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Neuro-robots are a class of autonomous machines that, in their architecture, mimic

aspects of the human brain and cognition. As such, they represent unique artifacts

created by humans based on human understanding of healthy human brains.

European Union’s Convention on Roboethics 2025 states that the design of all robots

(including neuro-robots) must include provisions for the complete traceability of the

robots’ actions, analogous to an aircraft’s flight data recorder. At the same time, one

can anticipate rising instances of neuro-robotic failure, as they operate on imperfect

data in real environments, and the underlying AI behind such neuro-robots has yet

to achieve explainability. This paper reviews the trajectory of the technology used

in neuro-robots and accompanying failures. The failures demand an explanation.

While drawing on existing explainable AI research, we argue explainability in AI limits

the same in neuro-robots. In order to make robots more explainable, we suggest

potential pathways for future research.
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1. Introduction

Japan’s Henna Hotel (literally translates in English to “strange hotel”)—opened in 2015 with
a staff of 243 robots—has cut its robotic workforce, stating that the robots started annoying the
guests frequently (Hertzfeld, 2019). The firing of the robots comes after many objections from
both staff and customers. Many of these robots created more work for the hotel staff instead
of reducing it. There are numerous other instances of robot failures. In the famous DARPA
Robotics Challenge, many robots fell over (including the IHMC’s Atlas robot shown in Figure 1),
and some fell over multiple times (Guizzoevan and Ackerman, 2015).

Beyond traditional robotic failures, early-stage neuro-robots employing embodied
intelligence—notably humanoid (developmental) robots inspired by the human nervous
system and most visually resembling humans—also failed in several instances, particularly
in unpredictable situations. For example, Pepper, a humanoid robot from the Japanese firm
SoftBank, could not deliver at jobs it was designed for, from entertaining residents at nursing
homes to welcoming customers in banks (Ryan, 2021). Similarly, the Atlas humanoid robot
developed by Boston Dynamics failed while doing parkour (Pescovitz, 2021). Many other
humanoids that closely approximate neuro-robots include: the H-7 of the University of Tokyo
(Nishiwaki et al., 2007), Asimo of Honda Motor Corporation (ASIMO, 2011), Qrio of Sony
Corporation (Carnegie Mellon Today, 2005), DB from Utah-based company Sarcos (Cheng,
2015), or HRP-2 from the Japanese Humanoid Robotics Program (Hirukawa et al., 2004),
among others. Although representing high technological achievements, these robots have yet to
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FIGURE 1

IHMC’s Atlas was one of the robots that fell during the DARPA robotics challenge finals. Source: DARPA (Guizzoevan and Ackerman, 2015).

achieve high success and complete precision, for example, in terms of
behavioral diversity and dexterity, as seen in humans. This is because
they are not ready to exploit their system-environment interaction to
a higher degree and are yet to fully develop in handling unplanned
real-life situations (Pfeifer and Bongard, 2007).

Aside from lab competitions, experiments, and toy models,
robots are currently deployed in several fields ranging from
education, health, and agriculture to transport, hospitality, tourism,
and the food industry. Technological capabilities, including robots,
are expected to stimulate speedy process automation, improved
service delivery, enhanced productivity and efficiency, advanced
technological innovation and leadership, and higher economic
growth (Romer, 1990; Khan, 2022). Several ethical and legal
issues, such as control, autonomy, and regulation, concern the
development and design of neuro-robots (Nyholm, 2022), but here
we focus on neuro-robotic failures. As neuro-robots get deployed,
neuro-robotic failures would cause severe repercussions to human
counterparts in all consequential domains. Therefore, understanding
how such robotic decisions are implemented is crucial in avoiding
current and future neuro-robotic failures. What makes them go
wrong? Why do neuro-robots decide in a particular manner? Why
were they “too annoying” for the guests in the Hotel? What
makes humanoid robots fail? These and many other questions
merit our attention toward designing and exploring the issue of
explainable robots.

Neural-inspired robots that deploy artificial intelligence (AI)
and embodied intelligence (i.e., neuro-robots) need to be explained
further. Situated in a natural environment, sensing their environment
and acting on it, neuro-robots have control systems based on the
principles of nervous systems (Krichmar, 2008). We would assume
that robots (and neuro-robots) have become more capable than ever
before because the cost of sensors has reduced significantly, and AI
algorithms have matured exponentially (Silver et al., 2016). Yet, most
AI algorithms, particularly the Blackbox deep neural networks, are
still largely unexplainable (de Bruijn et al., 2022; Khan et al., 2022).
Similarly, many brain processes are yet to be unknotted, not only
in humans but also in animals with simple brains (Krichmar et al.,
2019). Hence what follows is that the neuro-robots designed, taking

into account sophisticated AI algorithms and human brain mimicry,
are, to a large extent, unexplainable.

