weight.

The concept of the local attention is relative to the global

attention. The global attention implements the attention mechanism

for all units of the input sequence, while the local attention

mechanism implements the attention mechanism for part of

the units.

In SmartFPS, the attention mechanism is only used for the output

of the wireless encoder network. It is because the hidden state outputs

by the wireless encoder network and the inertial encoder network

have different physical meanings. Since the output of the inertial

encoder network is the hidden state quantity of the last step, it

does not have the concept of context itself. Suppose the output

of the inertial encoder network adopts the attention mechanism.

In that case, it will break the integrity of the part of the hidden

state and only input the part of the hidden state sequence into the

decoder network. As for the wireless encoder network, due to the

different positions of each wireless beacon, when pedestrians are in

different positions, the signal strength and stability of each wireless

beacon are also different. At the same time, due to factors such

as occlusion by walls or multipath effects, it cannot be determined

whether to use the signal of the beacon as an input simply by

the strength of the signal. Therefore, the attention mechanism can

enable the localization network to learn the local characteristics of

the environment and realize the regional selection of appropriate

wireless signal characteristics, especially when the number of wireless

beacons is large. The calculation process of the attention layer is

as follows:

ut = tanh(Wht + b)

αt = softmax(ut)

s =

M
∑

t=1

αtht

where W refers to the weight of the fully connected layer

in the attention layer, b is the bias of the fully connected

layer, and ht is the hidden state input to the attention

layer. Compared with the global attention mechanism, the

asymmetric attention mechanism greatly reduces the number

of network parameters, which is of great significance for

suppressing model overfitting and improving model training

and computing speed.

3.5. Fusion decoder

The fusion decoder network is a two-layer LSTM network

structure. The hidden state and the unit state of the network are

initialized by the state of the previous moment. The input includes

the inertial navigation features and the attention-selected wireless

positioning signal features, which can be regarded as observations at

the current moment. The role of the recurrent neural network here is

similar to a filtering process. Unlike filtering algorithms, the noise and

the observation are not separated, and the state and the noise feature

of the last moment are also used as the hidden state to initialize the

network unit. State quantities, observations, and system processes

and noise are coupled through the network, thereby eliminating

the tedious process of determining system noise values. Especially

for the wireless location system based on fingerprint location, the

noise at different locations is more difficult to quantify. The hidden

state quantity output by the fusion decoder network will be further

connected to two fully connected layers. The output of the last fully

connected layer is the two-dimensional position coordinate vector (x,

y) and direction vector (rx, ry) of the pedestrian. The target is set as

the root mean square error of the two-dimensional coordinate vector

and the direction vector, with a scale factor of κ .

The final objective function of the fusion decoder network is

as follows:

min
θ

L(θ) =
∑

L(x, y; θ) =
∑

‖
∼

d − d ‖22 +κ ‖
∼
r − r ‖22

where θ is the network parameter, d represents the two-dimensional

position vector (x, y), r represents the direction vector (rx, ry).

3.6. Training method based on multi-task
learning

Since SmartFPS is a large network consisting of several modules,

the training procedure should be carefully treated. Since the encoders

have different objectives, training them together may corrupt their

physical meanings, causing the whole network to collapse. Training

them individually and freezing their weights when training the fusion

decoder is a good option but cumbersome. Therefore, we proposed a

multi-task learning strategy to solve this problem.Multi-task learning

(Caruana, 1997) is a branch of deep learning that aims to improve

learning efficiency by exploiting the similarity between different tasks

to solve multiple different tasks simultaneously. Here the loss of

the fusion decoder and the loss of each encoder can be trained

simultaneously. The objective of our multi-task learning network is:

min
θ

L(θ) = min
θ

(Lfusion(θ)+ λ1Lins(θ)+ λ2Lwireless(θ))

Although multi-task learning is generally used to improve

learning efficiency, it can protect the integrity of the output features

of the intermediate layer, and the fixed output positions can retain the

physical meaning of the output of each sub-network.

