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As a crucial component of the autonomous driving task, the vehicle target

detection algorithm directly impacts driving safety, particularly in inclement

weather situations, where the detection precision and speed are significantly

decreased. This paper investigated the You Only Look Once (YOLO) algorithm

and proposed an enhanced YOLOv4 for real-time target detection in inclement

weather conditions. The algorithm uses the Anchor-free approach to tackle the

problem of YOLO preset anchor frame and poor fit. It better adapts to the

detected target size, making it suitable for multi-scale target identification. The

improved FPN network transmits feature maps to unanchored frames to expand

the model’s sensory field and maximize the utilization of model feature data.

Decoupled head detecting head to increase the precision of target category and

location prediction. The experimental dataset BDD-IW was created by extracting

specific labeled photos from the BDD100K dataset and fogging some of them to

test the proposed method’s practical implications in terms of detection precision

and speed in Inclement weather conditions. The proposed method is compared

to advanced target detection algorithms in this dataset. Experimental results

indicated that the proposed method achieved a mean average precision of 60.3%,

which is 5.8 percentage points higher than the original YOLOv4; the inference

speed of the algorithm is enhanced by 4.5 fps compared to the original, reaching

a real-time detection speed of 69.44 fps. The robustness test results indicated

that the proposed model has considerably improved the capacity to recognize

targets in inclement weather conditions and has achieved high precision in

real-time detection.
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target detection, YOLOv4, inclement weather conditions, Anchor-free, Decoupled head

Highlights

- An enhanced YOLOv4 with Anchor-free and Decoupled head is proposed.

- Improved FPN enhances multi-scale feature fusion capabilities and thus

detection performance.

- The proposed method is used to solve vehicle target detection in inclement

weather conditions.

- Average accuracy has been improved by 5.8% and detection speed by 4.5 fps.
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1. Introduction

With the rapid changes in market demand and the growth

of the automobile industry, autonomous driving has become one

of the most researched topics in the automotive industry. In the

case of autonomous driving, road safety depends significantly

on identifying impediments ahead. Target detection, the most

fundamental part of autonomous driving, collects real-time

environmental data for the vehicle to assure safety and make

sound planning judgments. Especially in inclement weather

circumstances such as rain, snow, and fog, the detection precision

and speed are significantly impacted by other elements such as fog,

increasing the likelihood of automobile accidents. Consequently,

more precise and quicker target detection technologies are required

to lower the danger of pedestrian and vehicle collisions under

inclement weather conditions. In target detection tasks, inclement

weather conditions can significantly impact the performance of

image and video-based traffic analysis systems (Hamzeh and

Rawashdeh, 2021). Histograms of Oriented Gradients (Arróspide

et al., 2013), the Deformable PartModel (Cai et al., 2017), the Viola-

Jones (Xu et al., 2016), and so forth. Traditional target detection

methods cannot match the requirements for rapid and precise

recognition of low-quality pictures.

In addition, most previous methods for detecting targets

emphasize specific resource needs. Despite this, many real-world

applications (from mobile devices to data centers) frequently have

diverse resource limits. Computation platforms for automated

driving have constrained memory and computing resources.

Consequently, the most recent trend in network model design

should investigate portable and efficient network designs. Detection

methods applied to in-vehicle platforms must have relatively

minimal memory and computing resource footprints. Girshick

et al. (2015) implemented Region-Convolutional Neural Networks

(R-CNN) for target detection in 2014. Traditional target detection

approaches are progressively losing ground to deep learning.

Target detection based on deep learning has demonstrated

unique advantages in autonomous driving. This approach is crucial

for autonomous driving systems because it can achieve high

detection precision with fewer computational resources (He and

Liu, 2021). The most frequent frameworks for target identification

fall into two categories: R-CNN (van de Sande et al., 2011),

Fast R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al.,

2017) and two-stage target detection algorithms. The first stage

of the two-stage procedure is the generation of candidate boxes

that contain both true and false target items for detection. The

second stage involves analyzing the boxes and identifying the

target within each box. The other single-stage target identification

approach is You Only Look Once (YOLO) (Redmon et al., 2016),

Single Shot MultiBox Detector (SSD) (Liu et al., 2016), etc. Even

though single-stage target detection algorithms are somewhat

less accurate than two-stage target detection algorithms in terms

of detection accuracy, single-stage target detection methods are

frequently employed in moving vehicle target detection (Chen

et al., 2020; Zhou et al., 2020; Wu et al., 2021). Obviously,

for detection precision concerns, increasingly efficient single-

stage algorithms such as YOLOv3 (Redmon and Farhadi, 2018),

YOLOv4 (Bochkovskiy et al., 2020), CenterNet (Zhou et al.,

2019a), RetinaNet (Lin et al., 2020), etc. are being applied to

driving scenarios. Researchers have attempted to use YOLOv4

and its enhancements in different fields since its introduction. Yu

et al. (2021) introduced a deep learning model named YOLOv4-

FPM based on the YOLOv4 model and used it for the real-

time monitoring of bridge cracks, which improved the mAP by

0.064 compared to the classic YOLOv4 technique. Han et al.