Explaining and understanding the human brain and how neural
activity gives rise to behavior is a permanent subject of discussion
and learning in the realm of neuroscience (Ungerleider and Haxby,
1994; Eickhoff et al., 2018; Vijayakumar et al., 2018; Klein et al.,
2019; Chen K. et al., 2020). But in the case of AI, European Union
(EU) law warrants AI to provide an immediate explanation as
required by the “Right to Explanation” enacted in 2016, specifically
in the context of adverse decisions affecting Europeans (ITIF, 2018).
A neuro-robotic explanation is even more desirable in light of
the EU Convention on Roboethics 2025 (Enlightenment of an
Anchorwoman, 2010), the Institute of Electrical and Electronics
Engineers (IEEE) Guideline for ethical designs 2019 (Bulan, 2019),
and Japan’s robotics principles (Pepito et al., 2019) inspired by
Isaac Asimov’s Three Laws of Robotics aiming to protect humans
interacting with robots (Anderson, 2007). Furthermore, the latest
push toward designing explainable and “responsible” automated
systems comes from the White House Office of Science and
Technology Policy (OSTP) in the US (The White House OSTP, 2022).

To explain a bit more, the EU’s Convention requires that the
design of all robots (including neuro-robots) must include provisions
for the complete traceability of the robots’ actions. Furthermore, the
IEEE Guideline for Ethically Aligned Design asks that robot decisions
must be transparent and supported by clear reasoning. Similarly, the
need for explainability indirectly flows from Japan’s “Ten Principles
of Robot Law,” which requires robots to serve humankind and robotic
manufacturers to be held responsible for their creation. Finally, the
recent passage of “Blueprint for an AI Bill of Rights” by the White
House OSTP in the US also outlines crucial principles that should
lead the design, application, and deployment of automated systems
(including neuro-robots) to protect the US citizens in the age of AI
(The White House OSTP, 2022).

While most of these policies (and guidelines) talk about general
AI and robotics, the extent that neuro-robots are automated systems,
they fall under the realm of these policies. However, neuro-robots
are unique robots embodied in the environment. Also, as they
mimic neural processing and most are morphologically similar to
humans, they can be used to test brain theories in the laboratory
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and real-life settings while serving alongside human team members
(Krichmar and Hwu, 2022). Policies around neuro-robots would
thus need to be more nuanced and detailed. For example, how
can we deploy a neuro-robot safely in a dynamic environment
to enhance our understanding of neuroscience? Relatedly, can we
deploy neuro-robots in a natural setting without any ethical approval
in the first instance? Furthermore, as neuro-robots are complex and
rely on enhanced human-robot interaction, how do we ensure that
neuro-robots present a meaningful and trustworthy explanation in
a human-friendly manner interpretable to both engineers and the
public alike? Who will be held responsible if the neuro-robots go
wrong, the neuro-robots or the developers? How do we gauge their
performance in functions such as walking, singing, cooking, playing
cards, or typing on keyboards? Do we benchmark their performance
against human counterparts? Lastly, how much autonomy do we give
them, and do we control them?

Modeled after biological brains, neuro-robots use a combination
of neurally-inspired computing and AI. Neuro-robots operate on
noisy and often uncertain data (Khan et al., 2022), to make decisions
to help reduce the workload of fellow humans. When these robots
work, they are of huge utility, allowing for, among other things,
prosthetics (McMullen et al., 2014; Johannes et al., 2020; Handelman
et al., 2022; Rejcek, 2022) and wearable systems supporting
locomotion and learning processes (Colachis et al., 2018; Billard
and Kragic, 2019). These systems can also engage in self-teaching
modes allowing them to work like humans as waiters, deliverers,
receptionists, troubleshooters, and digital assistants (Financial Times,
2022; Meta Fundamental AI Research Diplomacy Team (FAIR) et al.,
2022).

However, as with human intelligence, sometimes robots fail to
deliver, as mentioned earlier. In the instance of Henn na Hotel, the
robots mistakenly took human snoring at night as a legit guest’s
request, thus prompting them to disturb the guests at night. In
other words, the robots could not perform feature extraction and
intelligent comprehension of human snoring. The failure of robots
is not startling. Intelligence is the act of decision-making based on
prevailing uncertainty (Khan et al., 2022). This fact differentiates
robots deploying AI from non-intelligent decision systems based on
the flow-chart design, as is the case in most electronics (Friedman
and Zeckhauser, 2012). For human beings, such failures are vital
for learning during childhood and adulthood. Neuro-robots using
machine learning (ML) AI algorithms also require a “training phase”
whereby the system is first trained on a human-labeled dataset (MIT
Technology Review, 2018). The system then learns from its failures
before being permitted to operate in the “wild” (MIT Technology
Review, 2018). Therefore, it is understandable that, despite training,
humans and neuro-robots might mis-categorize a new data episode
that had never been seen or used.