4. SmartFPS transfer learning

Since the environmental factors and device parameters are often

different from the training data in practical scenarios, trained models
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FIGURE 2

Signal sequence of inertial sensors. (A) Accelerator along z-axis for tester 1 (1.76m). (B) Accelerator along z-axis for tester 2 (1.63m). (C) Gyroscope along

z-axis for tester 1 (1.76m). (D) Gyroscope along z-axis for tester 2 (1.63 m).

often perform poorly. In this section, a transfer learning method is

proposed to solve this problem based on the generative adversarial

network mechanism. In this section, the attack factors that may cause

the trained models to fail are discussed. Next, the proposed transfer

learning method is explained in detail.

4.1. Attack factors

To analyze the influence of different pedestrians on the

characteristics of the inertial data, two testers collected inertial data by

carrying the same device and walking back and forth along the same

straight-line path. The pose of the smartphone in hand was similar

to that of the training set. Figures 2A–D shows the time series of the

accelerometer and gyroscope data collected by two testers (person 1

1.76m and person 2 1.63m). From Figures 2A, B, it can be found that

the peak-to-peak ratio of the z-axis acceleration of tester 1 is greater

than that of tester 2, that is, the mobile phone swings up and down

with greater force. In addition, it can be found that there are frequent

sub-peaks near the peak in tester 2’s data, which is also caused by

the tester’s walking habit. It can be observed from Figures 2C, D that

the peak-to-peak value of the gyroscope data of tester 1 is smaller

than that of tester 2. Considering these attack factors, most of the

pedestrian inertial navigation positioning research needs to add the

analysis of pedestrian motion characteristics to the system. However,

it is difficult to accurately model the diversity of the characteristics

and changes of different pedestrian movements, so it is difficult to

accurately track the position of pedestrians by relying solely on the

pedestrian inertial navigation system.

In addition to different pedestrian motions, different devices

also cause the difference in data characteristics. Since the calibration

methods can solve the problems such as bias and drift, we only

consider the noise characteristics of the inertial device itself of

different devices. To verify the difference in noise characteristics of

inertial systems of different devices, two devices (Xiaomi Mi6 and

ZTE A2017) are used to collect inertial data in a horizontal stationary

state. Allan variance was used to analyze the noise components in

the inertial data. The Allan variance curves of the accelerometer

and gyroscope sequences of the two devices in the static state are

shown in Figures 3A–D. From Figures 3A, B, it can be observed that

the major noise component of the accelerometer of Mi6 and A2017

within 1 s is the Gaussian white noise, but the coefficients are quite

different. For A2017, there are colored noise components with a small

magnitude near 1 s. From Figures 3C, D, white noise is detected by

both gyroscopes’ sequences but with different coefficients. Therefore,
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FIGURE 3

(A) Allan variance of Mi 6’s accelerator along x-axis. (B) Allan variance of ZTE A2017’s accelerator along x-axis. (C) Allan variance of Mi 6’s gyroscope along

x-axis. (D) Allan variance of ZTE A2017’s gyroscope along x-axis.

the noise characteristics of inertial sensors are quite different between

different devices.

There are also differences in the wireless signal receivers of

different mobile phone devices. To verify this problem, two mobile

phones were placed horizontally on the table and kept the same

distance from the Bluetooth beacon to collect RSS data. Figures 4A–D

are the RSS sequence when the distance from the Bluetooth beacon

is 0.6 and 1.5m. Figures 4A, B show the Bluetooth RSS data of the

two devices at 0.6m. Figure 4A is the signal timing diagram, in

which the middle-dotted line represents the mean value, and the

upper and lower dotted lines represent the mean value plus or minus

the standard deviation. Figure 4B shows the statistical histograms of

different signal strength values. It can be observed that the sequential

noise of the two devices is quite different, and the high noise is

induced in the A2017 signal. In addition, although the distance

between the two devices and the Bluetooth beacon is the same,

differences can also be found in the RSS values. The average value

of the Mi6 is −72 dBm, and the A2017 is −68 dBm. From the

histogram, there are two obvious peaks in the histogram of Mi6,

and the amplitude values are obviously discrete. The A2017 noise

frequency is higher, but the change of the amplitude is smaller. Many

outliers can be found in the timing diagram of the A2017 signal.

