
fnbot-17-1093718 February 9, 2023 Time: 15:1 # 1

TYPE Original Research
PUBLISHED 15 February 2023
DOI 10.3389/fnbot.2023.1093718

OPEN ACCESS

EDITED BY

Chen Qiao,
Xi’an Jiaotong University, China

REVIEWED BY

Lourdes De Martínez,
Panamerican University Benito Juárez, Mexico
Miao Li,
Swiss Federal Institute of Technology Lausanne,
Switzerland
Peng Wang,
Institute of Automation (CAS), China
Gongfa Li,
Wuhan University of Science and Technology,
China

*CORRESPONDENCE

Yanhe Zhu
yhzhu@hit.edu.cn

RECEIVED 09 November 2022
ACCEPTED 30 January 2023
PUBLISHED 15 February 2023

CITATION

Zhao S, Zheng T, Sui D, Zhao J and Zhu Y
(2023) Reinforcement learning based variable
damping control of wearable robotic limbs for
maintaining astronaut pose during
extravehicular activity.
Front. Neurorobot. 17:1093718.
doi: 10.3389/fnbot.2023.1093718

COPYRIGHT

© 2023 Zhao, Zheng, Sui, Zhao and Zhu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Reinforcement learning based
variable damping control of
wearable robotic limbs for
maintaining astronaut pose during
extravehicular activity
Sikai Zhao, Tianjiao Zheng, Dongbao Sui, Jie Zhao and Yanhe Zhu*

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

As astronauts perform on-orbit servicing of extravehicular activity (EVA) without

the help of the space station’s robotic arms, it will be rather difficult and labor-

consuming to maintain the appropriate position in case of impact. In order to solve

this problem, we propose the development of a wearable robotic limb system for

astronaut assistance and a variable damping control method for maintaining the

astronaut’s position. The requirements of the astronaut’s impact-resisting ability

during EVA were analyzed, including the capabilities of deviation resistance, fast

return, oscillation resistance, and accurate return. To meet these needs, the system

of the astronaut with robotic limbs was modeled and simplified. In combination with

this simplified model and a reinforcement learning algorithm, a variable damping

controller for the end of the robotic limb was obtained, which can regulate the

dynamic performance of the robot end to resist oscillation after impact. A weightless

simulation environment for the astronaut with robotic limbs was constructed.

The simulation results demonstrate that the proposed method can meet the

recommended requirements for maintaining an astronaut’s position during EVA. No

matter how the damping coefficient was set, the fixed damping control method failed

to meet all four requirements at the same time. In comparison to the fixed damping

control method, the variable damping controller proposed in this paper fully satisfied

all the impact-resisting requirements by itself. It could prevent excessive deviation

from the original position and was able to achieve a fast return to the starting point.

The maximum deviation displacement was reduced by 39.3% and the recovery time

was cut by 17.7%. Besides, it also had the ability to prevent reciprocating oscillation

and return to the original position accurately.

KEYWORDS

extravehicular activity, reinforcement learning, wearable robotic limbs, variable damping
control, modular robot

1. Introduction

With the progress of robot technology and artificial intelligence, space exploration has
ushered in rapid development (Chien and Wagstaff, 2017; Jacobstein et al., 2017; Lester et al.,
2017). The world’s space powers began to carry out manned space activities around the
International Space Station (ISS) (Flores-Abad et al., 2014; Jiang et al., 2017; Ruttley et al.,
2017). In addition, commercial space tourism has gradually become a new highlight of manned
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space development in recent years. Some private manned space
companies have successfully completed several commercial space
trips (Webber, 2013; Chang, 2015). It can be established that
manned space engineering will play an increasingly important role
in space exploration and on-orbit servicing. Therefore, there will be
higher requirements for astronauts’ operations in the outer space
environment.

Extravehicular activity (EVA) refers to when astronauts wear
spacesuits to perform tasks outside the spacecraft, which is the key
technology of manned space engineering. The environment of EVA is
extreme, work intensity is high, and the operation process is complex.
These issues greatly restrict the astronaut’s EVA time and success
rate. In recent years, various robot-intelligent technologies have been
applied to assist in the reduction of work intensity and improve
workability (Zhang et al., 2020a; Wang S. et al., 2022). However, they
have not been popularized and applied in the space field. For on-
orbit servicing of EVA, there are two main modes of extravehicular
movement. One is that astronauts move in vast space through the
robotic arm of the space station (Nokleby, 2007; McHenry et al.,
2020). The other is that astronauts climb by themselves with the
help of safety ropes. In the former scenario, astronauts’ lower limbs
are fixed to the robotic arm, which can provide a foot restrictor
and liberate the upper limbs to accomplish tasks. However, there
are some areas where the space station’s robotic manipulator cannot
reach. In these areas, with the lack of a space robotic manipulator,
astronauts will have to move and work by themselves under the
protection of safety ropes. When working in this situation, it is
significantly hard for them to maintain a suitable position when
they suffer some form of impact. In order to maintain stability, they
need to exert force with one or two hands, which not only increases
energy consumption but also greatly limits work efficiency. Thus,
astronauts need additional devices that assist them in resisting impact
and maintaining position during the process of EVA. There is much
research on trajectory planning and control of robotic manipulators
at home and abroad (Zhang et al., 2020b, 2022; Zhao et al., 2022).
However, these large dedicated robots and equipment have high
launch costs and low utilization rates. Several astronaut-assisting
robots have been developed, including humanoid robots (Diftler
et al., 2011; Ackerman, 2019), on-orbit modeling robots (Zykov et al.,
2007; Post et al., 2021), and wearable-assisting robots (Hall, 2013;
Zhao et al., 2021). The primary application purpose of these devices
is to provide astronauts with operation or strength enhancement
assistance for on-orbit servicing. In addition, they are either still in
the conceptual design stage or can only be used inside the cabins of
the ISS. Thus, none of them can provide astronauts with the ability to
withstand external impact. Although some impact-resisting methods
of the space station’s robotic arms have been studied (Su et al., 2020;
Liu et al., 2021; Olivieri et al., 2021; Raina et al., 2021; Wang X.
et al., 2022), they are only used for the robotic arms themselves or on
missions to capture free-flying objects, and not in helping astronauts.
In addition, the main problem is that large space manipulators cannot
be applied to all task scenes.

