AUTHOR=Leone Francesca , Mereu Federico , Gentile Cosimo , Cordella Francesca , Gruppioni Emanuele , Zollo Loredana TITLE=Hierarchical strategy for sEMG classification of the hand/wrist gestures and forces of transradial amputees JOURNAL=Frontiers in Neurorobotics VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2023.1092006 DOI=10.3389/fnbot.2023.1092006 ISSN=1662-5218 ABSTRACT=Introduction

The myoelectric control strategy, based on surface electromyographic signals, has long been used for controlling a prosthetic system with multiple degrees of freedom. Several methods classify gestures and force levels but the simultaneous real-time control of hand/wrist gestures and force levels did not yet reach a satisfactory level of effectiveness.

Methods

In this work, the hierarchical classification approach, already validated on 31 healthy subjects, was adapted for the real-time control of a multi-DoFs prosthetic system on 15 trans-radial amputees. The effectiveness of the hierarchical classification approach was assessed by evaluating both offline and real-time performance using three algorithms: Logistic Regression (LR), Non-linear Logistic Regression (NLR), and Linear Discriminant Analysis (LDA).

Results

The results of this study showed the offline performance of amputees was promising and comparable to healthy subjects, with mean F1 scores of over 90% for the “Hand/wrist gestures classifier” and 95% for the force classifiers, implemented with the three algorithms with features extraction (FE). Another significant finding of this study was the feasibility of using the hierarchical classification strategy for real-time applications, due to its ability to provide a response time of 100 ms while maintaining an average online accuracy of above 90%.

Discussion

A possible solution for real-time control of both hand/wrist gestures and force levels is the combined use of the LR algorithm with FE for the "Hand/wrist gestures classifier", and the NLR with FE for the Spherical and Tip force classifiers.