Figures 4C, D show the RSS value at 1.5m. It can be seen from

Figure 4C that the signal of A2017 still has the characteristics of high-

frequency noise. The histogram in Figure 4D shows that the two

peaks of the Mi6’s Bluetooth signal are farther apart, and the A2017

also shows the characteristics of the two peaks.

In general, there are irregular differences in the amplitude and

noise characteristics of inertial and wireless signal data. Therefore,

it is necessary to consider how to enhance the generalization

performance of SmartFPS under those differences.

4.2. Transfer learning based on GAN

The transfer learning algorithm of SmartFPS aims at training the

first 3-layer CNN network layer in the wireless positioning network

and the first 2-layer LSTM network in the inertial positioning
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FIGURE 4

(A) The received signal strength sequence of a Bluetooth beacon with 0.6m distance. (B) The received signal strength sequence of a Bluetooth beacon

with 1.5m distance. (C) The received signal strength distribution of a Bluetooth beacon with 0.6m distance. (D) The received signal strength distribution

of a Bluetooth beacon with 1.5m distance.

network. Since the transfer learning methods of the two networks are

similar, only the transfer learning method of the wireless positioning

network is explained here.

The wireless encoder aims to map the features of the wireless

signal data sequence, so the transfer learning algorithm aims to

train those layers and substitute the trained weights into the fusion

positioning network. The transfer learning structure of the wireless

positioning network is mainly based on the GAN network, a transfer

learning strategy known for its success in image processing. GAN

is composed of a generator and a discriminator. The generator’s

role is to produce a fake wireless sequence similar to the target

domain according to the wireless positioning features of the source

domain. The discriminator will judge whether the generator produces

sequences similar to the target domain. Therefore, the generator will

improve its performance with each training epoch, and eventually,

the discriminator will not be able to make the right judgment.

We also add a cycle-consistent loss to the network so that

the generator network will include a source and a target domain

generator. These two parts share one unique encoder. According to

cycleGAN, the source domain generator network needs to restore

the sequence of fake target domain signals generated by the target

domain generator (the fake target domain signals are also derived

from the source domain data) to the source domain data. Similarly,

the target domain generator network needs to restore the sequence of

fake target domain signals generated by the source domain generator

(fake source domain signals are generated from target domain data)

to target domain data. Such a mechanismmakes GAN less influenced

by the generator network when the source and target data labels are

poorlymatched. In addition, a new loss function, identity loss, is often

introduced when applying cycle-consistent loss. This mechanism

means that data in the same domain should maintain the same data

through the same domain generator network.

We also introduce the reconstruction network in the network.

The reconstruction network is a CNN structure, and its role is

to restore the original signal using the encoder output features.

Unlike the cycle-consistency loss mechanism, the reconstruction

network is unique. Although the recovered signal will not be

the same as the original signal, it can preserve the signal

integrity as much as possible from the common characteristics

of the source and target domains. This part is also to protect

the encoder from being unduly influenced by the generative

network. Since the GAN network needs to train the generator

and the discriminator separately, we also divide the training of

the inertial positioning network transfer learning network into
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FIGURE 5

Transfer learning structure of wireless positioning encoder in SmartFPS.

two steps: (1) training the generator targets and (2) training the

discriminator targets.

The network forward propagation routes of the two targets are

illustrated in Figure 5. The generator and the encoder are trained by

the wireless positioning loss, the reconstruction loss, the consistency

loss, and the cycle consistency loss. Different weight factors combine

those losses into one single target. The combined loss function is (take

the source domain as an example):

Lc,S = Lgan + λ1Lcycle + λ2Lidentity + λ3Lpred + λ4Lrecon

The training procedure of wireless positioning encoder transfer

learning is similar to training GAN. It is important to train only the

generator or the discriminator alone while freezing the weights of

the other network. However, the other goals can be trained together.

The training procedure is listed in Table 1. The transfer learning

structure of the inertial encoder is similar to the wireless positioning

encoder, and only the CNN network should be replaced by LSTM.