In the case of human intelligence, only recently has neuroscience
offered a mechanistic picture of the cellular basis of learning and
memory (Liu et al., 2012). However, for neuro-robots, explaining
why failures occur is not readily explainable. This is in spite of the
EU regulations and other guidelines requiring that robotic actions’
traceability and explainability be available to EU citizens to protect
them from potential adverse effects.

For this paper, explainable neuro-robots are neuro-robots whose
function and decision-making processes must be explained so that
the average person can comprehend the basis of a robot behavior.
Here we summarize the existing trends in neuro-robots and their
underlying circuitry. Then we recap some literature surrounding

failures neuro-robots may encounter. Since neuro-robots deploy
AI and ML algorithms in their design, a summary of explainable
AI methods and associated problems is provided in the following
section. Finally, we will offer themes of how the explainability of
neuro-robots may be researched as the field advances further.

2. Advances in neuro-robotics and
robotic failures go hand in hand

While much of the basis for human higher cognition remains
unknown, the existing understanding of biological brains deployed
in biomimetic fashion in embodied intelligence, developmental
robotics, and AI inform ways to design intelligent robot systems. Here
we term these systems neuro-robots. Neuro-robots imitate aspects
of the human brain in their design and function (Krichmar, 2018).
Such robots can also interact with the nervous system of humans
or other animals (Iosa et al., 2016). Neuro-robots differ from other
electromechanical devices based on the ability to adapt their behavior
on the basis of their experience (Iosa et al., 2016), a characteristic
that has been termed “adaptability.” Adaptability, in turn, is based
on its multiple sensors, whose signals are processed by AI to change
the robot’s behavior (Iosa et al., 2016).

A neuro-robot can be designed for clinical uses, for instance,
neurorehabilitation or neurosurgery (Nordin et al., 2017). They can
also be developed for studying the nervous system by mimicking its
properties (Krichmar, 2018; Chen K. et al., 2020), as happens in many
walking robots based on central pattern generators (Ijspeert et al.,
2007).

Immersed in the real world, a neuro-robot takes sensory
information from the environment before integrating it into
actions (Chen K. et al., 2020). This information intake and
resulting computation inform how the artificial brain gives rise
to new behaviors based on its experience. Researchers have used
neuro-robotic approaches to study the neural correlates of visual
perception (Priamikov et al., 2016), tactile perception (Pearson et al.,
2007), auditory perception (Rucci et al., 1999), spatial navigation
(Lambrinos et al., 2000), schema formation and consolidation
(Hwu et al., 2020), neuromodulation (Sporns and Alexander, 2002),
attention (Gigliotta et al., 2017), locomotion (Lock et al., 2013),
language development (Oudeyer, 2006), and social interaction
(Boucenna et al., 2014). Readers interested in how the behavior of
neuro-robots help explain their neural control and the analysis of how
neural activity leads to behavior may further refer to seminal research
(Chen K. et al., 2020).

Neuro-robotic systems have advanced substantially in functions
and properties because of significant progress in brain-inspired
computing algorithms and hardware (Krichmar, 2018). On the
functionality front, most neuro-robots perform single tasks in simple
and static situations for now (Zou et al., 2020). But, then, a
few multitasking robots perform in dynamic environments (Zou
et al., 2020). As for properties, current neuro-robots exhibit features
ranging from intelligent perception and flexible movement to
interactions with environments (Sanders and Oberst, 2016).

The critical element of the software stack for neuro-robots is
brain-inspired computing algorithms, which witnessed tremendous
advancement in the past decade. Of those algorithms, two main
categories are Artificial Neural Networks (ANNs) and Spiking Neural
Networks (SNNs). While the human brain’s hierarchical topologies
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and parallel-processing networks inspire ANNs (Yang and Wang,
2020), SNNs take inspiration from the patterns of neuronal action
potentials subserving human brain function (Ghosh-Dastidar and
Adeli, 2009). ANNs, specifically deep neural networks, are lauded
for their phenomenal success in various machine-learning tasks
(Zou et al., 2020). For instance, deep neural networks have already
achieved human-level performance in image recognition (van Dyck
et al., 2021). While most traditional robots use backpropagation to
train ANNs (Hecht-Nielsen, 1989), neuro-robots usually model the
ANNs around neuro-anatomically grounded Hebbian learning rules
and algorithms (Garagnani et al., 2008). Similarly, SNNs are also
very powerful computing and highly energy-efficient paradigms for
processing dynamic sequential information (Cao et al., 2015; Zou
et al., 2020). These paradigms possess desirable features such as
high bio-fidelity, rich coding with complex data, and event-driven
idiosyncrasy (Bichler et al., 2012; Zou et al., 2020).

