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Research on steel rail surface
defects detection based on
improved YOLOv4 network
Zengzhen Mi*, Ren Chen* and Shanshan Zhao

College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China

Introduction: The surface images of steel rails are extremely difficult to detect and

recognize due to the presence of interference such as light changes and texture

background clutter during the acquisition process.

Methods: To improve the accuracy of railway defects detection, a deep learning

algorithm is proposed to detect the rail defects. Aiming at the problems of

inconspicuous rail defects edges, small size and background texture interference, the

rail region extraction, improved Retinex image enhancement, background modeling

difference, and threshold segmentation are performed sequentially to obtain the

segmentation map of defects. For the classification of defects, Res2Net and CBAM

attention mechanism are introduced to improve the receptive field and small target

position weights. The bottom-up path enhancement structure is removed from

the PANet structure to reduce the parameter redundancy and enhance the feature

extraction of small targets.

Results: The results show the average accuracy of rail defects detection reaches

92.68%, the recall rate reaches 92.33%, and the average detection time reaches an

average of 0.068 s per image, which can meet the real-time of rail defects detection.

Discussion: Comparing the improved method with the mainstream target detection

algorithms such as Faster RCNN, SSD, YOLOv3 and other algorithms, the improved

YOLOv4 has excellent comprehensive performance for rail defects detection, the

improved YOLOv4 model obviously better than several others in Pr, Rc, and F1 value,

and can be well-applied to rail defect detection projects.

KEYWORDS

rail defects, machine vision, defects detection, image enhancement, convolutional neural
network (CNN)

1. Introduction

With the development of rail network layout and the rapid development of high speed rail
technology, the importance of rail quality to train safety is becoming more and more obvious.
According to the relevant safety statistics, the train safety accidents caused by rail surface defects
account for about 30% of all accidents (Popović et al., 2022). Therefore, to ensure the security of
traffic, accurate and dynamic detection of rail surface defects has become an urgent problem for
railway development, and has important practical application value and research significance.

Due to the influence of rail manufacturing process, or by the wheel rail extrusion, impact,
wear and other contact stress and natural weathering, its health status and quality deteriorate
continuously, thus forming cracks, scars, wear, peeling, and other defects on the surface, with
the passage of time, these defects will further deteriorate the rail surface quality, which may

Frontiers in Neurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1119896
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1119896&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.3389/fnbot.2023.1119896
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1119896/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1119896 February 6, 2023 Time: 15:7 # 2

Mi et al. 10.3389/fnbot.2023.1119896

cause major railroad safety accidents. Therefore, the diversity
and dynamics of rail defects bring great challenges to rail
inspection technology.

The main rail defects detection methods include ultrasonic
method, eddy current method, magnetic particle method, etc. (Zhao,
2021). The traditional detection methods need to rely on manual
operation, time-consuming, labor-intensive, low efficiency, while it
will bring unknown safety hazards to the inspectors.

Machine vision has been paid more and more attention by
researchers with the benefits of fast speed, high precision and
reliability, and many algorithms for surface defects detection
have been generated. Faghih-Roohi et al. (2016) designed 3-layer
convolution + maximum pooling layer to improve the speed of
defects detection, and the accuracy of rail defects recognition can
reach 92.00%, but the method only defects are detected and no
classification is performed. Yuan et al. (2016) used the Otsu method
to improve it by weighting the target variance of Otsu with the
probability of occurrence of the target as the weight, so that the
segmentation threshold close to the left edge of the single-mode
histogram and the valley of the bimodal histogram, and the defects
detection rate reach 93%, but the image segmentation algorithm
cannot reach the real-time requirements. Shang et al. (2018) used
a convolutional neural network (CNN) based on Inception-v3 to
distinguish between normal and defective rail images. The model
has a simple structure and faster processing speed, achieving a
recognition accuracy of 92.08%, but the method is mainly effective
for the detection of scar defects. Wang et al. (2018), Ni et al.
(2021), and Ghafoor et al. (2022) analyzed the image features of
rail defects, removed interference noise by image filtering, and then
trained the model to improve the detection of surface defects, but
the image enhancement algorithm is not universal and the image
processing is time-consuming. Han et al. (2021) presented a multi-
level feature fusion model for rail surface defects detection, which
fuses the image features of different receptive field of multiple levels
for target detection and enhances the accuracy of detection results
and decreases the missing detection rate of small area defects, but
the method detects too few types of defects and is not applicable to
the detection of multiple complex defects of the rail. In summary,
the above research is more concerned with the detection of defects,
no classification recognition of defects, and there are problems such
as image recognition methods are not universal, the speed of image
processing cannot meet the defects detection of rail.