Wearable robotic limbs can provide a new method for assisting
astronauts in performing tasks, especially those carrying out
extravehicular work alone. The robotic limb can act as an extra limb
of the astronaut and improve the wearer’s abilities of perception and
operation. In this way, it has the potential to reduce the astronaut’s
physical exertion and consumption in extravehicular activities and
improve the success rate of on-orbit servicing tasks. Considering
the safe and comfortable operation requirements of astronauts, the

wearable robotic limb system is expected to have the following impact
resistance capabilities: (1) Deviation resistance: The deviation after
impact cannot be too large. It is very dangerous to deviate too far
from the operating position. In case of an emergency, astronauts
should have the ability to grasp the handrail; (2) Fast return: After
reaching the maximum deviation position, it can quickly return to
the initial position. It is helpful to extend the effective working time
of EVA; (3) Oscillation resistance: After the system quickly restores to
the initial position, it is necessary to prevent reciprocating oscillation
relative to the initial position, which will cause system instability
and physical discomfort; and (4) Accurate return: The system must
be able to return to the original position after impact. Otherwise,
astronauts need to make additional manual adjustments, which
indirectly increases the difficulty and physical exertion of the task.

As far as we know, no similar concepts of robots for assisting
astronauts have been proposed yet. The purpose of this paper
is to propose a variable damping control method based on a
reinforcement learning algorithm for wearable robotic limbs, in
which the virtual damping is trained to be adjustable to meet
the impact resistance requirements proposed above. The method
was verified in a simulation environment, which ensured that the
robotic limb system has the ideal impact-resisting ability. The rest
of the paper is organized as follows: Section 2 introduces the basic
composition of the wearable robotic limbs for astronauts and explains
the variable damping control method based on Reinforcement
Learning; Section 3 presents the simulation results and evaluation;
and Section 4 summarizes the whole work, analyzes the application
limitations, and outlines plans for future work.

2. Materials and methods

2.1. Wearable robotic limb system

Astronauts can work in orbit outside the cabin of the ISS in
two main ways. The first is that the astronaut’s feet are attached to
the end of the space station’s robotic arm. As shown in Figure 1A,
the space station’s robotic arm provides the astronaut with a foot
restrictor, so that the astronaut can maintain the desired position
through the lower limbs. Meanwhile, the upper limbs and hands are
free to perform tasks. The second is that the astronaut is connected to
the working area via a safety rope without using the space station’s
robotic arm. In this case, there is no reliable anchor point such
as the foot restrictor. If the astronaut wants to maintain a proper
working position, one hand is needed to maintain that position,
as shown in Figure 1B. In this situation, it is not suitable for
the astronaut to operate with both hands simultaneously, and the
astronaut cannot perform complex operational tasks that call for two-
handed cooperation. In addition, it will consume considerable energy
and reduce the EVA time.

In view of the above shortcomings, we proposed a wearable
robotic limb system that can be fixed onto the astronaut’s backpack as
additional arms to assist in moving and operating outside the ISS. The
system is named AstroLimbs (Zhao et al., 2021). Figures 1C,D show
the rendered views of the front and back sides of the AstroLimbs,
respectively. The wearing display of the robotic limb system is shown
in Figure 1E. Based on the modular design concept, each robotic limb
is composed of six identical basic modules connected in series. The
modular design concept is suitable for space engineering, with more
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FIGURE 1

Wearable robotic limbs for astronauts. (A) Performing EVA with the help of the space station’s robotic arm (Mohon, 2014). (B) Performing EVA without the
space station’s robotic arm (Garcia, 2019). (C) The rendered view of the front side of the wearable robotic limbs for astronauts. (D) The rendered view of
the back side of the wearable robotic limbs for astronauts. (E) Wearing display of the robotic limbs for astronauts.

convenient assembly, better interchangeability, and improved fault
tolerance. The end faces of both submodules are equipped with the
connection mechanism. Two basic modular units can be connected
in series via the connection mechanism. Each basic module serves as
a joint of the robotic limb. This means that each robotic limb has six
degrees of freedom. The AstroLimbs can be worn on the astronaut’s
backpack, moving and working with the wearer. It acts as a working
partner for the wearer during EVA, just like another astronaut. As the
outer space environment is almost weightless, the weight and mass of
the robotic system will not be applied to the astronaut.