Other important brain-inspired algorithms for robots include
attractor neural networks (Solovyeva et al., 2016; Khona and Fiete,
2022). Such networks are recurrent dynamic networks, evolving
toward a stable pattern (either single state, cyclic state, chaotic state,
or random state) over time (Khona and Fiete, 2022). Attractor
networks typically model neuronal processes such as memory, motor
behavior, classification, and other biologically inspired processes in
machine learning (Li et al., 2015).

The advancement of algorithms goes hand in hand with
the development of neural computing hardware, also called
neuromorphic architectures. On the one hand, we have neural
network accelerators that optimize operations in ANNs and usually
leverage parallel processing and efficient data compression (Zou
et al., 2020). Examples of such accelerators include ShiDianNao (Du
et al., 2015) and TPU (Jouppi et al., 2017). On the other hand,
neuromorphic chips are designed to support rich spatiotemporal
bio-functionality (Zou et al., 2020). Such chips provide high
energy efficiency and event-driven representations. Examples include
Neurogrid (Benjamin et al., 2014), SpiNNaker (Furber et al., 2013;
Krichmar et al., 2019), IBM’s TrueNorth under the SyNAPSE
project (Merolla et al., 2011; Modha et al., 2011; DeBole et al.,
2019), and the energy-aware computing hardware developed by
HRL laboratories (Srinivasa and Cruz-Albrecht, 2012). Alongside
neural accelerators and neuromorphic chips, we have many human-
inspired robotic hardware (in humanoid platforms) that provides
a maximum degree of anatomical fidelity to the human structure
and is capable of whole-body motions (ECCE Robots, 2010;
Ackerman, 2016b; WIRED, 2017). Examples of these platforms
include ECCE (ECCE Robots, 2010; Bonsignorio, 2013), Kengoro
(Ackerman, 2016b; WIRED, 2017), and HRP-2 (Hirukawa et al.,
2004), among others.

These breakthroughs in algorithms and hardware led to the
development of advanced neuro-robots that exhibit intelligent
perception and flexible movement (Krichmar, 2018). Regarding
functionality, we have two developmental designs: single-task robots
and multitask robots (Zou et al., 2020). Single-task robots operate
in simple scenarios with limited capability to perform multiple
functions. On the other hand, multitask robots navigate dynamic
systems and can perform multiple tasks simultaneously. Both
these types of robots and systems are prevalent in different real-
world applications, such as medical robots (Davies et al., 2000;
Chen A. et al., 2020), prosthetic arms (Fazeli et al., 2019), humanoid
platforms (Johansson et al., 2020), and automated driving (Spielberg

et al., 2019). These applications offer critical opportunities to advance
the design of robot systems further.

Neuro-robots deploying non-von Neumann architectures,
specifically neuromorphic engineering, can provide low-power
processing (on the order of milliwatts or watts, compared to
kilowatts for a GPU) and sensing for autonomous systems. For
example, the TrueNorth neuromorphic chip of IBM has deployed
convolutional neural networks (CNNs) on autonomous robots and
other embedded applications with minimal power consumption
(Esser et al., 2016; Hwu et al., 2017). Similarly, neuromorphic
architectures enable next-generation processing (Indiveri et al., 2011;
James et al., 2017). Furthermore, by incorporating a processor-
in-memory and event-based design, neuromorphic processors
can provide three orders-of-magnitude strategic advantages in
performance-per-watt while being robust to radiation effects.

While substantial effort has been invested in making robots
more reliable in terms of power processing and dynamic sensing,
experience demonstrates that frequent failures often challenge robots.
According to researchers, the mean time between failure (MTBF)
for robots in field environments is usually within a few hours
(Tsarouhas and Fourlas, 2016). Regardless, robots have yet to reach
a design that can better cater to fault management (Honig and
Oron-Gilad, 2018). Even trained roboticists are not entirely aware
of what causes the failure (Steinbauer, 2013). There is a plethora
of literature on robotic failures (Laprie, 1995; Carlson and Murphy,
2005; Steinbauer, 2013; Barakova et al., 2015; Lemaignan et al.,
2015; Brooks, 2017; Honig and Oron-Gilad, 2018). Failures refer to
a degraded ability that causes the system’s behavior or service to
deviate from the standard or correct functionality (Honig and Oron-
Gilad, 2018). Various errors and faults can cause failures in systems.
For instance, the Henn na robots experienced failure due to speech-
recognition errors. Similarly, in the autonomous car accident, the
car crashed into a white truck due to intelligent feature extraction
problems (Shepardson, 2017). Finally, Pepper and other humanoid
robots failed due to weaker system-environment interaction and
unreadiness to handle unplanned situations, among other related
issues (Pfeifer and Bongard, 2007).