Therefore, according to the typical defect characteristics and
defect types of rail, the defects are classified into four types of scars,
peeling, wear and cracks, and a visual detection method combining
image enhancement and deep learning is used to detect, identify and
classify these four types of defects. In terms of the image processing,
the captured images are firstly extracted from the rail region, then
the defects edge information is enhanced with the improved Retinex
algorithm, then the background modeling difference method is used
to remove the background interference, and finally the defects are
extracted with the adaptive thresholding. The improved Retinex
algorithm and the background modeling difference method are more
parameterized, and the effect on the detection speed of defects is
not significant. In terms of deep learning, the Res2Net structure and
attention mechanism are introduced to enhance feature extraction
and improve the YOLOv4 network structure to enhance the detection
rate of small-sized defects. The improved model enhances the
accuracy of the four typical defects on the rail surface and ensures
the detection speed.

2. Image enhancement algorithm for
rail defects

The rail surface defects are highly susceptible to interference
from lighting changes and textured backgrounds in the process of
acquisition, making defects detection and recognition very difficult.
To make the rail defects can be better detected and classified, the rail
defects images are enhanced from four steps of rail region extraction,
defects edge enhancement, background modeling difference and
threshold segmentation, and the processing flow is shown in Figure 1,
which solves the influence of unfavorable factors during rail surface
defects segmentation.

2.1. Rail region extraction

To reduce the influence of textured backgrounds on rail defects
detection, the column histogram minimum method (Xu et al., 2022)
is first used to segment the target rail region from the original image.
The steps of the column histogram algorithm are as follows:

(1) Calculate the sum of grayscale values for each column Si.
(2) Search for the minimum value min of (Si + d-th) at fixed rail

width intervals d.
(3) The i-th column corresponding to the minimum value min is

the leftmost position of the corresponding rail.
(4) The position of the rightmost rail is the (i+d)-th column.

2.2. Improved Retinex image
enhancement algorithm

Due to environmental interference, the captured rail image
has low contrast, which affects the extraction of image defect
features. In addition, the two defects, wear and crack, are similar
to the background, and the texture features are not obvious, which
will bring great challenges to the feature extraction of the image.
Therefore, the image needs to be processed to enhance the contrast
of the edge contour, which helps the segmentation of this image.

Retinex is an adaptive image enhancement method (Yu et al.,
2017). The theory states that the brightness of an object depends
on the ambient light and the reflection of the surface of the object
on the light. The reflective component is the essence of the object.
The object image can be recovered by simply removing the irradiated
component. The Multi-Scale Retinex (MSR) (Zhu et al., 2021a) can
achieve better results by adding a weighted average of multiple scales,
and its expressions are as follows:

RMSR(x, y) =
N∑

n=1

Wn{log[I(x, y)] − log[I(x, y) · Gn(x, y)]} (1)

Where, N is the total number of scales, generally taken as 3, Wn
for the scale coefficient, and meet

∑N
n=1 Wn = 1, said the number

of scales for the Gaussian function. Gn
(
x, y

)
represents the Gaussian

amplifier model with the number of scales.
The MSR algorithm uses a linear quantization approach, and

the processed data are widely distributed, which will show serious
bifurcation and generally make it difficult to obtain satisfactory
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FIGURE 1

Defects detection algorithm based on background difference method.

results. To enhance the edge information of rail defects, the MSR
algorithm is improved from the way of quantization. The mean value
and mean squared deviation are introduced, and then a parameter
controlling the image dynamics is added to realize the contrast
adjustment to solve the problem of serious two-level differentiation of
the data and thus the unsatisfactory image enhancement effect, with
the following equation.