After training the wireless positioning encoder and inertial encoder

separately, the weights of each encoder can be used in the fusion

network to accomplish the transfer learning target.

5. Results

5.1. Experiment settings

The experiments were conducted in the corridor area plus a

whole laboratory area on one floor of the Chuangzhi Building,

Nanjing, China, as shown in Figure 6A. The test area is about

20m long and 30m wide. A total of 20 Bluetooth beacons were

deployed in the venue, and the distance between each Bluetooth

beacon was 5–8m, of which No. 17–20 Bluetooth beacons were

deployed inside the laboratory. The experimental site includes the

stair hall and the elevator hall that may block the Bluetooth signals,

so there are generally 3 or 4 line-of-sight Bluetooth signals received

by smartphones during positioning. The Bluetooth beacon was the

E5 model of Yunli Physics. We changed the broadcast period from

500ms (default) to 100ms to increase the training data density. The

broadcast power of the product is 0 dBm by default with a coverage

radius of 50m, and we adjusted it to −8 dBm with a coverage

radius of 22m. The beacons were stuck on the wall 1.5m above

the ground.

The training and test data were collected with the android

phone facing the user by assuming that the user should keep

an eye on the screen of the smartphone during positioning.

The smartphone was swinging along with the user’s arm. To

collect training data of accelerometer, gyroscope and Bluetooth

received signal strength data, Android phones, including Xiaomi

Mi6 and Vivo x70 pro, were selected in this study. The sampling

frequency of the inertial sensor is 200Hz, and the sampling

frequency of the Bluetooth signal is set to the highest in

the system.

In IONet, the Vicon system was used to track the position of

the mobile phone. However, considering the difficulty of deploying

the system in a large scene, we implemented a slam system to

acquire positions. Different from RoNIN, where the Zenfone AR

mobile phone used in it completely relies on the rear camera

to calculate the slam, our research firstly uses the Lidar visual

slam system of the iPhone, and the positioning accuracy is much

higher than that of the Android tango system. Based on the ARkit

library of iOS 15, this research implements an application that

reads and saves the pose of the mobile phone in real time. At

the same time, the application will also read the real-time inertial

navigation data of the iPhone to facilitate time calibration with the

Android data. Figure 6B shows the actual operation of the Lidar

vision SLAM positioning label collection platform based on the

iOS ARkit. The position sampling frequency of the slam system is
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TABLE 1 Algorithm 1: Training procedure of wireless positioning encoder transfer learning.

Training procedure of wireless positioning encoder transfer learning

1. Get weights of the wireless encoder of SmartFPS.

2. Initialize weights of wireless encoder in the transfer learning network and freeze weights of pooling layer and dense

layer.

3. For t= 1<Number of iterations do:

4. Sampling N labeled data from source domain;

5. Sampling N unlabeled data from target domain;

6. Generate target domain fake data from source domain data GS ;

7. Generates source domain fake data from target domain data GT ;

8. Freeze the DS weights and update combined network weights according to source domain combined target:

∇θF ,θGS ,θC

∑

i=1..N Lgan(D̆S(GS(F(xT,i ,θF),θGs ),θDs ),yreal)+

λ1(Lcycle
(

ĞT

(

F
(

GS

(

F
(

xT,i ,θF
)

,θGS

)

,θF
)

,θGT

)

,xT,i
)

+

Lcycle
(

GS

(

F
(

ĞT

(

F
(

xS,i ,θF
)

,θGT

)

,θF
)

,θGS

)

,xS,i
)

)+

λ2Lidentity(GS(F(xS,i),θGs ),xS,i)+λ3Lpred(R̆(F(xS,i ,θF),θR),yS,i)+

λ4(Lrecon(C(F(xS,i ,θF),θC),xS,i)+Lrecon(C(F(xT,i ,θF),θC),xT,i))

9. Freeze wireless encoder, generator, and update discriminator weights according to source domain discriminator target:

∇θDS

∑

i=1..N (Lgan
(

DS

(

xS,i ,θDS

)