While failure detection and fault prediction techniques and
algorithms in neuro-robots are still emerging, literature discusses
failure detection and prediction in traditional robotic controls
and manipulators. Several algorithms and methods can accomplish
this: second-order sliding mode algorithm (Ferrara and Capisani,
2012), robust non-linear analytic redundancy technique (Halder and
Sarkar, 2007), partial least square approach (Muradore and Fiorini,
2012), torque filtering and sensing technique (Fu and Cai, 2021),
multiple model adaptive estimation method (Akca and Efe, 2019),
multiple hybrid particle swarm optimization algorithm to realize
multiple predictions failures (Ayari and Bouamama, 2017), and
neural network for prediction of robot execution failures (Diryag
et al., 2014). Identifying and understanding failures through the
means mentioned are crucial in designing reliable robots that return
meaningful explanations to users when and if needed. At the same
time, we agree it may be impossible to identify (or predict) all sorts
of robotic failures as robots operate in dynamic and unorganized
environments interacting in numerous possible ways. This becomes
even more challenging for neuro-robots situated in natural settings
with many unplanned events. However, several researchers have
advanced insightful failure classifications that may also be well
relevant for neuro-robots.
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Some researchers classified robotic failures into technical failures
and social norm violations (Giuliani et al., 2015). Technical
issues inside the robots cause technical failures. In contrast, social
norm violations refer to inappropriate social cues, for instance,
robots looking away from a person while talking to them. Other
researchers categorized failures according to the source of the failure
(Carlson and Murphy, 2005). Such classification considers physical
failures (physical errors in the system’s sensors, control system, or
communications cause such failures) and human failures (human-
made errors in design, for instance, cause these failures). Using
information such as relevance (if the fault is relevant to various
robotic systems), condition (context of failure), symptoms (indicators
to identify the failure), impact (repairable or terminal, for instance),
and frequency (how often it occurs), Steinbauer classified failures in
two four categories following the RoboCup competitions: Interaction,
Algorithms, Software, and Hardware (Steinbauer, 2013). Interaction
failures arise from uncertainties in interacting with the environment
and humans, whereas algorithmic failures are problems in methods
and algorithms. Similarly, software failures are due to the design and
implementation faults of software systems, whereas hardware failures
are physical faults of robotic equipment.

Furthermore, Brooks classifies failures into communications
and processing failures (Brooks, 2017). Communication failures are
related to data being processed, including missing data (incomplete
data), incorrect data (data distorted during transmission, for
example), bad timing (data received too early or late), or extra data
(for instance, data sent many times). Processing failures can happen
due to poor logic (based on incorrect assumptions), ordering (when
events occur in a different order), or abnormal termination due to
unhandled exceptions or segmentation faults.

Other researchers echo some of these classifications and devise
more inclusive human-robot failure categorizations (Honig and
Oron-Gilad, 2018). Per their classification, there are two types
of failures: technical (that includes both software and hardware)
and interactive failures that arise because of uncertainties while
interacting with the environment or agents in the environment,
including humans. While all types of failures are important,
interactive and algorithmic failures seem even more pertinent to
neuro-robots serving and working alongside humans.

To use Laprie’s words (Laprie, 1995), some of these failures
are “catastrophic”—with a higher cost than the service—and thus,
they need to be avoided. To avoid failures, the failures need to be
understood and explained. The explanation for most of these failures,
particularly the ones relating to interaction and algorithms, is not
readily available. An explainable neuro-robot will be expected to
unravel some of this explanation to end users and engineers alike.

3. Explainability in AI limits
explainability in neuro-robots

Neuro-robots are useful but still not explainable as they employ
a combination of AI algorithms and neural-inspired hardware while
interacting with environments and agents in evolving settings. In
addition, as an interdisciplinary field, neuro-robotics involves control
and mechatronics, among other areas. Although in the previous
section, we noted some failures and failure detection techniques
regarding the control, design, and engineering, we limit ourselves
to algorithms for the purpose of this discussion. The challenges

inherent in neural-inspired hardware are attributed to the fact that
neuroscience itself lacks a complete theory of brain function, which
is further compounded by the sheer physical complexity of biological
brains (1015 computational synaptic elements in the human brain).
For AI, the explanation of why failures happen is not easily available
(Gunning and Aha, 2019). Explainability in neuro-robots is thus
largely limited by the explainability in AI. However, robotic (neuro-
robotic) failures identified earlier warrant explanation as they impact
lives and livelihoods in many consequential ways. We propose as AI
explainability increases, neuro-robots will become more explainable.
Thus, this section draws an overview of current explainable AI
methods, which provide a foundation for explainable neuro-robots.