(2021) suggested a Tiny-YOLOv4 technique that combines the Self-

Attention mechanism with ECA-Net (Effective Channel Attention

Neural Networks) for insulator detection. The detection method’s

speed, precision, and complexity are greatly enhanced. YOLOv4 is

also utilized in the inspection of vehicles (Yang et al., 2021;Mu et al.,

2022).

Among these target detection approaches, YOLOv4 has been

utilized in various fields due to its balance of speed and

precision. However, the No Free Lunch Theorem (NFL) (Wolpert

and Macready, 1997) demonstrates that no single method can

effectively tackle all problems. Due to degraded image quality,

YOLOv4’s performance in predicting inclement weather conditions

could be better. Moreover, although the little study has been

conducted on vehicle target detection in inclement weather,

vehicle detection in inclement weather cannot be overlooked in

autonomous driving and autos. This paper provides a YOLOv4

enhancement approach to address the concerns mentioned above.

The experimental results demonstrate that the detection model

provided in this study can detect vehicle targets under inclement

weather conditions.

Following are the paper’s primary contributions: (1) An

enhanced approach based on YOLOv4 is proposed. The approach

introduces Anchor-free and Decoupled head (2) Enhancements to

the FPN to improve the multi-scale feature fusion capabilities for

improved detection performance and increased target detection

accuracy. (3) The BDD100k dataset is extracted and processed

to create the inclement weather vehicle detection dataset BDD-

IW for the experiments presented in this research. (4) The

proposed technology is applied to vehicle detection in inclement

weather conditions. Compared to YOLOv4, the mean average

precision is 5.8% higher, and the detection speed is 4.5 frames per

s faster.

The following are the remaining sections of this work. A

literature review is presented in Section 2. Section 3 provides a

comprehensive explanation of the method proposed in this study.

The findings of the tests done to validate the performance of the

proposed model are discussed in Section 4. Section 5 includes a

summary of the current work and an analysis of future work.

2. Related works

2.1. Target detection in inclement weather
conditions

Inclement weather can reduce the camera imaging quality,

affecting the accuracy and speed of target detection, which can

cause serious adverse results on road safety.

Xu et al. (2016) based on Viola Jones algorithm for UAV

image vehicle detection method to detect the road direction first

for detecting the object direction sensitive problem, and then

correct the detection direction according to the road direction
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to achieve higher detection efficiency and accuracy. Kuang et al.

(2018) developed a multi-class vehicle detection system based on

tensor decomposition for night vehicle detection. This method can

successfully detect the categories of cars, taxis, buses and minibuses

in night traffic images, and also realize effective detection for

vehicles that are obscured and vehicles in rainy days. Zheng et al.

(2022) proposed an improved Fast R-CNN convolutional neural

network for dim target detection in complex traffic environments,

replaced VGG16 in Fast R-CNN with ResNet, adopted the

downsampling method and introduced feature pyramid network

to generate target candidate boxes to optimize the structure

of the convolutional neural network. Humayun et al. (2022)

used CSPDarknet53 as the baseline framework, and achieved

reliable performance for vehicle detection under scenarios such

as rain and snow through space pyramid pool layer and batch

normalization layer. Guo et al. (2022) first proposed a data

set for vehicle detection on foggy highway, and then proposed

a foggy vehicle detection model based on improved generative

adversarial network and YOLOv4, which effectively improves

vehicle detection performance and has strong universality for

low-visibility applications based on computer vision. Samir et al.

(2018) proposed a methodology for target detection during foggy

days. The model employed convolutional neural networks for

image removal and Fast R-CNN for target detection. Hassaballah

et al. (2020) presented a robust vehicle detection method with

a multi-scale deep convolution neural network and introduced a

benchmark dataset for vehicle detection under adverse weather

conditions, which improved the detection efficiency compared to

some current advanced vehicle detectionmethods. You et al. (2020)

proposed a lightweight SSD network algorithm and detected vehicle

targets in complex weather environments with 3% improvement

in detection accuracy and 20% improvement in detection speed.