R(x, y) =
255

2

(
1+

log[RMSR(x, y)− µ]

D×MSE

)
(2)

Where D is the dynamic adjustment parameter of the image, the
value of D is inversely proportional to the contrast of the image, and
µ, MSE are the mean and mean squared deviation of the number of
channels of R, G, B in log [RMSE (x, y)], respectively, and Value is
the value of log [RMSE (x, y)]. After the experiment, the best effect is
obtained when the scale number is 3 and D is 2.5 (Figure 2).

The results show that the improved Retinex has stronger contrast
and more prominent defect edges information than MSR, and
less noise than histogram equalization. If the results of MSR are
quantified directly, the overall darker images are obtained, which is
due to the smaller data range of the original values after logarithmic
processing and the small differences between channels, and the
linear quantization is much smoother than the logarithmic curve,
so the overall effect is darker and the edge information is easily
lost. Proposed in this paper achieves good results by changing the
quantization of the mean and mean squared deviation to strengthen
the defect edges. The average Peak Signal to Noise Ratio (PSNR)
per image is calculated to be 15.40, which is a very significant
improvement in image quality and is very suitable for the processing
of orbital defect images.

2.3. Background difference segmentation
algorithm for surface defects

To segment the rail defects from the background image, the
defects segmentation based on background difference algorithm is

proposed, the idea of background difference method is the process
of subtracting the background from the current image so as to get the
defects. The background image is obtained by learning the rail video
sequence, and the method of extracting the motion foreground in
the video sequence based on background difference is mainly divided
into three steps (Chel et al., 2020): background modeling, foreground
detection, and background update. Among them, the mean method
is the simplest in background modeling (Piccardi, 2004), which can
quickly and effectively segment moving targets in static scenes with
high real-time performance.

Since single image defects segmentation cannot learn the
background model from the video sequence, the background
difference method in video surveillance cannot be directly used
for rail surface defects segmentation. Considering the feature of
small variation range of gray value along the rail direction of
the image and the real-time requirement, rail surface defects
segmentation algorithm based on the mean background difference
is proposed.

2.3.1. Background modeling
Define the direction perpendicular to the rail as the x−axis and

the rail direction as the y−axis. Calculate the mean value of each
column of the image according to the feature of small change of the
image along the y−axis, and modeling the background image.

Im (x) = mean
(
Iy (x)

)
(3)

Where Im (x) denotes the x-th column image background
modeling and mean

(
Iy (x)

)
is the mean value function.

The algorithm implements static single-image background
modeling, and the processing speed is not affected due to the
simplicity of modeling, and the background is maximally close to
the original image.

2.3.2. Background subtraction
To highlight defects and diminish the effects of illumination

variations and reflection unevenness, and subtract the rail
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FIGURE 2

Comparison chart of the effect of image enhancement algorithm. (A) Original image. (B) Grayscale map. (C) Histogram equalization. (D) MSR.
(E) Improved Retinex.

image from the background image to get the difference
image.

1I(x, y) = I0(x, y)− Im(x, y),∀(x, y) (4)

where I0(x, y) is the original image and Im(x, y) is the modeled
background image.

2.3.3. Adaptive thresholding segmentation
To segment the defective regions in the differential images,

Niblack thresholds are defined (Zhou et al., 2013).

th = µ1I + C · δ1I (5)

Where µ1I and δ1I are the mean and variance of 1I, respectively,
and the control factor C is a constant. Following Chebyshev′s
formulas, ratio of data with more than C times the Standard
Deviation (SD) from the mean is at most 1

/
C2 in any dataset. For

this purpose, the value of C can be determined based on the ratio of
the target defects to the total image. Since the differential image has
the property of zero mean, Equation 5 can be simplified as follows.

th = C · δ1I (6)

After experiments, the segmentation effect is best when C = 3.
The method can segment the defects well according to the obtained
threshold th for the image. The processed ones are shown in Figure 3.