,yreal
)

+

Lgan(DS(ĞS(F̆(xT,i ,θF),θGS ),θDS ),yfake))

10. Freeze DT weights, and update combined network weights according to target domain combined target:

∇θF ,θθT
,θC

∑

i=1..N Lgan(D̆T (GT (F(xS,i ,θF),θGT
),θDT

),yreal)+

λ1(Lcycle
(

ĞS

(

F
(

GT

(

F
(

xS,i ,θF
)

,θGT

)

,θS
)

,θGS

)

,xS,i
)

+

Lcycle
(

GT

(

F
(

ĞS

(

F
(

xT,i ,θF
)

,θGS

)

,θF
)

,θGT

)

,xT,i
)

)+

λ2Lidentity
(

GT

(

F
(

xT,i
)

,θGT

)

,xT,i
)

+λ3Lpred
(

R̆
(

F
(

xS,i ,θF
)

,θR
)

,yS,i
)

+

λ4(Lrecon(C(F(xT,i ,θF),θC),xT,i)+Lrecon(C(F(xS,i ,θF),θC),xS,i))

11. Freeze wireless encoder, generator, and update discriminator network weights according to target domain discriminator target:

∇θDT

∑

i=1..N (Lgan(DT (xT,i ,θDT
),yreal)+

Lgan(DT (ĞT (F̆(xS,i ,θF),θGT
),θDT

),yfake))

12. End

FIGURE 6

(A) Experiment testbed. (B) Lidar slam on iPhone. (C) Device setup on body.

20Hz. To verify the positioning accuracy of the system, we selected

a rectangular trajectory as a reference according to the texture of

the floor tiles in the experimental scene and carried out multiple

continuous collections of 1-h slam, walking freely throughout the

whole process, and walking according to the reference line every

15min. By comparing the walking trajectories of the reference routes

in different periods, we found that the cumulative drift error of

the iPhone’s Lidar SLAM system does not exceed 20 cm in 1 h,
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which is a significant improvement compared to the Tango system

mentioned in RoNIN, which has an error of <30 cm in 15min.

The SLAM phone was attached to the chest of the user’s body, as

shown in Figure 6C. Therefore, compared with the Vicon system,

which directly locates the phone’s position, there was uncertain

bias in the position and the direction of the Android phones. This

TABLE 2 Parameter settings of SmartFPS.

Parameter Value

Layers IE: Input1 (200, 6), WE: Input2 (100, 20)

IE: Bi-LSTM (128)

IE: Dropout (0.25)

IE: Bi-LSTM (128)

IE: Dropout (0.25)

WE: Conv (16, kernel: 7, stride: (2,2), activation: “selu”)

WE: Conv (32, kernel: 5, stride: (2,2), activation: “selu”)

WE: Conv (64, kernel: 3, stride: (5,1), activation: “selu”)

WE: MaxPooling (2)

WE (OWE): GlobalAveragePooling ()

AT: Dense(“selu”)∗ OWE

FD: Bi-LSTM()

FD: Dropout (0.2)

FD: Dense (3), Dense (3)

Optimizer “Adam”

lr = 0.0008

beta1= 0.9

beta2= 0.999

epsilon= 1e-07

Batchsize 512

Max epoch 100

may compromise the accuracy of the estimated step length and

rotation angle, which are the essentials of the inertial encoder’s

objective. However, the fusion system can lower this influence on the

final objective.

The preprocessing procedure was similar to the work

(Herath et al., 2020), including spatial and time calibration.

The Bluetooth signal sequence and the SLAM’s positions

should also be down-sampled due to their uneven sampling

frequencies. In this study, the inputs of both encoders are 1 s

of the signal sequence. The Bluetooth RSS value is chosen as

the input of the wireless encoder and down-sampled to 100Hz.

The input of the inertial encoder is 200 steps of inertial data.

Hyperparameters of SmartFPS are summarized in Table 2, where

“IE” refers to the inertial encoder, “WE” refers to the wireless

encoder, “AT” refers to the attention layer, and “FD” refers to the

fusion decoder.