2.2. Variable damping control

2.2.1. Model building
In order to achieve the robotic limb’s ability to maintain the

astronaut’s posture during EVA, the variable damping control method
based on the Q-learning algorithm was proposed. Prior to the
reinforcement learning training, it was necessary to model and
simplify the astronaut system with the robotic limbs, which could
function faster in the simulation environment, as shown in Figure 2.
While the astronaut works outside the ISS cabin, one robotic limb
holds the handrail to maintain the position in the working area.
Under this condition, the handrail was considered as a fixed end
and the end of the robotic limb was simplified to connect to that
fixed end. The astronaut and the other robotic limb were combined
and simplified into an end-load system, where the second robotic
limb mainly provides auxiliary functions, such as tool delivery and
operational support. As shown in Figure 2, they were reduced to
a green solid ball at the end of the robotic limb. The blue ellipses
represent the links of the robotic limb, and these links are connected
by rotating joints, which are represented by the solid blue points. Each

robotic limb had six degrees of spatial freedom. The fixed end was
equal to the handrail of the ISS. The Cartesian coordinate system,
which is the absolute coordinate system, was attached to the fixed end.
Combined with the forward kinematics of the robotic limb, the end-
load movement information for Cartesian space could be obtained in
real time.

In addition, this model could also be split into two systems.
One was the load system and the other was the robotic limb system
without the load. Based on the model, the variable virtual restoring
force was introduced to control the load for impact resistance
and maintenance of position. In combination with the Q-learning
algorithm, the variable damping controller was formed. The virtual
restoring force was taken as an external force of the robotic limb.
Finally, based on its dynamics, the virtual restoring force could be
transformed into the control torque of each joint. In this way, the
robotic limb could realize its position-maintaining control to help the
astronaut.

2.2.2. Variable damping control for end load
In order to achieve the optimum motion characteristics of the

robotic limb end after impact, the most straightforward method
was to determine the conversion relationship between the motion
characteristics of the joint space and the end Cartesian space. It
was necessary to discover the configuration changes of the limb
in real time and calculate the equivalent moment of each joint
inertia. The calculated quantity of the overall process was too high.
Thus, the variable damping control method based on the virtual
restoring force was introduced. For the load system, it was possible to
obtain its absolute movement information in relation to the Cartesian
space in real time. In this case, the load could be considered as an
unconstrained spatial load that was only controlled by the virtual
restoring force, so as to meet the proposed requirements for impact
resisting. As shown in Figure 3, the virtual restoring force acted on
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FIGURE 2

Simplified model of the astronaut and the robotic limb system.

the mass center of the load, so that the load tended to move back to its
original position. Its value varied in real time, which was related to the
motion state of the load (pt , vt). The mapping function fRL between
the virtual restoring force and the movement status could be achieved
by the Q-learning algorithm.

For the load in weightlessness, in order to reduce the deviation
and bring it back to the original position, a virtual restoring force
based on the spring damping model was proposed. Its virtual
damping coefficient could change adaptively, as shown in Figure 3.
The change between the real-time state of the load and the initial state
was used as the input of the virtual restoring force, and the virtual
restoring force was mainly composed of the virtual spring tension and
damping force, which can be shown as follows:

Fr = K · X (t)+ D (t) · Ẋ (t) (1)

where Fr represents the virtual restoring force, K is the virtual spring
stiffness coefficient, D(t) is the virtual damping coefficient, X(t) is the
displacement relative to the initial position after impact, and Ẋ (t)
is the velocity after impact. When the spatial load was impacted in
any direction, the corresponding state changes occurred in the three-
dimensional space, such as in Status B or C as shown in Figure 3.
The spring damping system was applicable. That is to say, the virtual
restoring force generated was always in a straight line with the
displacement of the load in relation to the initial state.

For the introduced spring damping system, the corresponding
impedance characteristics could be obtained by adjusting the
appropriate stiffness coefficient K and damping coefficient D(t)
according to the desired system characteristics. However, the fixed
stiffness and damping coefficient could not simultaneously satisfy
the overall impact resistance requirements. When the stiffness was
fixed, if the damping coefficient was too small, the load-displacement
was too large. If the damping coefficient was too large, the recovery
speed after impact was too slow. Therefore, the damping coefficient
was particularly critical for maximal deviation and recovery time.

Considering the practical application of wearable robotic limbs, it
was used to hold the handrail of the cabin to stabilize the position
of the astronaut when working in a fixed spot. In this case, it was
hoped that the equivalent system had a relatively large stiffness.
At this time, if the method of variable stiffness was adopted, the
stiffness of the system could be reduced, which was not conducive to
the astronaut maintaining position. Therefore, the variable damping
control method was selected in this paper. For the problem that
the virtual restoring force of the fixed damping method could not
fully meet the impact resistance requirements, the variable damping
controller could change the virtual damping value appropriately
depending on the real-time movement state, so as to meet the impact
resisting requirements in different states.

2.2.3. Reinforcement learning
When it comes to tackling serialized decision-making issues in

unknown contexts, reinforcement learning offers clear advantages.
Q-learning is one of the reinforcement learning algorithms and can
be used to adaptively learn the virtual damping of load movement
in a weightless environment. Therefore, the state of load was divided
based on the designed working environment, and the fundamental
action was planned. Moreover, the reward function in the task-
learning process was proposed.

Reinforcement learning is an overall process that refers to the
agent’s trial, evaluation, and action memory (Clifton and Laber, 2020;
Chen et al., 2022; Cong et al., 2022; Li et al., 2022). The agent’s
learning maps from environment state to action, causing it to reap
the greatest rewards after carrying out a particular action. This
learning process will make the agent perform best under some preset
evaluation rules. The Q-learning algorithm is one of the evaluation
rules for the agent to choose a specific action in the present state,
which is an action-utility function. Q is short for the word quality,
which serves as high-quality feedback for each action and provides
the agent with action memory (Ohnishi et al., 2019; Hutabarat
et al., 2020). The Q-learning algorithm is excellent for model-free

Frontiers in Neurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1093718
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-17-1093718 February 9, 2023 Time: 15:1 # 5

Zhao et al. 10.3389/fnbot.2023.1093718

FIGURE 3

Variable damping control principle for load in weightless space.

autonomous motion planning when the number of states and actions
in the learning process is limited (Clifton and Laber, 2020).