3. Improved YOLOv4 model for rail
defects detection

YOLOv4 has a high performance in recognizing large and
medium-sized, significantly separated targets (Bochkovskiy et al.,
2020), but the detection accuracy is not high for small-sized targets
and targets with small background differences. In the dataset used in
this paper, most of the Scar and Peeling defects are small in size, and
the foreground background differences of Wear and crack defects are
small, which are not ideal for the recognition of defects directly with
the YOLOv4 network. Accordingly, the network structure and feature
extraction aspects are optimized based on the YOLOv4 network to
adapt it to the detection and recognition of orbital defects.

3.1. Rail defects feature extraction method

3.1.1. Introduction of Res2Net
Aiming at the problem of small size and little detail information

of rail defects, Res2Net structure and attention mechanism are
introduced to enhance the feature extraction of defects.

The ResNet residual blocks in the YOLOv4 network structure
are replaced with the Res2Net structure, as shown in Figure 4. This
structure not only increases the receptive field of each network layer,
but also enhances the ability of multi-size feature extraction and
enables effective detection of small-size defects.
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FIGURE 3

Splitting effect of the rail images. (A) Rail image. (B) Background image. (C) Difference image. (D) Segmentation image.

FIGURE 4

Structure of ResNet and Res2Net.

In the Res2Net structure, each output can increase the receptive
field, where y2 can get a 3x3 receptive field, can y3 get a 5x5 receptive
field, and y4 can get a larger 7x7 receptive field, so each Res2Net
can obtain a combination of features with different receptive field
sizes. Thus, the structure can both increase the receptive field of each
network layer, and fuse multi-scale features. It is very effective for the
small-sized targets (Gao et al., 2021).

3.1.2. CBAM attention mechanism
To enhance the attention to the effective feature information and

to improve the region weight of rail defects, an attention mechanism
is added to the model. Convolutional Block Attention Module
(CBAM) (Woo et al., 2018) is a lightweight attention module based on

CNN, and is shown in Figure 5. It integrates the Channel Attention
Module (CAM) (Ilyas et al., 2021) and the Spatial Attention Module
(SAM) (Hu et al., 2020) to generate the corresponding feature map
mapping to increase the weight of the defects region in the feature
map, which in turn makes the model pay more focus to the features
of the defects location and reduces the influence of background and
uneven spatial distribution on the detection of rail defects.

3.1.2.1. In channel attention

The rail defect features are max-pooled and average-pooled,
respectively, to obtain 2 “1× 1× C′′ channel descriptions, and then
they are sent into a 2-layer shared fully-connected layer, and the two
output features are summed up to obtain a weight coefficient after
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FIGURE 5

CBAM overall structure diagram.

FIGURE 6

Improved YOLOv4 network structure diagram.

the activation function, and eventually the new features multiplied
by the weight coefficients and the original features are used as
input for the SAM.

3.1.2.2. In SAM

Global average pooling as well as global maximum pooling
operations are performed on channels to produce 2 feature maps
represent different information. After merging them, feature fusion
is proceeded by 7× 7 convolution with a larger receptive field, and
lastly the operation is used to generate a weight map, which is then
superimposed on the original input feature map to obtain a final rail
defects feature map.

The feature map of CBAM is the same size as the feature map
of original image, only the feature elements have changed, focusing
more on the edge location information of the defects image, reducing
the impact of background on detection accuracy and reducing the
rate of wrong and missed detection. It can help the network to extract

features better and deeper, and further improve the network’s ability
to learn rail defects.

3.2. Design of defects recognition network

3.2.1. Network structure
The PANet structure used in YOLOv4 can fuse the semantic

information of different feature layers and is suitable for detecting
targets of different sizes. However, the number of rail surface defects
is high and the proportion of pixels in the image is low, and the
original PANet structure still lacks effective detection for tiny defect
targets. Therefore, on the basis of the original feature layer, Continue
to fuse shallow and deep features to increase the feature detection
scale and form a new feature detection layer.