5.2. SmartFPS tests

The positioning results of the wireless encoder and SmartFPS of a

set of test trajectories are depicted in Figure 7. Smoother trajectories

were predicted by SmartFPS than the wireless encoder, indicating

that SmartFPS successfully reserve the physical meaning of the

inertial encoder, which is the relative translation from restricted step

length and rotation angle. On test set 1, the average positioning

error of the wireless encoder was 0.695m, while SmartFPS achieved

0.467m. The error of the wireless encoder and SmartFPS are 0.760

FIGURE 7

(A) Estimated trajectory of test set 1 by wireless positioning encoder of SmartFPS. (B) Estimated trajectory of test set 1 by SmartFPS. (C) Estimated

trajectory of test set 2 by wireless positioning encoder of SmartFPS. (D) Estimated trajectory of test set 2 by SmartFPS.
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and 0.583m on test set 2. On all test sets, the average positioning

error of the wireless encoder was 0.739m, while SmartFPS achieved

0.506 m.

To compare the performance of SmartFPS and filter fusion

algorithms, two types of fusion systems based on extended

Kalman filter and particle filter were tested. The filters were

used to fuse the outputs of the pre-trained wireless encoder and

inertial encoder. Among them, for the extended Kalman filter,

the variance matrix of the observed amount of the Bluetooth

estimated position is determined by the pre-trained network

using the variance value of the error between the prediction

result of the training set and the actual value. The relationship

between the two-dimensional position vector and the rotation

angle is:

{

xk+1 = xk + lk cosϕk

yk+1 = yk + lk sinϕk

Then, the process equation for the state is derived from the

above formula:



















dxk+1 = dxk + dlk cosϕk − lkdϕk sinϕk + dwx

dyk+1 = dyk + dlk sinϕk + lkdϕk cosϕk + dwy

dlk+1 = dlk + dwl

dϕk+1 = dϕk + dwϕ

Therefore, the process matrix is:

8k =











1 0 cosϕk −lk sinϕk

0 1 sinϕk lk cosϕk

0 0 1 0

0 0 0 1











The observation equation is:

Z = [dxk, dyk]
T = [xble,k − xpred,k, yble,k − ypred,k]

FIGURE 8

(A) Testset 1 result by EKF. (B) Testset 1 result by UKF. (C) Testset 1 result by PF. (D) Testset 1 result by SmartFPS.
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Therefore, the observation matrix is:

Hk =

[

1 0 0 0

0 1 0 0

]

The process noise matrix is:

Qk =











δ2x 0 0 0

0 δ2y 0 0

0 0 δ2
l

0

0 0 0 δ2ϕ











The observation noise matrix is:

Rk =

[

Rx 0 0 0

0 Ry 0 0

]

The implementation of the particle filter system is mainly based

on the process equation, which will not be repeated here. We set the

number of particles to 700, as suggested by Chen et al. (2022). It is

worth noting that how to set the position state noise in the process

noise greatly influences the positioning accuracy of the filter-based

system. However, the effects of positional uncertainty are difficult

to model. To determine the process noise coefficient of each step,

the variance of the network output results before and after adding

noise several times is mainly used as the noise coefficient of the

position. Based on thismethod, this experiment can further reflect the

performance advantage of the network fusion algorithm compared to

the filtering algorithm.

The positioning results of the implemented filtering algorithm

and SmartFPS are shown in Figures 8A–D. The positioning

trajectories of EKF and UKF are highly similar (refer to the circle in

the figure and the enlarged part). This is because the same process

noise and observation noise parameters are used. The test results of

PF are generally better than other filtering algorithms. The predicted

trajectory of SmartFPS is closest to the ground truth (refer to the part

marked by the dotted solid line in the figure). It is noted that in some

areas, the filter-based algorithm shows large fluctuations, while the

fusion network is more stable and smoother.

FIGURE 9

Gap between the positioning errors of filter methods and SmartFPS.