The following equation describes the agent’s corresponding
evaluation value after performing the action each time in a particular
state:

Val = maxaQ (s, a) (2)

Where s denotes the current state, a is the action that can be
taken in the current state, and Val is the evaluated maximum value
corresponding to this action under the circumstances of the current
state s and action a. In light of this value, the agent can determine the
action to execute in this step.

The core of the Q-learning algorithm is the process of constantly
updating the evaluation value Val in Equation 2 based on continuous
trial training:

Q′(s,a)⇐Q(s,a)+λ[R(s,a)+η·maxa′Q(s′,a′)−Q(s,a)] (3)

where R represents the reward value that can be obtained by
executing action a in the current state s, s’ is the new state of the
agent after executing action a, a’ is the possible action in state s’, λ is
the learning efficiency (λ = 0.01), and η serves as the discount factor
(η = 0.9).

First, the training was conducted in a single dimension, which
simplified the load movement process. Based on the position and
velocity information in relation to the Cartesian space, the motion
state of the load determined the state of the Q-learning. The following
equation provides the definition of the state value:

State=f (P,Flag_v) (4)

where State represents the load motion state, P is the displacement
compared to its initial position, Flag_v denotes the velocity direction

identification value depending on both the displacement and velocity
direction, which can be expressed as the following Equation 5:

Flag_v=

 1 EP · EV ≥ 0
0 EP · EV < 0

(5)

where EP is the real-time displacement vector, EV is the real-time
speed vector.

In order to improve the efficiency of reinforcement learning,
the displacement range was discretized. To guarantee applicability,
displacement values outside the valid range were incorporated into
adjacent state intervals. And the corresponding relationship between
the acquired state and the movement state of the load is shown in
Equation 6:

State=
(⌈
P/d

⌉
+sint

)
+n·Flag_ν

(6)

where d is the interval step size for displacement range, sint is the
state offset value designed to count state values from zero, and n
represents the total number of states regardless of velocity direction.⌈
P/d⌉ stands for the result of rounding up the ratio of P to d, which

is the smallest integer greater than the ratio.
As the load had no gravity in a weightless environment, the

control model could be equivalent to a spring-damping model. The
force generated by the virtual spring and damping directly acted on
the mass center of the load, so the virtual force generated by the
real-time virtual spring tension and damping force after impact could
be obtained. Thus, the load system’s stiffness-damping characteristics
were simulated to achieve optimal motion control. According to the
simplified model, the virtual stiffness was designed to be a fixed value,
so that the virtual restoring force of the load was proportional to its
displacement value.

To avoid excessive displacement, oscillation, and failure to return
to its original position after impact, it was necessary to change the
virtual damping according to different states. Using the same discrete
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design idea as the motion state, the maximum virtual damping value
was designed to be 600 and the interval step size was 150. Thus, the
damping value could be used as an optional action in the Q-learning
process in five cases, as shown in Equation 7:

Action={0,150,300,450,600} (7)

During the training process, the agent received a reward for
each episode in which they interacted with the environment. For
the process that the load suffered an impact in weightless space,
it deviated from the original position. Under the action of the
virtue spring tension and damping force, it could return to the
original position after reaching the maximum deviation. According
to the desired impact resistance requirements, the farther the load
deviated from the initial position, the weaker its ability was to prevent
oscillation, and fewer rewards were given. If the load got closer to the
initial position, it obtained more rewards. Therefore, it made sense to
take the negative value of the deviation distance as the reward, which
can be expressed by the following equation:

R=−dis=−
√

x2
t+y

2
t+z

2
t

(8)

where R is the reward value received for a particular action, dis is the
distance value in relation to the starting position, and xt , yt , and zt
are the components of the real-time position.

In the training process, when the robot was in the initial position,
the reward R obtained by the agent was zero. As the reward value R
was designed to be non-positive, it meant that the reward value of the
agent was the maximum in the initial state. After suffering an impact,
the robot generated a position deviation. The reward value decreased
as the deviation increased. It meant that the agent was punished.

2.2.4. Application on robotic limbs
The impact force applied on an astronaut outside the space

station is three-dimensional and can come from any direction. As
a result, the displacement and velocity directions of the load do
not lie in a uniform line with respect to its initial state. Then the
one-dimensional variable damping control method based on the
Q-learning algorithm could not completely solve the issue. As the
displacement and velocity directions were not in a straight line, a
velocity vector was generated in the direction perpendicular to the
displacement vector. The system eventually reached equilibrium as
a result of the virtual restoring force acting in the displacement
direction. The load then moved uniformly around the initial position,
and the virtual restoring force provided the load with centripetal
acceleration. However, the load was not able to return to the
initial position.

In order to solve the above issue, a speed-decoupling control
method based on one-dimensional control was purposed. The
improved control principle is shown in Figure 4. The overall concept
of this method was to carry out adaptive control in different
dimensions through orthogonal decoupling of velocity. In Figure 4,
the gray sphere represents the initial state of the load, and the green
sphere represents the real-time movement status after impact. The
line between the two states is the displacement direction, which was
recorded as the Y direction. The positive Y direction pointed to the
direction away from the initial position. The direction perpendicular
to the Y direction was marked as the X direction. The selection of
positive X direction is shown in Figure 4, which made no difference
to the outcome. Since the motion state of the load after impact

changed in real time, the X and Y directions also varied continuously.
However, the Y direction could be uniquely determined depending
on the displacement direction. When the Y direction was fixed, the
X direction then became uniquely determined. The two directions
could be determined at any time, even though they were constantly
varying in real time. These two real-time directions were the base
for orthogonal decoupling velocity. It can be seen from Figure 4
that the load speed V was orthogonally decoupled along the X
and Y directions to obtain the velocity component Vx and Vy,
respectively. The Y direction was the key direction for the load to
return to the original position after suffering an impact. It was hoped
that the load could resist impact in this direction. Therefore, the
variable damping controller based on the reinforcement learning
method was adopted in the Y direction. When Vx became zero, the
issue normally transformed into the fundamental problem of impact
resisting control for a single direction. Therefore, the control method
in this direction was relatively simple, that is to set a large fixed
damping coefficient. The velocity in this direction could be quickly
reduced to zero as soon as possible.