Ghosh (2021) proposed a multiple region suggestion network using

Faster R-CNN for detection under different weather conditions and

achieved excellent detection performance with an average accuracy

of 89.48, 91.20, and 95.16% for DAWN, CDNet 2014, and LISA

datasets, respectively. Wang K. et al. (2021) developed a denoising

network based on rainfall characteristics and input the resultant

denoised images into the YOLOv3 recognition model for synthetic

and natural rainfall datasets. The modified photos strengthened the

process of target detection. Khan and Ahmed (2021) developed a

novel convolutional neural network structure for detecting vehicle

road images limited by weather factors, and the detection speed

was significantly improved. Ogunrinde and Bernadin (2021) used

CycleGAN combined with YOLOv3 for the KITTI dataset to

improve the detection efficiency of moderate haze images. Wang

et al. (2022) proposed a vehicle detection method based on pseudo-

visual search and the histogram of oriented gradients (HOG)-local

binary pattern feature fusion, which achieved an accuracy of 92.7%

and a detection speed of 31 fps. Guo et al. (2022) proposed a

domain-adaptive road vehicle target detection method based on

an improved CycleGAN network and YOLOv4 to improve the

vehicle detection performance and the generalization ability of the

model under low-visibility weather conditions. Tao et al. (2022)

improved YOLOv3 based on ResNet, and the improved network

reduced the difficulty of vehicle detection in hazy weather and

improved the detection accuracy. Humayun et al. (2022) proposed

an improved CSPDarknet53 network to enhance the detection

precision of targets in the haze, dust storms, snow, and rain weather

conditions during day and night.

Analyzing prior work on target detection in inclement weather

allows us to draw the following conclusions: Among the techniques

mentioned earlier are noise reduction of the dataset, the usage

of datasets that aid increase prediction accuracy, and improved

target identification techniques, among others. (1) Using the picture

denoising method. This strategy generated higher-quality training

data for target detection and enhanced prediction accuracy.

However, the presence of halo distortions, color distortion, low

contrast, and a lack of clarity may decrease the effectiveness of the

target detection algorithm when utilizing data of inferior quality-

synthesizing the dataset to mimic inclement weather input to

the target detector for training purposes. This strategy effectively

addressed the limited quantity and poor diversity of training data.

Nevertheless, the procedure cannot ensure the authenticity of the

resulting dataset and still requires many reviews. (2) Target detector

improvement. Detection is intended to increase the precision

of the weather forecast model under challenging settings. The

generalizability of the model must also be considered in the study.

2.2. YOLO methods

Since its inception, the YOLO series of methods has been

among the most sophisticated target detection techniques. In 2016,

Redmon introduced YOLOv1 (Redmon et al., 2016), which has

one feature in common with other target identification algorithms,

such as R-CNN, Fast R-CNN, and Faster R-CNN. They constructed

many candidate boxes containing genuine and fake target objects

for detection. In a two-step procedure, the first stage entails

developing the boxes, while the second stage entails processing

the boxes and identifying their precise targets. In contrast, Joseph

Redmon proposed the YOLO algorithm in 2015, which uses a

single-stage target detection algorithm that combines two steps

into one, directly transforming the problem of target border

localization into a one-step regression problem processing and

making significant advancements in algorithm detection speed.

Redmon and Farhadi (2017) introduced YOLOv2 in 2017 on top of

YOLOv1. YOLOv2 rebuilt the network’s backbone with DarkNet19

and introduced enhancements such as Conv+BatchNorm.

YOLOv3 (Redmon and Farhadi, 2018) also rebuilt the backbone

network with DarkNet53 and added more improvements.

Bochkovskiy et al. (2020) developed the Darknet framework and

YOLOv4 based on the original YOLO hypothesis. With better

processing, YOLOv4 was derived from YOLOv3. Extending the

dataset while preprocessing the data delivers a performance boost

to the network without the need for additional memory and

model space, as well as a significant improvement in network

detection at the expense of a slight decrease in speed. Ge et al.

(2021b) suggested the YOLOX algorithm in 2021, based on the

YOLO family, to obtain better and more meaningful outputs. The

enhancement of this study is based on YOLOv4. The structure of

the YOLOv4 network model can be broken down into three major

components: the backbone, the neck, and the prediction head.

Figure 1 depicts the network architecture diagram. The backbone
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FIGURE 1

The structure of YOLOv4.

network for extracting features, is the essential stage in acquiring

the feature map. Visual Geometry Group (VGG) (Simonyan and

Zisserman, 2014), Residual Network (ResNet) (He et al., 2016),

ResNeXt (Xie et al., 2017), and Darknet53 (Redmon and Farhadi,

2018) are all conventional networks for feature extraction. Recent

years have seen the emergence of a more deliberate Backbone.

MobileNet (Howard et al., 2017) was an effective mobile and

embedded applications architecture. EfficientNet (Tan and Le,

2019) enabled the scalability of models while preserving their

precision and performance. HRNet maintained a high-resolution

representation by simultaneously concatenating low- and high-

resolution convolutions (Sun et al., 2019). The neck can achieve

the merging of shallow and deep feature maps to make full use

of the retrieved features by Backbone, from FPN to PANet (Liu

et al., 2018), NAS-FPN (Ghiasi et al., 2019), BiFPN (Tan and Le,

2019), and so forth. Their relationships are growing progressively

intricate. HRFPN (Sun et al., 2019) is a method of feature fusion

proposed by HRNet to retain high resolution. Balanced Feature

Pyramid takes advantage of balanced semantic features integrated

at the same depth to improve multilevel features (You et al., 2020).