In addition, during the test, we found that the process noise

and observation noise coefficients calculated by the training set in

the filter-based algorithm are not optimal. Besides, applying process

noise and observation noise coefficients different from the statistical

results greatly impacts the final positioning accuracy. Based on the

TABLE 3 Computation performance of filter methods and SmartFPS.

Methods Average training
time (s/epoch)

Average
delay (s)

Inertial network 3.116 0.058

Wireless network 3.520 0.015

EKF fusion 6.636 0.074

PF fusion (700 particles) 6.636 0.075

PF fusion (2,000 particles) 6.636 0.076

SmartFPS 4.804 0.073

Inertial network transfer 2.213 -

Wireless network transfer 2.418 -

FIGURE 10

(A) Testset 1 transfer learning results of inertial encoder target. (B)

Testset 1 transfer learning results of SmartFPS.
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TABLE 4 Transfer learning results of inertial positioning network and wireless positioing network.

Network Test Mean error

Train on source Train on target Transfer learning Improvement (%)

Inertial net

[step length (m), rotation (rad)]

1 [0.334, 1.042] [0.063, 0.903] [0.207, 0.991] [46.90, 36.69]

2 [0.180, 0.891] [0.048, 0.839] [0.096, 0.866] [63.86, 48.84]

3 [0.101, 1.045] [0.056, 1.001] [0.079, 1.006] [47.74, 89.80]

4 [0.370, 0.893] [0.089, 0.789] [0.246, 0.843] [44.37, 48.37]

Wireless net positioning error (m) 1 0.900 0.645 0.825 29.41%

2 0.908 0.637 0.805 38.00%

3 1.083 0.831 0.986 38.49%

4 1.160 0.887 1.084 27.84%

statistical results, a global search strategy was used to search for the

optimal solution of the process noise coefficient of the EKF and PF

algorithms, and up to 5% of the increase or decrease was randomly

added to the optimal value. The test results are shown in Figure 9.

Compared to the filter fusion algorithms, which adopt the optimal

parameters, there is still a significant gap between the positioning

accuracy of filter-based fusion and SmartFPS. It can be seen from

Figure 9 that the lower bound (best in all tests) of the positioning

error of SmartFPS was improved by 36.5%. For the upper bound, the

accuracy was also improved by 13%.

The computation time of filter methods, SmartFPS, and sub-

networks of SmartFPS are summarized in Table 3. Since the filter-

based methods fuse the output of each sub-network trained by

individual objectives, the training time should be summed up to be

equal for all filter methods. As can be seen from Table 3, the training

time for one epoch of SmartFPS was 4.804 s, which is less than the

sum of sub-networks. The reason is that SmartFPS was trained by

multiple objectives simultaneously so that the parallel computing

power of GPU can be maximized. By setting the early stopping ratio

to 0.5% and its patience to 3 epochs, the average training epoch

for the inertial network was 21, 8 for the wireless network, and

37 for SmartFPS. The average training time only accounts for the

computational cost during the offline stage, and the average delay

is essential for real-time pedestrian navigation. To output a location

at one timestep, the filter methods should first acquire the outputs

from sub-networks. Therefore, the computational time consists of

the delay from each sub-network. As can be seen from Table 3,

the difference in average delays of filter methods and SmartFPS is

relatively small. It is noted that during the test stage, the batch size for

SmartFPS was set to 1. As a result, the average delay of SmartFPS was

no less than the sum of the delay of sub-networks. It can also be found

that the fusion decoder almost has no delay compared to encoders,

and even the filter methods were slower by milliseconds. Overall, the

average delay of SmartFPS is satisfying for real-time navigation.

5.3. SmartFPS transfer learning tests

The test results of the inertial encoder network transfer learning

algorithm are shown in Figure 10A and Table 4. The estimated step

length and rotation angle of the inertial positioning network trained

by the transfer learning method is closer to the ground truth values

by 36.7–89.8% than those estimated by the network trained directly

in the source domain. The test results of the wireless encoder

transfer learning algorithm are shown in Table 4. Test set 2 and

test set 3 showed significant improvement of over 38% on both

encoder networks.