Machine learning (ML) explainable techniques (or X-AI
methods) offer an understanding and explanation of ML models’
decisions in human terms to establish trust with stakeholders,
including engineers, users, and policymakers. In the past decade, with
the application of AI in several autonomous systems and robots,
we have seen a tremendous amount of research interest in X-AI
methods. Currently, we can choose from a suite of X-AI methods
to untangle deep learning opaque models (Lipton, 2017; Došilović
et al., 2018; Xu et al., 2019; Holzinger et al., 2022; Khan et al.,
2022). There are various categorizations of X-AI methods based on
several criteria, including structure, design transparency, agnostic-
ness, scope, supervision, explanation type, and data type, as listed in
Table 1 (Khan et al., 2022).

Most popular methods include intrinsic vs. post hoc, Blackbox vs.
Whitebox vs. Graybox approaches, local vs. global approaches, model
agnostic vs. model specific approaches, supervised vs. unsupervised
methods, and those methods that differ in explanation type or the
data type they can handle.

Overall, these excellent foundational methods [summarized in
Table 1; for more details, readers may consult (Khan et al.,
2022)] help produce some model understanding and present bits
of human interpretable understanding. However, there is still no
comprehensive understanding of how an AI implements a decision
while explaining the model decision (Khan et al., 2022). These
methods are far from perfect. High-stake ML deployment failures
from these Blackbox models underpin the idea that these models
fail to offer a satisfactory level of explanation (Ackerman, 2016a;
Strickland, 2019; Su et al., 2019). The failures further underscore
that these models are uncontestable, opaque, display unpredictable
behavior, and in some situations, boost undesirable racial, gender, and
demographic biases (Newman, 2021). Consequential settings such
as healthcare, criminal justice, and banking have already witnessed
substantial harm because of the issues found in Blackbox methods
(Newman, 2021). Whitebox models, on the other hand, are also not
the best: while these models are more interpretable, they are less
accurate (Loyola-González, 2019).

Beyond an incomplete explanation, the explanation is unstable
(Bansal et al., 2020; Kozyrkov, 2021). For instance, four X-AI
methods were deployed to determine what makes a matchstick a
matchstick (Bansal et al., 2020). By changing only a single parameter,
the methods returned twelve explanations, suggesting the methods
are unstable (Choi, 2021). Even state-of-the-art techniques such as
Local Interpretable Model-agnostic Explanation (LIME) and Shapley
Additive exPlanations (SHAP) deploying Local Linear Explanations
(LLE) also suffer from defects, including unstable explanations after
changing a single parameter or even different explanations for the
same data point (Amparore et al., 2021). As these methods use some
randomized algorithm, for example, the Monte Carlo algorithm,
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TABLE 1 Summary of existing explainable AI (X-AI) methods.

Criterion Types Definitions Examples

Structure
Relates to the complexity of ML models

Intrinsic (Xu et al., 2019;
Holzinger et al., 2022)

Easily interpretable model because of their simple
structure

Linear regression, logistic regression, decision
trees, and k-nearest neighbors

Post hoc (Madsen et al., 2022;
Yera et al., 2022)

Complex structure models that attain
interpretability after model training.

Permutation feature importance and neural
networks

Transparency in design
Relates to the design of a method

Whitebox (Levashenko et al.,
2016; Garibaldi, 2019;
Loyola-González, 2019; Zaitseva
et al., 2020)

By design, Whitebox approach is more transparent
and explainable.

Simple decision trees, rule-based models,
patterns-based models, linear regression models,
bayesian networks, fuzzy cognitive maps, and
those following fuzzy logic such as fuzzy decision
trees and fuzzy rules-based models

Blackbox (Robnik-Šikonja and
Kononenko, 2008;
Loyola-González, 2019)

Blackbox approach contains complex
mathematical functions like support-vector
machine and neuronal networks. Generally, they
are hard to understand and explain.

Deep neural networks and random forests

Greybox (Pintelas et al., 2020) Such approaches have features of both Blackbox
and Whitebox approaches.

Local Interpretable Model-agnostic Explanations
(LIME) and Interpretable Mimic Learning

Scope
Relates to the scope of the interpretability

Local (Ribeiro et al., 2016;
Lundberg and Lee, 2017)

The scope of interpretability is limited to
individual predictions or a small portion of the
model prediction space.

Local Interpretable Model-agnostic Explanations
(LIME), SHapley Additive exPlanations (SHAP),
and Individual Conditional Expectation (ICE)

Global (Lundberg et al., 2020;
Machlev et al., 2022)

Global methods cover the entire model prediction
space.

Partial Dependence Plot (PDP) and Accumulated
Local Effects

Agnosticity
Classification based on the level of
agnostic-ness

Model agnostic (Machlev et al.,
2022)

Their X-AI algorithm can be applied to any kind of
ML model. They do not depend on model
internals.

SHAP and LIME

Model specific (Belle and
Papantonis, 2021)

Methods are designed for specific types of ML
model.