It has been confirmed that the feature fusion structure provides a

more significant boost to mAP.

The Head is primarily responsible for estimating the target’s

category and position. In order to locate the target’s position, one

uses the regression branch to localize the target’s position and the

classification branch to determine the target’s class. However, the

features emphasized during feature learning are distinct, causing

the two branches to share most parameters and restricting the

target identification effectiveness to some extent. The problem was

initially discussed and investigated in 2018. Jiang et al. (2018)

proposed an intersection over the union net (IoU-Net). IoU-

Net implemented a new branch to anticipate IoU values as the

confidence level for localization, and IoU-guided NMS was used

to remove superfluous boxes. Wu et al. (2020) proposed Double-

Head RCNN in 2020 and constructed it to implement classification

and regression decoupling. Fully connected was deemed more

appropriate for classification tasks, and convolution was deemed

more suitable for regression tasks. Hence fully connected was

used for classification branches, while convolution was utilized

for regression branches. The dispute between classification and

regression persists even though both branches received identical

proposal characteristics after ROI pooling. In the same calendar

year, Song et al. In the same year, Song et al. (2020) separated the

classification and regression problems in target detection in terms

of spatial dimensions. They noticed a misalignment between the

classification and regression spatial dimensions. According to the

article, TSD decouples classification and regression problems from

the spatial dimension. Ge et al. (2021b) proposed YOLOX in 2021

to further upgrade to YOLO. One of the changes between YOLOX

and earlier YOLO series algorithms was the decoupled head, which

replaced the coupled detection head of YOLOv3 in the text.

The prediction of bounding boxes is also separated into two

ways, one of which is anchor-based and the other of which

is anchor-free. In recent years, anchor-free frame detection has

become an alternative method for bounding-frame prediction, as

the usage of anchor frames generates a significant imbalance in

the number of positive and negative anchor frames, increases

hyperparameters, and slows training. Anchor Free is now

classified into the keypoint-based and center-based categories for

describing detection frames. CornerNet (Law and Deng, 2018) and

ExtremeNet (Zhou et al., 2019b) use the keypoint-based detection

technique, which identifies the target’s upper-left and lower-right

corner points and then combines the corner points to produce a

detection frame. FSAF (Zhu et al., 2019), FCOS (Tian et al., 2022),
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FoveaBox (Kong et al., 2020), and CenterNet (Zhou et al., 2019a)

utilize center-based detection algorithms that directly detect the

core region and border information of the object and decouple

classification, action, and regression into two subgrids.

3. Materials and procedures

This section explains the backbone network, the neck, the

prediction head, and data enhancement in the YOLOv4-based

1. Initialize network parameters such as

learning rate, batch size, number of epochs

2. Load training data such as images, labels

3. Define loss function such as mean squared

error, cross-entropy

4. Iteratively train network using

backpropagation and gradient descent

5. Test network using validation data

6. Evaluate network performance using metrics

such as precision, recall, mean average

precision

Algorithm 1. Pseudo-code of the proposed method.

enhancement model. Moreover, the BDD-IW dataset is described

in depth. The pseudo-code of the proposed target detection

algorithm is shown in Algorithm 1. Figure 2 depicts the network

architecture diagram for the proposed method.

3.1. Backbone

CSPDarkNet53 provides a good foundation for solving the

feature extraction problem in most detection scenarios through

the Cross Stage Partial (CSP) network. In order to simplify the

network structure, this work uses a more straightforward and

lighter CSP structure to replace the original method backbone

network. Its structural function is exactly the same as the original

CSP structure, but the correction unit consists of three standard

convolutional layers and multiple bottleneck modules. In contrast,

the Conv module is deleted after observing the residual output,

and the activation function in the regular convolution module

after concat is modified from LeakyRelu to SiLU. This module is

the primary module for learning residual features and is divided

into two branches, one of which uses the multiple Bottleneck

stacks and three standard convolutional layers described above.

The other undergo merely a single convolutional module. Lastly,

the two branches are concat-operated. Figure 3 illustrates the CSP

module’s structure.

FIGURE 2

The structure of the proposed method.
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FIGURE 3

CSP in proposed work.

FIGURE 4

SPP layer.

3.2. Neck

3.2.1. Spatial pyramid pooling
In order to extract spatial feature information of different

sizes, the robustness of the model for spatial layout and object

denaturation is improved. In this study, the original method of

spatial pyramid structure (SPP) was used, and the structure is

shown in Figure 4.