For the unconstrained load model, the real-time restoring force
was virtual and this hypothetical force in the simulation environment
had no actual force application object. The load model and the robotic
limb model were combined using this virtual force as a bridge. In
order to ensure the robotic limb end had the same impact resistance
performance as the load model, the force application object of the
virtual restoring force should be the robotic limb itself. Hence, the
problem was changed into the end force control issue of the series
manipulator with six degrees of freedom. In combination with the
dynamics of the robotic limb, the joint control torque for the real-
time virtual restoring force could be obtained, so as to realize the
impact resistance ability of the end load.

The magnitude of the virtual restoring force used to control the
end load was in relation to the real-time motion state of the end load,
as shown in Equation 9:

Fr=fRL(p0,v0,pt,vt) (9)

where Fr is the virtual restoring force acting on the rigid end of the
robotic limb, p0 is the initial displacement, v0 is the initial velocity,
pt is the real-time displacement after impact, and vt is the real-time
velocity after impact.

Finally, the virtual restoring force of the robotic limb end was
brought into the dynamic equation, so that the joint space control
torque could be obtained and the impact-resisting control of the
robotic limb end could be realized.

A framework of the variable damping control method to further
explain the control method is shown in Figure 5. The combined
system of an astronaut with a robot was modeled and simplified.
With the help of system dynamics and coordinate transformation, the
controller enabled the robotic limb end to resist impact. According
to Figure 5, Ft stands for the impact applied on the system. Fr is
the virtual restoring force originating from the variable damping
controller based on the reinforcement learning method. τ is a six-
dimensional vector, which stands for the torque of each joint. θ, θ̇, θ̈

is the motion information of each joint. pt and vt are the displacement
and velocity of the robotic limb end, respectively.

Considering the practical application of wearable robotic limbs,
they were used to hold the handrail of the cabins to stabilize the
position of the astronaut when working in a fixed spot. In this case,
it was hoped that the equivalent system of the robotic limbs and
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FIGURE 4

Schematic diagram of three-dimensional impact resistance of the load.

FIGURE 5

Framework of the variable-damping control method.

FIGURE 6

Reward value of each episode for the agent.

the astronaut had a relatively significant stiffness. At this time, if
the method of variable stiffness was adopted, the stiffness of the
system would be reduced, which would not be conducive to the
astronaut maintaining position. Therefore, the variable damping
control method was selected in this paper.

The core of the variable damping controller was that there was
always a damping term in the system, and the damping coefficient
could be appropriately changed according to the motion effect
produced by the external impact. In addition, as the system deviated
from its original position, the damping coefficient increased to
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FIGURE 7

Comparison of load recovery trajectories under different damping values after impact.

FIGURE 8

Three-dimensional displacement variance of the load subjected to three-dimensional impact in different damping cases. (A) Under damping case. (B)
Critical damping case. (C) Over damping case. (D) Variable damping case based on Q-learning algorithm.
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FIGURE 9

Comparison of spatial movement trajectories in different damping cases.

FIGURE 10

Comparison of motion trajectories of the robotic end in different damping cases.
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FIGURE 11

Three-dimensional displacement changes of the robotic end subjected to three-dimensional impact. (A) Under damping case. (B) Critical damping case.
(C) Over damping case. (D) Variable damping case based on Q-learning algorithm.

prevent the system from oscillating. This paper focused on the impact
force during a short period and recognized that the system was not
subjected to a continuous force. When the damping term of the
system persisted, the system eventually became stable.

3. Results

3.1. Reinforcement learning results

A simulation environment of the unconstrained load was built
using the program Virtual Reality Educational Pathfinders (VREP)
(Rohmer et al., 2013). The gravity acceleration in the vertical Z
direction was set to zero to simulate the outer space environment.
Taking the absolute coordinate system of the simulation environment
as the reference coordinate system of the load, the real-time
movement state could be obtained directly. In this simulation, the
load mass was set to 64 kg, the impact force was set to 100N, and its
duration time was 500 ms. The force was set to be along the positive
direction of the Y axis, which acted on the load centroid. The training
time for reinforcement learning was designed at 2.5 s so that the load
could complete the whole process. The initial moment of the load was
in a static state, then it moved in response to an external impact. The
corresponding motion state was recorded in real time to obtain the
current training state. The next action was selected according to the
present state. The agent received a reward according to Equation 8
after each step. The total reward accumulated was recorded in one
episode. The whole process was set at 3,000 training times.