The test results of SmartFPS are shown in Figure 10B. The update

of the encoder weights of the fused localization network is performed

concurrently with the update of the target domain dataset. The

result shows that the localization trajectory before and after transfer

learning is close to the ground truth trajectory, and the estimation of

the model trained directly in the target domain.

The computation performance of transfer learning of each

encoder is listed in Table 3. Due to the complexity of the cycle route

and other routes, the average training time of transfer learning took

up to over 2 s. However, the two transfer learning processes were

done in the offline stage, which would occupy none of the resources

during navigation.

6. Discussion

The choice of the number of beacons can directly influence the

performance of the wireless encoder, as it can be seen as a continuous

fingerprinting method. Since decreasing the number of beacons in

some areas will remove signals with a high signal-to-noise ratio (SNR)

in this area, the wireless encoder will fail or perform poorly. However,

its influence on the whole fusion system is uncertain because of the

assistance from the inertial sensor. To investigate how the number

of beacons affects the performance of SmartFPS, we have considered

two circumstances: (1) sparse deployment of beacons; (2) fewer or no

beacons in one area.

For the first circumstance, since 20 beacons are deployed in our

test field, we increase the interval between beacons by turning off

several beacons evenly, as shown in Figure 11A, in which 9 of 20

beacons were turned off (colored in black) during the test. From

the test result in Figures 11B, C, SmartFPS can still accurately track

the pedestrian’s location compared with the wireless encoder. The

mean positioning errors for the wireless encoder and SmartFPS

are 1.133 and 0.619m, respectively. Compared with the result of

fully functioning beacons, the accuracy of the wireless encoder was

decreased by 59.8%. However, SmartFPS’s performance was only

downgraded by 18.3%.
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FIGURE 11

(A) Beacon layout for circumstance 1. (B) Wireless encoder result for circumstance 1. (C) SmartFPS result for circumstance 1. (D) Beacon layout for

circumstance 2. (E) Wireless encoder result for circumstance 2. (F) SmartFPS result for circumstance 2.

For the second circumstance, we turned off six beacons deployed

at one corner, as shown in Figure 11D. It can be seen from Figure 11E

that the wireless encoder showed poor performance in this corner,

with an overall positioning error of 1.362m. SmartFPS was affected

in the corner area as well, as shown in Figure 11F, but the overall

performance is still much better than the wireless encoder. The mean

positioning errors for the wireless encoder and SmartFPS are 1.271

and 0.776m, respectively.

In general, decreasing the number of beacons has a much smaller

influence on SmartFPS than the wireless encoder, indicating that the

inertial encoder properly functioned in our fusion system.

7. Conclusion and future work

In this paper, an end-to-end deep learning-based wireless-

inertial fusion positioning system, SmartFPS, and its transfer learning

method are proposed. The features from sub-positioning networks

are fused by a stateful LSTM network instead of filter-based methods.

The multi-task learning method is adopted to simplify the training

of SmarFPS and preserve the physical meaning of each sub-network.

Furthermore, a GAN-based unsupervised transfer learning method

is proposed to improve the performance of SmartFPS no matter

the difference between pedestrians and devices. Field experiments
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are conducted, and the results show that our method significantly

outperforms filter-based methods. SmartFPS showed high tolerance

to larger noise factors compared with filter-based methods. Overall,

our system can achieve an average positioning accuracy of 0.575

meters for different pedestrians and mobile phones.

For future work, specific techniques such as ZUPT and map

fusion could be adapted to SmartFPS’s architecture. Another

interesting idea is replacing the inertial encoder with a variant-

step inertial encoder, which can be derived from footstep detection

techniques. When the foot lands on the ground, the inertial data

sequence will generally show a large jitter. At present, machine

learning algorithms have been studied in pedestrian footstep

detection research, and the method based on the neural network has

high estimation accuracy. Therefore, based on SmartFPS, the time

series data can be segmented by footstep detection technology, and

the inertial encoder can be replaced by a network structure without

a fixed step length. Since the motion attitude of the pedestrian

is relatively stable during each step, it can be estimated that this

technique can further improve the positioning accuracy of SmartFPS.
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