3.2.2. Improved feature pyramid network
FPN transmits semantic features from top to bottom and

merges the information using upsampling procedures to predict

results. In the original method, the prediction ability of the

network is poor when the target in the image is too small, and

the ability of the network to detect the target is greatly reduced

by the lack of feature information after the convolution and

downsampling process. To solve the above problems, this study

obtains a feature layer with a narrower perceptual field containing

more image-specific information based on the output of the second

residual block feature layer of the backbone network. The lack of

information in the low-level features of the original network for

small-scale targets and the lack of information in the high-level

feature layer are also compensated. At this stage, an enhanced

FPN module is generated by extracting the output of the feature

map of the second remaining module and fusing the other three

feature layers together from shallow to deep. Figure 5 demonstrates

the structure.

3.3. Head

By switching from the YOLO head to Decoupled head and

utilizing the Anchor-free method for prediction, the prediction has

been enhanced compared to the classic YOLO series.

FIGURE 5

FPN in the proposed work.

3.3.1. Decoupled head
Their detection heads are coupled despite improving the YOLO

series’ backbone and feature pyramids. By replacing the YOLO

head with a Decoupled head comprising two parallel branches,

the heads of the classification and regression tasks no longer share

the same parameters, and the convergence speed is significantly

increased. There is a total of three concat branches in the output

of the Head. The branch begins with a 1 x 1 convolution to

accomplish channel reduction, followed by two more branches.

The classification branch focuses mainly on the category prediction

of the target box, while the other is the regression branch. The

regression branch is subdivided into Reg and IoU to determine

the target box location and IoU prediction. Then, the reshape

operation is performed for the three pieces of information, followed

by a global concat to obtain the complete prediction information.

Figure 6 depicts the decoupled head construction.

3.3.2. Anchor-free
To improve speed while maintaining precision. This approach

shifts from anchor-based to anchor-free depending on the real-

time identification of vehicle targets. YOLOv3 through YOLOv5

rely on anchors. However, anchor-based has issues with designing

anchor points in advance, actively sampling images, and too much

negative sample data. In this study, the anchor-free model reduces

the number of predictions required per location from three to

one. Allow them to forecast both the upper left corner offsets and
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FIGURE 6

Decoupled head layer.

the height and breadth of the prediction box. In addition, the

33 regions of the grid where each object’s center is located are

designated as a positive sample. A standard point range is specified

to determine each object’s FPN level. The method improves the

speed and performance of detector delivery.

3.3.3. Label assignment
During the training phase, label assignment is primarily the

method by which the detector distinguishes between positive and

negative samples and assigns a suitable learning target to each

place on the feature map. Each feature vector contains the expected

frame information when the number of anchor frames is collected.

Primarily, Labeling the boxes within the positive sample anchors

mainly filters them.

The initial screening is based on the center point and the target

box. According to the target box method, the center of the anchor

box falls within the rectangle of artificially labeled boxes (ground

truth boxes) for all anchors that may be used to predict positive

samples. According to the center point method, Using the center

of the ground truth boxes as the base, expand the stride 2.5 times

outward to form a square 5 times the length of the stride. All anchor

boxes whose center points fall within the square may be used as

predictions for positive samples.

This study introduces the SimOTA (Ding et al., 2021) algorithm

for dynamically assigning positive samples to increase detection

precision to obtain more high-quality positive samples. The

approach for label assignment in YOLOv5 is based on shape

matching. Cross-grid matching increases the number of positive

samples, allowing the network to converge quickly. Nonetheless,

this static allocation does not adapt as the network is taught.

Recently, dynamic tag assignment-based techniques have also

evolved. These methods award positive samples depending on

the network’s output during training, providing more high-quality

examples and promoting the network’s positive optimization. By

modeling sample matching as an optimal transmission problem,

OTA (Ge et al., 2021a) discovered the optimal sample matching

approach using global information to increase precision. However,

OTA took longer to train due to using the Sinkhorn-Knopp

algorithm. The SimOTA algorithm uses the Top-K approximation

strategy to get the best match for the samples, greatly speeding up

the training. SimOTA first calculates the pairwise match, expressed

as the cost or the quality of each predicted ground truth pair. For

example, the cost between ground truth gi and prediction pj in

SimOTA is shown in Equations (1)-(3).

cij = Lclsij + λL
reg
ij (1)

Lreg = −log
(

IoU
(

Bgt ,Bpred
))

(2)

Lcls = −

n
∑

i=1

(

ti log
(

pi
)

+ (1− ti) log
(

1− pi
))

(3)

Where λ is the equilibrium coefficient, and Lclsij and L
reg
ij are

the classification loss and regression loss between gi and pj. Lreg
is determined using binary cross entbox (BCE). Bounding box

regression loss Lreg using efficient intersection over union loss. Bgt
and Bpred are the true frame and the predicted frame, respectively.

pi is the predicted value, and ti denotes the true value of the

predicted bounding box.
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FIGURE 7

(A) Original case. (B) Fogging case.