The accumulated training reward of each episode is shown in
Figure 6. The abscissa is the episode number, and the ordinate
represents the total reward value obtained in each episode. According
to Equation 8, the reward mechanism adopts a non-positive value
so the total reward will be negative. Since the goal of reinforcement
learning was to find the optimal strategy to maximize the cumulative
reward value, the training performance improved as the cumulative
reward value approached zero. According to Figure 6, it can be
seen that the agent was an inexperienced individual during the first
750 training episodes. To learn the virtual restoring force control’s
damping coefficient and gain more experience, constant trial and
error was required. Although the cumulative reward of each episode
at this stage fluctuated significantly, it still showed an increasing
trend in general. It could be proved that the agent gained some
experience in training and the results moved in the right direction.
After 750 episodes, the robot gradually learned the task target and the
cumulative reward fluctuated slightly. Since the robot action selection
strategy adopted the ε-greedy strategy, it enabled the agent with a
certain degree of exploration ability. In this case, although the robot
learned the action sequence leading to the task target, it still chose
to explore a new action sequence with a certain small probability.
It converged in the later stage of training and the cumulative
reward value fluctuated slightly, which made no difference in the
convergence of the whole training process.

The variable-damping controller based on reinforcement
learning was tested and the results could be illustrated by the
trajectory of the load after impact. The results were compared with
fixed damping cases, as shown in Figure 7. The impact force was
set as 100N and the duration time was set at 500ms. The stiffness
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FIGURE 12

Distance from the initial point in different damping cases.

FIGURE 13

Comparisons of maximum displacement and recovery time for different experimental groups. (A) Comparison of maximum displacement.
(B) Comparison of recovery time.

coefficient K was set at 500, and the fixed damping coefficient D was
set at 100, 200, 290, 400, and 600, respectively. That is to say, there
were five experiment groups to compare with the reinforcement
learning result. As shown in Figure 7, when D was 290 as shown by
the green solid line, the maximum displacement was 0.11 m and it
could return to the initial position within 2.2 s. This value could be
seen as the critical virtual damping of the load system. When D was
100 or 200, the system was in an underdamped state. It was in the
overdamped state when D was 400 or 600. In the underdamped state,
taking D = 100 as an example, shown by the light blue dotted line,
the maximum displacement was 0.18 m, which was 0.07 m greater
than the maximum displacement of critical damping. It could return
to the initial position within 1.5 s. However, the load still had speed
and failed to stop. It moved to the reverse maximum position and
then moved back. In this way, the oscillation in relation to the initial
position occurred repeatedly. Furthermore, it was unable to return
to the initial position or stop within 2.5 s. When the load was in the
overdamping state, taking D = 600 as an example, shown by the black
dotted line, the maximum displacement after impact was 0.065 m,
which was less than the maximum displacement of critical damping

by 0.045 m and far less than the maximum displacement of under
damping by 0.115 m. The load recovered very slowly because of the
excessive damping. It moved towards the initial position during the
recovery phase, but could not stop at the initial point within the
specified time. There was still a position deviation of 0.015 m at 2.5 s.

The trajectory generated by the reinforcement learning algorithm
is shown by the red solid line. The portion of the trajectory where the
load started to deviate from its initial position after impact completely
coincided with the overdamping case (D = 600), which indicates that
the maximum damping was selected in the early stage to minimize
displacement. When the impact weared off, the load began to return
to its initial position after reaching maximum displacement under
the virtual restoring force. For this process, the damping coefficient
of reinforcement learning first decreased and then rose, so that the
load could move towards the initial position quickly and try to stop
at the initial point without overshooting. It can be seen from the
red solid line that the load returned to the initial position within
1.7 s and finally remained stable, indicating the rapidity, stability,
and recoverability of impact resistance. The variable damping control
method took advantage of the small displacement deviation of the
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large damping case and the fast return of the small damping case.
Compared with the critical damping case (D = 290) with better
control effect in fixed damping, the maximum displacement of the
reinforcement learning method reduced by 40.9% and the time to
return to the original position shortened by 22.7%. Therefore, the
variable damping control method met the requirements for impact
resistance and pose maintenance.

3.2. Variable damping control results of
end load

In order to evaluate the training results of reinforcement
learning and solve the impact resistance problem subjected to three-
dimensional impact, relative tests were carried out. According to
Figure 4, the variable damping control method based on Q-learning
was adopted for the dimension along the displacement direction,
recorded as controller Y. The fixed damping control method was
adopted for the dimension in vertical to displacement direction,
recorded as controllerX. Based on the orthogonal decoupling method
for three-dimensional impact, four simulation experiments were
designed. In these groups, the damping factor in the direction of
vertical displacement X was set to a fixed value (Dx = 600), and
the stiffness coefficient along the direction of displacement Y was
set to 500. The damping coefficients were selected depending on
the underdamping case, critical damping case, overdamping case,
and variable-damping case. The corresponding values were recorded
as 100, 290, 600, and Q-learning. The damping coefficient of the
Q-learning method was variable. In these experiments, the velocity
and displacement were not in the same straight line after the three-
dimensional impact. Three components of the impact along YZX
directions were continuously applied to the load within the first 1.5s.
Each magnitude of the impact force was set at 100N and the duration
time was 500ms. The results of different controllers were compared
and analyzed.

Figure 8 indicates the displacement variance in XYZ directions
after a three-dimensional impact. The solid red, blue, and green
lines represent the trajectory changes in YZX directions, respectively.
Taking Figure 8A as an example, only after the impact force
was exerted in the appropriate direction did the corresponding
displacement occur. At the starting time, the impact force was applied
in the Y direction and the corresponding solid red line rose. The
impact force in the Y direction disappeared after 0.5 s. At the
time of 0.5 s, the impact force in the Z direction was exerted and
disappeared after 0.5 s. The blue solid line kept rising. Similarly,
the impact force in the X direction was applied during 1.0–1.5s,
and the green solid line began to creep up. Comparing Figures 8A–
D, it can be seen that the displacement change in the Y direction
was the largest, of 0.18, 0.11, 0.065, and 0.065 m, respectively. They
were consistent with the displacement change of the load after the
unidirectional impact. The deviation from the initial position of the
variable damping method after suffering an impact was the smallest.
Comparing the X and Z directions, when in underdamping case
(D = 100), there was an oscillation in the X direction. When in
overdamping case (D = 600), it failed to return to the initial position
in both X and Z directions within 3.0 s. When in the critical damping
situation (D = 290), it took 3.0 s to return to the initial position.
When in the variable damping case (Q-learning), it returned to the
starting point within 2.3 s. The variable damping case took the least
time to return.