Adding new feature detection layers leads to an increase in the
number of network structure parameters, and the bottom-up path
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enhancement structure contributes less to the detection of small area
defects. Therefore, the bottom-up path enhancement structure in
PANet is removed in order to reduce parameter redundancy and
ensure sufficient detection speed. Meanwhile, to help the network
extract features better and deeper, the residual structure in the
CSPBlock block is replaced with the Res2Net structure; to further
improve the network’s ability to learn rail defects, the CBAM
structure is added to the CSPBlock block. The improved PANet
structure is shown in Figure 6. The improved structure not only
inherits the feature fusion effect of the original structure, but also can
obtain more shallow features while reducing the network parameters,
so the feature extraction effect of small area defects of the rail is better.

3.2.2. Anchor frame clustering
Since a new feature detection layer is added, the number and size

of anchor frames are not suitable for this network, so it needs to be
re-clustered. K-means is used in YOLOv4 network, and the clustering
effect is largely determined by selecting the initial cluster center. To
ensure a relatively good clustering effect, K-means++ is adopted to
re-cluster the anchor frames. The method of clustering is as follows:

1. Randomly select a sample from the rail defects dataset as the
initial cluster center vj.

2. Secondly, calculate the distance between each sample xi and vj
in the dataset and select the shortest of them.

3. Then calculate the probability of each data sample being selected
as the next clustering center, and select the sample with the
greatest probability distance as the new clustering center.

4. Repeat steps 2 and 3 until all k clustering centers have been
identified.

5. Cluster the k initialized cluster centers obtained, assign each
sample to the cluster center with the smallest distance from each
other, and update the cluster centers, and repeat the step until
the cluster centers unchanged.

The clustering results are shown in Table 1.
From Table 1, it can see that most of the anchor frames are very

different from each other, except for the first three groups of anchor
frames, which do not vary much. Compared with k-means randomly
selecting the cluster center, k-means++ selects the cluster center by
the idea of “the farther the cluster center are from each other, the
better,” which converges the data faster and achieves good results
while reducing the computation time.

4. Experiment and analysis

Evaluation metrics for training and performance are first
established, and then the current mainstream deep learning-based

TABLE 1 A priori box clustering results.

Clustering algorithm Prior box

Entry 1K-means (12,14), (15,23), (17,44), (40,26), (41,93), (48,49),
(33,151), (63,78), (85,45), (61,125), (74,223),
(134,82)

K-means++ (11,13), (16,21), (18,42), (37,27), (51,51), (78,41),
(33,152), (40,85), (65,80), (60,123), (71,222),
(118,77)

FIGURE 7

Image samples collected by three different types of line-scan CCDs.
The figure has been licensed by Gan et al. (2017).

target detection algorithms are compared with the algorithms of
this paper in terms of accuracy and speed metrics. The computer
configuration is a 64-bit Windows 10 system with 32G of RAM,
CPU model i9-10980XE, and GPU model is RTX3090. In the training
process, the bitch_size is set to 16, the initial learning rate is 0.001,
the learning rate is decayed, the final learning rate is 0.00001, and
iterations is set in 1,000. A 416 × 416 resolution input is taken for
training, the detection threshold is set to 0.5, and the Dropout method
is used to prevent overfitting.

4.1. Dataset and evaluation index

The experimental dataset were obtained from Rail beam factory
of Panzhihua Iron and Steel (Group) Company and network datasets,
where the self-acquired dataset were used for training and the RSDDs
(Gan et al., 2017) network datasets were used for validation. For the
image acquisition experiments, color/grayscale images of heavy rails
of 60 kg/m were obtained using three different types of line-scan CCD
cameras, and a total of 2,124 images of rails with high imaging quality
were selected, of which 956 were defective, and image samples are
shown are shown in Figure 7.

To unify the experimental dataset, all acquired images are first
segmented on the rail surface, and then the images are resized to
400∗800 pixels, and finally the dataset is expanded by flip transform,
brightness transform, random cropping, geometric scaling, etc., 4,000
images of rail surface defects dataset are generated, including 1,000
images each of cracks, scars, wear and peeling. Randomly select 80%
as the training set, and 20% as the test set. Figure 8 shows the typical
samples of the four defects and their expansions.