3.4. Data augmentation

An efficient data augmentation approach is employed to

increase the training data to compensate for the training set’s lack of

images. The strategy uses theMosaic andMixup data augmentation

methods and does not perform the method in the last 15 epochs.

The Mosaic and Mixup data augmentation methods are described

in detail in this subsection.

3.4.1. Mosaic
In inclement weather conditions, vehicle detection is quickly

impacted by fog, rain, and snow, which diminishes the precision

of target recognition. The benefits of Mosaic data improvement

are twofold. First, random cropping is used to enrich the local

target features in the dataset, which is advantageous for model

learning; Second, random stitching is used to retain all of the target

features of the image without discarding the cropped features, and

all of the image’s features are utilized by the stitching method.

This study incorporates Mosaic data augmentation during model

training to increase the model’s capacity to recognize veiled targets.

Before each iteration begins, the proposedmodel reads images from

the training set and generates new images through Mosaic data

augmentation. The freshly generated images are mixed with the

read images to create training samples, which are then fed into the

model for training. The Mosaic data augmentation chooses four

photos at random from the training set. Four pictures are randomly

cropped and then stitched together to create a new image. The

enhancedMosaic data produces images with the same resolution as

the four photos in the training set. Random cropping may remove

a section of the target frame of the training set, replicating the effect

of a vehicle target subjected to fog, rain, snow, or weak light.

3.4.2. Mixup
Mixup is an image mixed class augmentation method that can

expand the training data set by mixing images between different

classes. Assuming that x1 and x2 are two batch samples, y1 and

y2 are the labels corresponding to x1 and x2 samples, respectively,

and λ is the mixing coefficient calculated from the beta distribution

with parameters α, β , the mathematical model of Mixup is shown

in Equations (4)–(6).

λ = Beta(α,β) (4)

x = λx1 + (1− λ)x2 (5)

y = λy1 + (1− λ)y2 (6)

where, Beta denotes a beta distribution, x is the blended

batch sample, and y is the label corresponding to the blended

batch sample.

3.5. Dataset

There are 70,000 training sets, 10,000 validation sets, and 20,000

test sets in the BDD100k dataset (Yu et al., 2020). It covers various

weather conditions, such as sunny, overcast, and rainy days, as well

as various times of day and driving scenarios during the day and

night. There are 10 ground truth box labels: person, rider, car, bus,

truck, bike, motor, traffic light, traffic sign, and train. 7:1 is the ratio

between the training set and the validation set. There are around

1.46 million object instances in the training and validation sets, of

which ∼800,000 are car instances, and just 151 are train instances.

This disparity in category distribution reduces the network’s ability

to extract features. Hence train, rider, and motor are disregarded

in the final evaluation. The completed BDD100k dataset includes

seven categories: person, car, bus, truck, bike, traffic signal, and

traffic sign. In the BDD100k dataset, each image has a different

weather label. Since this research solely examines the differences

between models under inclement weather conditions, the images

with weather labels of rain and snow are extracted from the training

and validation sets. And some images with weather labels as sunny

are extracted, and fog processing is applied to these images to form a

hazy sky scene, as shown in Figure 7. The RGB channel of the image

is processed, setting the brightness to 0.6 and the fog concentration

to 0.03. Finally, the images with the three weather labels of sunny,

rainy, and snowy days processed by adding fog are counted to form

the dataset BDD-IW for this research training, the distribution

of weather labels in the dataset is shown in Figure 8. The format

of the BDD-IW dataset is divided into two folders: training and

validation sets. Each folder contains two more folders that store the

images in JPG format and the corresponding labels in TXT format

for each image. The final dataset consists of 14,619 training sets

and 2,007 validation sets, with a training-to-validation set ratio of
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FIGURE 8

The distribution of weather labels.

around 7:1, or one-fifth of the overall dataset. The relevant code and

dataset are publicly available at https://github.com/ZhaoHe1023/

Improved-YOLOv4.

4. Designs for experiment

4.1. Experimental settings

All experiments in this thesis were performed on a computer

equipped with a 5-core Intel(R) Xeon(R) Silver 4,210 CPU running

at 2.20 GHz and an RTX 3,090 graphics card. Each algorithm

was executed in the experimental environment using PyTorch

1.8.1, Python 3.8, and Cuda 11.1. In the training of the proposed

model on the BDD-IW dataset, the input picture size is 512 ×

512, the batch size is 16, the learning rate is 0.01, and the IoU

detection threshold is 0.5. One hundred training rounds have been

completed. To allow the final convergence of the detector on real-

world data and without the error introduced by Mosaic, the model

is supplemented with Mosaic and Mixup data for the first 85

training rounds and then switched off for the remaining 15.