Neural network methods

Supervision
Classification based on the degree of
supervision

Supervised (Ancona et al., 2019) Entail an active manipulation of input data. LIME, SHAP, integrated gradients, smoothgrad,
layer-wise relevance propagation, and perturbation
methods

Unsupervised (Lei et al., 2016;
Esmaeili et al., 2019)

Researchers assume no explicit annotations about
input data.

Rationale and disentanglement representations

Explanation or data type
Additional methods based on type of
explanation or data

Explanation type (Belle and
Papantonis, 2021; Holzinger
et al., 2022)

Explanation output differs in each method. For
instance, feature summary return feature statistics.

Feature summary, surrogate models, extract
concepts, decision rules, correlation plots, and
other visualizations

Data type (Welling et al., 2016;
Hendricks et al., 2018; Pawelczyk
et al., 2020)

Classification based on the data type a method can
handle.

Graph, image, text/speech, and tabular

to explain decisions and predictions—like deep neural networks
mislabeling the image of a lion as a library (Szegedy et al., 2014) or AI
failing to predict a husky on the snow (Ribeiro et al., 2016), or even AI
taking a horse for a frog (Su et al., 2019)—the resulting explanation
may vary (Amparore et al., 2021).

The variability and heterogeneity in explanations stem largely
from model dynamics, algorithms, and internal mechanics. Beyond
these issues, X-AI methods suffer from external validity issues and
cannot handle all sorts of data and environments. The validity
issue is even more severe when the methods employed to the same
data generate different predictions, as mentioned in the example of
matchstick prediction (Bansal et al., 2020). Such external validity
issues will be a matter of deep concern with the increasing application
of AI to human ML systems in healthcare, education, justice, defense,
and security.

A recent article comprehensively outlines the multidimensional
challenges faced by X-AI methods (de Bruijn et al., 2022). Some
of these issues pertain to data and decision dynamics (varying data
and decisions lead to different explanations) and dependency on
context (since outcomes may differ for various individuals, general

explanations for algorithms may not work). Other challenges speak
to the “wicked” nature of the problems (the poorly designed nature
of the problems requires multiple answers versus a single answer that
current algorithms furnish) and the contested nature of explanations
due to biasedness, among other concerns.

As neuro-robots get deployed in social settings and encounter
obstacles and humans, they will most likely make mistakes in their
activities, such as walking (neuro-robotic navigation). To reiterate,
the explainability of neuro-robots’ behavior is needed, and even
more so from a safety perspective, as we do not want humans
to get scared or hurt by neuro-robots. When applied to neuro-
robots, some X-AI methods, such as LIME, SHAP, data type-
based methods, and neural networks, can offer initial insights
into neuro-robotic behavior just like they provided explanations in
traditional robotics. Earlier work on robots produced verbal and
natural language explanations (data-based explanations) of robotic
navigation (Perera et al., 2016; Rosenthal et al., 2016; Stein, 2021).
Such works deployed algorithms that translated sensor data into
natural language. While these algorithms are interpretable, the entire
narration of trajectory may not be appealing. Unlike natural language
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explanation, Halilovic and Lindner (2022) offer visual explanations
using LIME (taking image data as input) to explain deviations
from desired navigation path. While we know how LIME explains
predictions of a Blackbox model by learning an interpretable model
around a deviation (Halilovic and Lindner, 2022), LIME takes more
time to generate an explanation (Halilovic and Lindner, 2022) as
well as performs better when generating an explanation for a single
prediction (Banerjee, 2020). Thus, LIME perhaps cannot be used
solely to generate multiple and varying explanations needed from
neuro-robots as they operate in fast-evolving complex environments.
LIME, however, may be used down the road effectively once its
runtime is improved. Also, this improved version of LIME may
be used in conjunction with other methods, such as the Partial
Dependence Plot (PDP), to generate an explanation of the entire
model in neuro-robotics.

Other researchers use neural networks (specifically, deep
reinforcement learning) (He et al., 2021) or fuzzy algorithms
(Bautista-Montesano et al., 2020) to explain robotic navigation. But,
again, while these are great methods, the former explanation is too
complex for non-specialists, whereas the latter explanation makes a
strong assumption about the underlying algorithm.

Relatedly, many researchers have used model-agnostic X-AI
methods to enhance expert understanding of deep learning Blackbox
models and their outputs generated in traditional robots (Raman
and Kress-Gazit, 2013; Adadi and Berrada, 2018; Rai, 2020); other
studies used methods that focused only on classification-based tasks
(Ribeiro et al., 2016; Wu et al., 2017), including the application
of saliency map by Huber et al. to improve the interpretation of
image classification tasks (Huber et al., 2022) and feature extraction
to determine the effect of an individual feature on utility function
(Elizalde et al., 2008). As opposed to these studies and to account
for sequential decision-making that robots perform, researchers
employed a framework for generating linguistic explanations from
robot’s state sequences using an encoder-decoder model (Ehsan et al.,
2019; Das et al., 2021). Whereas the former research studies generate
primarily expert-centric explanations, the latter user-centric studies
seem more promising in the context of neuro-robots as they account
for the complexity of sequential decision-making carried out by such
robots while interacting with users and objects in the environment.