This paper introduces four evaluation indexes: Recall Rate (Rc
or R), Precision Rate (Pr or P), F1 Value and Average Inspection
Time. Rail surface damage detection is related to the safety of railroad
transport, and both R and P indexes are particularly important, while
F1 value can visualize the importance of R and P.

R =
TP

TP + TN
(7)

P =
TP

TP + FP
(8)

F1 =
2PR
P + R

(9)

Frontiers in Neurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1119896
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1119896 February 6, 2023 Time: 15:7 # 8

Mi et al. 10.3389/fnbot.2023.1119896

FIGURE 8

Expansion of the dataset.

TABLE 2 Comparison of the detection performance of different algorithms for the self-collected dataset.

Detection algorithm Cracks Scars Wear Peeling F1 T/ms

P/% R/% P/% R/% P/% R/% P/% R/%

Faster R-CNN 91.2 93.1 89.8 90.3 88.5 86.9 90.7 91.6 0.903 41.2

SSD 86.3 88.6 84.1 87.2 80.7 77.9 84 86.3 0.844 82.0

YOLOv3 85.8 87.5 84.3 85.8 79.2 76.5 86.9 88.2 0.843 46.0

YOLOV4 88.4 90.4 86.1 85.3 84.1 83.9 89.1 91.2 0.873 55.0

YOLOv5 90.1 91.7 88.6 88.9 85.3 84.1 89.2 90.5 0.885 49.0

YOLOv6 93.6 92.3 92.4 92.8 88.7 89.2 90.4 91.7 0.914 40.0

Algorithm in this paper 94.8 93.7 94.0 93.6 89.7 88.4 92.2 93.6 0.925 68.0

FIGURE 9

Comparison chart of the effect of detection.
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FIGURE 10

Detection accuracy of the four defects.

Where: TP: Positive samples predicted to be positive class, FP:
Negative samples predicted to be positive class, TN: Negative samples
predicted to be negative class.

4.2. Algorithm performance analysis

Training and test experiments were conducted on several
detection algorithms [Faster R-CNN (Sekar and Perumal, 2021),
SSD (Liu et al., 2016), YOLOv3 (Redmon and Farhadi, 2021),
YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 (Zhu et al., 2021b),
YOLOv6 (Li et al., 2022)] and the improved algorithms in this paper,
and after the network training and parameter tuning, the network
convergence, and then the data results were tallied according to the
evaluation metrics.

The data in Table 2 show that the detection algorithm of this
paper has the highest Rc and Pr for four defects: cracks, scars,
wear, and peeling. Relative to other mainstream algorithms, the
improved YOLOv4 algorithm has an F1 value that is 2.2% higher than
Faster R-CNN, 8.1% higher than SSD, 8.2% higher than YOLOv3,
5.2% higher than YOLOv4, 4.0% higher than YOLOv5, and 1.1%
higher than YOLOv6. All 3 metrics are better than other mainstream
detection algorithms. Compared with the original YOLOv4 network,
the accuracy of the improved network reaches 94.8% for cracks, 6.4%
higher than before the improvement; 94.0% for scars, 7.9% higher
than before the improvement; 89.7% for wear, 5.6% higher than
before the improvement; and 92.2% for spalling, 3.1% higher than
before the improvement. The accuracy rates of the four typical defects
are 1.2, 1.6, 1.0, and 1.8% higher than YOLOv6, respectively, which

TABLE 3 Comparison of detection performance of different algorithms
for RSDDs dataset.

Literature sources Network structure AP/% T/ms

Luo et al. (2021) Improved cascade R-CNN 98.75 146.3

Guo et al. (2022) Improved YOLOv5 91.80 54.8

Han et al. (2021) Multi-layer feature fusion
network

96.72 59.8

Algorithms in this paper Improved YOLOv4 98.96 68.0

FIGURE 11

Accuracy change curve of each model in ablation experiment.

is a significant improvement. In addition, although this algorithm
increases the detection layer and adds the attention mechanism
resulting in increased parameters, the removal of the bottom-up path
structure in the PANet reduces a large number of parameters, and the
image pre-processing of the background difference method is concise
and effective. The average detection time per image is 0.068 s (68 ms),
which is very close to that of YOLOv4, YOLOv5, and YOLOv6, and
can meet the system real-time requirements while ensuring the effect
of rail defects detection. Mapping the inspection results back to the
original image, the effect comparison chart is shown in Figure 9,
where the green box is for wear defects, the orange box is for crack
defects, the red box is for peeling defects, and the blue box is for scar
defects.