4.2. Evaluation indicators

To objectively and reliably evaluate the detection performance

of the proposed strategy, the experiments in this work employ

the most frequent metric for target identification in studies: mean

Average Precision (mAP). In this subsection, the mAP is explained.

Comparing the intersection and concurrence ratio (IoU) of

ground truth and prediction with the threshold value allows the

classification of the prediction results into four groups. False

Positive (FP) is the positive sample of inaccurate prediction; True

Negative (TN) is the negative sample of correct prediction, and

False Negative (FN) is the negative sample of incorrect prediction.

Table 1 depicts the confusion matrix.

The number of FN, FP, TN, and TP can be empirically

determined in the prediction process. Then, Equations (7), (8)

yield Precision and Recall, respectively. Precision is the ratio

of true cases (TP) to all positive cases (TP and FP) based on

the model’s evaluation. The recall is the proportion of correctly

identified positive cases (TP) relative to all positive cases in the

TABLE 1 The confusion matrix.

N (Negative) P (Positive)

F (False) FN FP

T (True) TN TP

TABLE 2 Roadmap of the proposed method.

Methods mAP50 (%)

YOLOv4 baseline 54.5%

+ Improved FPN 55.55% (+1.05%)

+ Anchor-free (SimOTA) 59.35% (+3.8%)

+ Decoupled head 59.75% (+0.4%)

+ Strong data augmentation 60.35% (+0.6%)

Proposed method 60.35%

dataset (TP+FN).

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

It is not rigorous to evaluate the model’s performance by

Precision and Recall alone. In some extreme cases, the results of

the two metrics on the model may be contradictory. Therefore, it

was further analyzed by AP (Average Precision) and mAP (mean

Average Precision). AP is the area enclosed by the P-R curve

consisting of Precision and Recall. AP denotes a class’s accuracy,

mAP denotes all classes’ average accuracy, and the mathematical

formula precision is shown in Equations (9), (10).

AP =

∫

P(R)dR (9)

mAP =
1

C

C
∑

j

APj (10)

It is worth noting that mAP0.5 denotes the mAP at an IoU

threshold of 0.5. mAP0.5:0.95 denotes the average mAP at different

IoU thresholds (from 0.5 to 0.95, in steps of 0.05).

4.3. Quantitative evaluation

This subsection validates the target detection performance of

the proposed method by the above-mentioned evaluation metrics

such as AP50, mAP50, and FPS.

Table 2 shows the roadmap based on YOLOv4 improvements

to verify the gain effect of the introduced improvement modules on

the original method. Observing the data in Table 2, the improved

module presented in this paper can make the algorithm perform

better detection performance.

Figure 9 illustrates how the P-R curves are shown against

YOLOv4, given that the BDD-IW data set contains three everyday

objects: person, car, and traffic light. The area of the P-R curve
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FIGURE 9

Main categories and overall P-R curves.

TABLE 3 Comparison results of each method on the BDD-IW dataset.

Methods Person
(%)

Car
(%)

Bus
(%)

Truck
(%)

Bike
(%)

Tra�c
light (%)

Tra�c
sign (%)

mAP50
(%)

FPS Input size
(pixels)

Faster R-CNN - - - - - - - 55.6 - 1,333× 800

SSD - - - - - - - 34.7 27.64 512× 512

YOLOv3 47.8 69.0 44.1 51.0 26.0 46.9 48.9 47.7 43.57 512× 512

YOLOv4 55.2 73.4 49.4 56.4 34.0 55.4 57.8 54.5 64.9 512× 512

YOLOv5 54.5 73.2 52.3 57.2 32.7 55.0 56.1 54.4 72.21 512× 512

YOLOv6 - - - - - - - 49.5 56.37 512× 512

YOLOX 58.5 76.7 54.5 59.5 31.6 62.0 60.4 57.6 52.60 512× 512

RT-YOLOv4 55.6 73.5 51.5 58.0 34.4 56.3 57.9 55.3 31.50 512× 512

TPH-YOLOv5 51.0 71.8 45.4 52.9 26.1 55.2 57.1 51.4 35.10 512× 512

PPYOLOE 52.9 72.7 46.4 53.5 28.8 56.5 58.9 52.7 47.12 512× 512

Proposed work 62.0 78.8 57.6 60.5 33.6 64.9 64.9 60.3 69.40 512× 512

FPS, frames per second.

The bold values indicate the best value in the same group comparison.

is the AP value of the class and is a crucial parameter for

assessing the output of the target detection algorithm. Figure 7

demonstrates that the P-R curves of the method described in this

paper are centered on YOLOv4, demonstrating the success of the

suggested work.