The space motion trajectories generated by four experimental
groups were compared, and the results are illustrated in Figure 9.
Point O denotes the initial position of the load. The green straight
line with an arrow represents the XYZ directions. The movement
trajectories of underdamping, critical damping, overdamping, and
variable damping control method are represented by green, yellow,
blue, and red solid lines, respectively. It can be seen that the load
was on point O at the initial time, and its motion trajectory was
an irregular curve in space. From the perspective of Figure 9, the
motion direction of the load was basically clockwise, according to the
green arrows of the curve. The load first moved along the direction of
increasing Y, then turned to the direction of increasing Z. After that
the load moved to the direction of increasing X. Finally, it moveD
back towards the origin point.

For each of the four motion trajectories, the maximum deviation
values in relation to the initial position during the whole process was
obtained. Taking this maximum displacement as the radius and the
initial position as the center point of a sphere, the spheres with the
maximal displacement under different controllers could be obtained.
The maximal displacement spheres of the four groups are shown
as the transparent surface, respectively, in Figure 9. The colors of
these spheres are the same as their motion trajectories. For better
comparison, only one-eighth of the maximal displacement sphere
for the main motion space is shown. Comparing these transparent-
colored surfaces, it could be observed that the smaller the damping
factor was selected, the larger the sphere was. The other three groups
of maximal displacement spheres were wrapped by the sphere (green
transparent sphere) with the underdamping case (D = 100). The
spheres of the overdamping case (D = 600) and variable damping case
(Q-learning) almost coincided.

For the motion on the underdamping condition (D = 600), it
could not stop immediately when the load returned to the initial
position, according to its motion trajectory formed by the green solid
line. However, it continued to move in the opposite direction through
the origin for a certain distance and then returned. It resulted in
oscillation in relation to the initial position. This corresponds to
the part of the green solid line formed before the original point O.
Combining the displacement curves in three directions in Figure 8A
further supports the existence of oscillation.

For the two conditions of overdamping (D = 600) and variable
damping (Q-learning), according to Figures 8C, D, the change
magnitude and trend of the load-displacement in three directions of
XYZ within 1.5s were basically the same. However, the load returned
to its original position faster on the condition of variable damping. It
could quickly return to the initial motion state within 2.3s and remain
stable. In contrast, on the condition of overdamping, the load could
not even return to the initial point within 3.0s. In terms of fast return,
the performance with fixed large damping was not ideal.

The maximal displacement of load and the time taken to return
to the original state after three-dimensional impact on four cases
were comprehensively compared. The maximum displacement can
serve as a good indicator of impact resistance stability. The impact
resistance and stability will be greater and better as this index’s
value decreases. The time taken to recover to the initial state can
be a good indicator of oscillation resistance. The less time required,
the more quickly it will return to the initial state and the stronger
its resilience will be. The maximal displacement on the variable
damping condition (Q-learning) was 0.089m, which was basically
consistent with the maximal displacement on the overdamping
condition (D = 600), which was less than the maximal displacement
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of 0.18 m and 0.11m in the underdamping case (D = 100) and
critical damping (D = 290) case. The values reduced by 50.6% and
19.1%, respectively, compared to the underdamping and critical
damping cases. The performance of the variable damping controller
was better. Moreover, the time taken to restore to the initial state
under the variable damping condition (Q-learning) was 2.3 s, which
was the least time consumed in the four groups. It was less than
the counterparts on the critical damping condition (D = 290) and
the overdamping condition (D = 600) with 3.1 and 5.2 s, which
reduced by 25.8% and 55.8%. On the condition of underdamping
(D = 100), the load could not return to its original position or remain
stable after impact. In this case, its recovery performance was the
worst. Therefore, according to the index comparison of the time
taken to return to the initial state, the variable damping controller
performed better in terms of a fast return. Based on the comparison
results, it can be seen that the system showed the best stability,
rapidity, and accuracy after suffering the impact under the variable
damping method based on Q-learning, which verifies the feasibility
and superiority of this method in impact resistance and position
maintenance.

3.3. Variable damping control results of
the robotic limbs

The simulation tests for the motion performance of the impact-
affected end of the load were carried out in combination with the
variable damping method and the dynamics of the robotic limb.
The load was the same as in the above tests and connected to the
robotic limb’s end to form a system of manipulating the load. The
load at the end of the robotic limb was subjected to external impact.
The force acted on the load centroid, whose components in the
XYZ axes were designed to be 30, 20, and 10 N. The duration time
was set at 300 ms. Based on the simulation conditions, the motion
performances of the robotic limb’s end under four different damping
controllers were compared. The experimental groups included three
fixed damping cases (D = 100, 290, and 600) and one variable
damping test based on the Q-learning algorithm. The four motion
trajectories and the projections in the XYZ directions of the end
load with respect to its initial position after impact are shown in
Figures 10, 11.