From Figure 9, this algorithm can recognize defects of small size
and defects with small background differences very well, and the
recognition effects are all better than other mainstream algorithms,
and Figure 10 shows the accuracy of four kinds of defects.

To continue to verify the effectiveness of this algorithm,
the algorithm is tested on the publicly available dataset RSDDs,
comparing the method of this paper with improved Cascade R-CNN
proposed by Luo et al. (2021), improved YOLOv5 proposed by Guo
et al. (2022) and multi-layer feature fusion network proposed by Han
et al. (2021), the defects detection accuracy and the average detection
time of a single image are shown in Table 3.

The accuracy of this algorithm for defect detection on the RSDDs
rail dataset reaches 98.96%, all of which are better than the methods
used by the other three. The average detection time per image is
68 ms, which is significantly better than Luo’s method and very close
to Li and Han’s methods, and fully satisfies the real-time performance
of rail defects detection. The results show that this method is more
suitable for performing the task of rail surface defects detection.

TABLE 4 Results of ablation experiments.

Network model Pr/% Rc/% F1 value T/ms

Model I 87.70 86.93 0.873 55

Model II 90.45 88.92 0.897 59

Model III 89.11 88.67 0.889 63

Model IV 92.68 92.33 0.925 68
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4.3. Ablation experiments

The algorithm uses several improved strategies based on
YOLOv4, and to verify its effectiveness, ablation experiments were
designed for comparative analysis.

Model I: YOLOv4 network. Model II: The model obtained by
replacing the Residual Block structure in the feature extraction
part of YOLOv4 with the Res2Net module, and then adding the
CBAM attention mechanism. Model III: Adding the detection layer
and removing the top-down structure in PANet. Model IV is the
model of this paper. Each network model is trained for 1,000 cycles
(Figure 11).

In this figure, the loss values of each network model in the
ablation experiments decrease rapidly within the first 50 iterations of
the training process, and then gradually converge.

As seen in Table 4, Model II makes improvements to feature
extraction, and increasing the weight of defects location and
increasing the perceptual field to better extract the small defect
features of the rails, with a 2.75% improvement in Pr , 1.99%
improvement in Rc, and 2.40% improvement in F1 value over the
YOLOV4 network, effectively improving the detection performance
of small size defects. The model III network structure performs multi-
scale feature fusion to enhance the accuracy of defects localization,
which improves Pr by 1.41%, Rc by 1.74%, and F1 value by 1.60%
over the YOLOV4 network, but the detection time of a single
image increases by 8 ms, which is due to the increase of detection
layers, resulting in the calculation of a large number of additional
parameters. The fusion of the above two improved methods into
the benchmark network at the same time can further improve
the accuracy of rail defects localization and identification, which
improves Pr by 4.98%, Rc by 5.40%, and value by 5.20% over the
YOLOV4 network. This verifies the validity of the improved method
for rail surface defects detection.

5. Discussion

For the problem of small defects size and complex background
of rail. The detection algorithm for rail surface defects is proposed.
The improved YOLOv4 defects detection algorithm not only inherits
the feature fusion effect of the original structure, but also can obtain
more shallow features while reducing the network parameters and
improving the feature extraction capability of small targets. The
average processing speed of a single image is only 13 ms higher
than YOLOv4, which is also very close to the detection speed of
YOLOv6. Efficient and accurate detection of rail defects is achieved,
where the recognition accuracy of 4 defects, namely, cracks, scars,
wear and peeling, reaches 94.8, 94.0, 89.7, and 92.2%, respectively.

Their Pr , Rc and F1 values are higher than other mainstream target
detection algorithms. The detection algorithm ensures high detection
accuracy while guaranteeing detection speed, and is more suitable for
performing rail surface defect detection tasks.
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