In real life, neuro-robots will encounter multiple challenges and
obstacles. Aside from deviations in navigation and task classification
in static settings, there will be other collapses and breakdowns in
dynamic environments. Also, the neuro-robots will be challenged to
generate meaningful explanations using real-time data and recall a
memory from past experiences. In addition, they will face ethical
dilemmas. While the present trajectory of X-AI methods holds great
promise for the design of transparent robots in labs, they are not
yet powerful enough to fully incorporate explanations for unexpected
events, instances, and failures.

The issues, from unstable to complex explanations and those
around data and decision dynamics mentioned in this section, limit
the explanatory power of neuro-robots, particularly those deployed
in social settings facing unexpected hiccups and situations. As
these embodied neuro-robots employ AI to sense and act on their
environment, and AI’s outcome explanation is deficient, neuro-
robots will lack the explanation required by users, engineers, and
policymakers alike. Thus, to make neuro-robots more explainable,
one way researchers can accomplish this goal is to develop a robust
neural framework that explains the AI outcome to satisfaction, as
suggested by the authors in their recent paper (Khan et al., 2022).

In its design, such a neural framework will be inspired by
biological mnemonic function to produce an explanation. In
biological brains, the members of a cell assembly, by their act of firing
action potentials together, are involved in memory formation (i.e., an
engram)—this essentially constitutes an explanation. The active cells
hence identified are then deactivated optogenetically to reversibly
control the recall of the specific memory (Liu et al., 2012). This
mnemonic function is considered a particular instance of decision-
making since each decision requires a corresponding memory. The
neural framework mentioned here, while still needing to be tested,
nevertheless provides a way forward for offering a fuller explanation.
If successful, neuro-robots may also deploy this framework to offer
explanations in the events they are required to give one.

4. Toward explainable neuro-robots

Traditional AI systems are evolving exponentially. Some of these
systems engage in self-teaching modes that permit them to surpass
human capabilities at games like chess and Go (Silver et al., 2016,
2017) and, most recently, Diplomacy (Buch et al., 2022; Financial
Times, 2022; Meta Fundamental AI Research Diplomacy Team
(FAIR) et al., 2022). Moreover, neuromorphic architectures are also
undergoing further advances (DeBole et al., 2019; Olds, 2019). New
chips, such as Intel’s Loihi, are being developed to support embedded
neuromorphic applications (Davies et al., 2018). In addition to
running neural networks on specialized hardware, very low-power
neuromorphic vision and auditory sensors are being developed (Liu
and Delbruck, 2010; Stewart et al., 2016). Similar to biology, these
sensors and processors only respond to change or salient events.
When they do respond, it is with a train of precisely timed spikes,
like a neurobiological system. The event-driven nature leads to ideal
power efficiency for autonomous systems and robots.

With all these new advances and developments, neuro-robots will
further mature in design and function. However, increasing instances
of robotic failures require neuro-robots to furnish an explanation that
uses real-time data and previous experiences. Moreover, since neuro-
robots rely massively on human-robot interactions, the explanation
would have to be trustworthy and offered in a friendly manner.
Finally, as outlined earlier, legislative pressures in Europe and
America alongside IEEE guidelines make the design and use of
explainable neuro-robots and the emerging explanation even more
urgent. Thus, researchers designing neuro-robots must ensure that
robotic design and deployment integrate explanatory capability as
a core principle.

Accomplishing the next steps will not be easy. The ecosystem
of jurisdictions that might adopt appropriate policies to accomplish
the above is incredibly diverse, ranging from local to transnational
entities and even including Outer Space. Further, there is no
current consensus within the neuro-robotics community. Finally,
as we have outlined above, the ontology of the field itself is
complex. Nevertheless, there are models that might be useful to
consider. One of those involves the regulation of pharmaceuticals
and medical devices across international boundaries. As with neuro-
robotics, the potential to do harm is significant. Additionally, there
are important external Incentives for the coordination of policies
(e.g., COVID-19 vaccines). Therefore, we recommend creating an
international body under the auspices of the United Nations to
coordinate a “policy bridge” between researchers and international
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stakeholders analogous to the World Health Organization (WHO).
Such an organization could both catalyze the development of uniform
standards and language ontologies relevant to the problem and
draft model regulations that jurisdictions might adopt either in
whole or in part.

In conclusion, we have reviewed the current state of play in
the field of X-AI within the context of neuro-robotics. Because of
the significant consequence of robotic failure on human (and even
planetary) welfare, it is imperative to move forward, notwithstanding
the challenges and complexity of the field.
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