The trajectories corresponding to the four simulation conditions
were colored green, yellow, blue, and red. The origin O of the
coordinate system in the figure represents the initial position of the
end load, and the green straight lines with arrows represent the XYZ
directions. They were consistent with the directions of the spatial
absolute coordinate system. As shown in Figure 10, the end load
started to move in the impact direction of the green arrows after
the external impact force. Under the action of the restoring force,
it moved toward the initial position after reaching the maximum
displacement. Due to the underdamping case, the end load did not
directly stop at the initial position. However, it moved past the initial
position first and then returned, resulting in oscillation relative to the
initial position. Its movement sequence is shown as the serial number
from 1 to 5 in Figure 10. Yet on the other three conditions, the end
load did not oscillate when receiving the impact force.

The maximal displacement of the end load under different
conditions could be obtained in the same way as in section 3.2.
The envelope surface of the maximum displacement of the end load

is depicted in Figure 9 as the transparent surface. The maximal
displacement in the underdamping case (D = 100) was 0.042 m,
which was the largest. The counterpart in the variable damping case
(Q-learning) was 0.015 m and it was the smallest. By contrast, the
maximal displacement in the variable damping case was reduced by
64.3%. As shown in Figure 11, for the variable damping method, the
load could restore to the initial state faster without oscillation, in a
time of 1.65 s. However, for the condition of overdamping, the end
load could not return to the initial position within 1.65s and only
moved to point A. At this time, the distance between points O and
A was 0.006 m, accounting for 40.0% of the maximal displacement
in the whole process. Although the maximal displacement of the
end load for the overdamping test was the least, its ability to
return to the starting position was not strong. Compared with the
underdamping and overdamping cases, the maximal displacement
value and recovery time results of the critical damping case fell
somewhere in between. For the case of underdamping, oscillation
occurred and the load could not return to the initial position within
5 s, which was the maximal time designed for one single simulation
episode. Therefore, it was considered that the recovery time was too
long to meet the requirement for fast return, and the corresponding
indicators were not compared. Thus, comparing the recovery time
of the critical damping and variable damping cases, the former took
2.05 s and the latter only needed 1.65 s. The variable damping’s
recovery time was cut by 19.5%.

In order to compare the change of spatial distance with time
between the real-time position and its initial point. Distance from
the initial point under four different damping cases are shown in
Figure 12, whose values were calculated by Equation 8. The last
three conditions had a similar varying trend of distance, which first
increased and then reduced to zero. However, in the underdamping
case (D = 100), the trend changed periodically with amplitude
attenuation. The load oscillated relative to its initial position on this
condition. Compared to the other three cases, the variable damping
method had the minimal deviation distance and the shortest return
time. Furthermore, it could return directly to the initial position
without oscillation.

In terms of resistance to impact at the end of the robotic limb,
based on the above analysis, the end load with variable damping
controller based on the Q-learning algorithm could quickly return
to the initial position and stop after impact. During this process,
the variable damping case had the least maximal displacement and
minimal recovery time. It enabled the robotic limb to return fast and
prevent oscillation.

In order to further verify the effectiveness of the proposed
variable damping controller, experiments were carried out for
different external impacts. For experimental group I, the force
components in the XYZ axes were designed to be 30, 20, and 10 N.
The duration time was set as 300 ms. For experimental group II, the
force components in the XYZ axes were designed to be 50, 40, and
30 N. The duration time was set as 400 ms. For experimental group
III, the force components in the XYZ axes were designed to be 50, 50,
and 50 N. The duration time was set as 500 ms. Thus, the total impulse
of external impact in the three experiments was 11.2, 28.3, and
43.3 Ns. Four different damping control methods were tested in each
experimental group. The maximum displacement from the original
point and recovery time in each case were emphatically compared
and analyzed, as shown in Figure 13. As shown in Figure 13A, it can
be seen that the system’s maximum displacement was the least by the
variable damping method for the three different impacts. Compared
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with the maximum displacement values to the underdamping and
critical damping cases of all three experimental groups, the variable
damping system’s values were reduced by 39.3% and 62.1% on
average. The underdamping system oscillated and the overdamping
system could not stop within the specified time. Thus, for the recovery
time, only the critical damping and variable damping were compared,
as shown in Figure 13B. Compared with the critical damping method
for the three different impacts, the variable damping method’s return
time was cut by 17.7% on average.

4. Discussion

This paper studied the issue of providing impact-resisting
and position maintaining assistance for astronauts during EVA
without the help of the space station’s robotic arms. A wearable
robotic limb system was introduced to give astronauts extra arms,
which could help resist impact and maintain their position during
EVA. The impact-resisting requirements for astronauts during
EVA were analyzed. A variable damping controller based on the
reinforcement learning algorithm was proposed. The combination
system of an astronaut with robotic limbs was modeled and
simplified. Compared with the fixed damping control method,
the variable damping control method could meet all the impact-
resisting requirements well by itself. It had better performance
in preventing excessive deviation and exhibited fast return to the
starting point. Meanwhile, it also had the capability of preventing
oscillation and returning to the original position accurately. In
the end, the appropriate simulation environment was built, and
simulation experiments were conducted to confirm the method’s
rationality and viability.

However, there are still some limitations of the proposed method
that will affect the performance in real-world situation. First, the
weight of the astronaut and backpack was regarded as unchangeable
in the simulation process. However, the actual situation is that for
different astronauts, this value would slightly change. In order to
improve the applicability of the method, this parameter also needs
be taken as the input of the algorithm in further research. Second,
the simulation environment was used for method validation, which
is different from the real environment. It limits the experimental tests
of the proposed method in practical application. In the future, it is
necessary to set up a weightless experimental platform on the ground
to simulate the outer space environment. We should let wearers with
different weights carry out the relative tests to further verify the
feasibility of the proposed method.
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