To objectively validate the target identification performance

of the proposed method in this research, the suggested method

is compared to some advanced methods on the BDD-IW dataset

under identical settings. Among these techniques are Faster R-

CNN (Girshick, 2015), SSD (Liu et al., 2016), YOLOv3 (Redmon

and Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5

(Ultralytics), YOLOv6 (Li et al., 2022), YOLOX (Ge et al., 2021b),

RT-YOLOv4 (Wang R. et al., 2021), TPH-YOLOv5 (Zhu et al.,

2021), and PPYOLOE (Xu et al., 2022). The BDD-IW dataset

comparison findings are displayed in Table 3.

The following conclusions can be drawn from Table 3’s data:

First, on the BDD-IW dataset, YOLOv4 outperforms the one-stage

models YOLOv3 and YOLOv5 in terms of detection accuracy,

particularly for the most common person, automobile, and traffic

light. YOLOv4 features an improved balance between detection
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FIGURE 10

(A) YOLOv4 inference results. (B) Proposed work inference results.

speed and detection precision. Consequently, this comparison

confirms the previous assertion that YOLOv4 is an excellent

base method. Second, the proposed strategy greatly enhances

each category’s detection accuracy. The detection precision of the

suggested method for easily concealed things, such as bicycles, is

just 0.4 percent lower than that of YOLOv4 and ranks second.

The proposed method topped all other categories of detecting

techniques. Finally, the proposed technique has an mAP value

of 60.3%, which places it top among all methods evaluated. The

proposed approach yields an mAP of 2.7% more than YOLOX

and 5.8% greater than the traditional YOLOv4. In addition, the

detection efficiency of each detector processing the BDD-IW

dataset can be seen in Table 3, and the proposed method achieves

a detection speed of 69.4 FPS, which is better than the other

methods except YOLOv5. Of course, the recognized advantage

of the YOLOv5 algorithm is the higher detection speed caused

by the lightweight network structure (Ultralytics, 2020), and the

detection precision of the proposed method still has an advantage.

The real-time detection speed required for autonomous driving

is related to the detection image size, and according to previous

studies (Hu et al., 2018; Zhao et al., 2019; Wang R. et al., 2021),

when the input image size is 512 × 512 pixels or higher, the

detection speed of the detector must reach more than 30 FPS in

order to achieve higher real-time detection results.

In summary, the proposed method has improved the detection

speed and precision compared to the original method.

4.4. Qualitative evaluation

On the BDD-IW dataset, Figure 10 compares the detection

results of YOLOv4 with the proposed algorithm, where (a) is

the detection effect of the YOLOv4 algorithm and (b) is the

detection effect of the proposed method. In the detection effect

graph, a comparison between the YOLOv4 method and the

method proposed in this paper reveals that the YOLOv4 method
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loses vehicle feature information after the multi-layer convolution

operation, resulting in the leakage of small-scale vehicles and

obscured vehicles during the detection process. As shown in the

first row, the proposed method detects the small-scale targets

of bike and traffic sign on the right side of the image in

the dim environment compared to YOLOv4. And the detection

performance of the proposed method is obviously better in snow,

fog, rain and other adverse weather conditions for obscured or

blurred vision targets. Also, each comparison image demonstrates

that the proposed method identifies more accurately.

In conclusion, the algorithm proposed in this paper greatly

enhanced precision compared to the original YOLOv4 target

identification algorithm and other advanced models of the target

detection algorithm. It is more suited for detecting small and

obscured targets in inclement weather conditions, enhancing

driving stability and effectiveness.

5. Conclusion and future work

For autonomous driving and road safety, achieving more

precise vehicle target detection in inclement weather situations is

of tremendous scientific importance. This research provides an

enhanced method based on YOLOv4 to boost the performance of

target detection under inclement weather conditions to improve

the precision and speed of target detection. By comparing

the BDD-IW inclement weather image dataset, experimental

comparisons are conducted. The prediction precision of this

paper’s proposed method is greater than that of some well-known

target detection systems. Moreover, compared to the conventional

YOLOv4 method, the mAP of the method suggested in this

study is enhanced by 5.8%. The proposed method performs

well in target detection, especially for vehicle target detection

in inclement weather conditions. As can be seen from the

quantitative and qualitative analysis of detection precision and

detection speed, the method effectively avoids undetectable or

erroneous detection of vehicles or road objects in bad weather

conditions during smart driving. In addition, the proposed

method has achieved the requirement of real-time target detection.

The higher detection speed helps the intelligent driving system

to make the next decision faster and improves the safety of

unmanned driving.

However, there are still some problems that need to be further

explored. Although the speed of detection has been increased

compared to the original method, there is still potential for

improvement. The precision of target occlusion needs to be

improved. The target cannot be detected correctly with high

probability in the occlusion situation, so how to further improve the

recognition rate of the vehicle is a worthy research direction in the

later stage. Regarding the practical application of target detection,

the algorithm researched in the laboratory is tested using GPU

training and inference, while there is no GPU on the real self-

driving detection platform, so the portability of the model needs

further study.
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