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Introduction: The flexible joint is a crucial component for the inspection robot to

flexible interactionwith nuclear power facilities. This paper proposed a neural network

aided flexible joint structure optimization method with the Design of Experiment

(DOE) method for the nuclear power plant inspection robot.

Methods: With this method, the joint’s dual-spiral flexible coupler was optimized

regarding the minimum mean square error of the sti�ness. The optimal flexible

coupler was demonstrated and tested. The neural network method can be used for

the modeling of the parameterized flexible coupler with regard to the geometrical

parameters as well as the load on the base of the DOE result.

Results: With the aid of the neural network model of the sti�ness, the dual-spiral

flexible coupler structure can be fully optimized to a target sti�ness, 450Nm/rad in this

case, and a given error level, 0.3% in the current case, with regard to the di�erent loads.

The optimal coupler is fabricated with wire electrical discharge machining (EDM) and

tested.

Discussion: The experimental results demonstrate that the load and angular

displacement keep a good linear relationship in the given load range and this

optimization method can be used as an e�ective method and tool in the joint

design process.
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1. Introduction

Nuclear power plays a great role in promoting energy transition, and the safety, maintenance,

and overhaul of nuclear power facilities are crucial links in the nuclear power industry (Larsen

and Babineau, 2020; Liu et al., 2020; Mallants et al., 2020; Park and Lee, 2020; Zhao et al., 2020).

In recent years, more and more robots have been developed to serve nuclear power plants (Kim

et al., 2021).

Kim et al. (2014) designed a laser-guided underwater robot for reactor vessel inspection.

Li et al. (2019) introduced a remote robot solution for maintenance of diverter in European

demonstration power plant (DEMO) fusion reactor. The kinematic design of the robot has been

optimized for the DEMO access, and inverse kinematics of the robot solution are introduced.

Bird et al. (2022) presented the Vega robot, a small, low-cost, potentially disposable ground

robot designed for nuclear decommissioning. Vega has been establishment and demonstrated to

many other organizations in the UK nuclear industry, including Sellafield Ltd, intending tomove

to active deployments in the future. Sayed et al. (2022) presented a survey of current robotic

systems that can operate in such extreme environments and offer a novel approach to solving

the challenges they impose, encapsulated by the mission statement of providing structure in
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unstructured environments and exemplified by a new self-assembling

modular robotic system, the Connect-R.

With the development of robotics, the rigid joint of robots can

not meet the special requirements in some environments, and flexible

joints for robots got more and more researchers’ attention (Hogan,

2022). Currently, the flexible joint involves in the techniques of

spring, rubber, pneumatic muscle, function materials, etc. Jutinico

et al. (2017) address the dependence of the impedance control

performance on the force control and proposed the Markovian

control approach that improves the force control robustness. Lee

and Oh (2019) developed a robot leg driven by the Series Elastic

Actuator (SEA) with biarticular coordination to effectively transmit

actuator torque to the operational space. Zhang et al. (2020) proposed

a novel cable-driven rotary series elastic actuator (SEA) to implement

remote actuation and verified the performance of both the torque

and impedance controllers in simulation and experiments. Cao et al.

(2020) proposed a specialized ankle joint muscle reflex control

algorithm for human upright standing push-recovery.

The spring-type structure dominates the flexible joint

applications, which use the spring to couple the motor and

load. The flexible joints can overcome the disadvantages of the rigid

joints and improve the robot’s stability in the environment of impact

and vibration (Van Ham et al., 2009). Lagoda et al. (2010) developed

an electric serial elastic actuated joint for robotic gait rehabilitation

training, which utilized a dual-spiral plane spring to couple the

motor and output, successfully realizing the flexible drive of the

joint. Chaichaowarat et al. (2020) proposed a dual-spiral type plane

spring to connect the gearbox output shaft and load shaft end, which

successfully realized a flexible drive for rotation. Dos Santos et al.

(2017) designed an active knee orthosis driven by a rotary serial

elastic actuator. In the actuator, a plane flexible coupler with nine

petals was used to connect the gearbox shaft and load shaft with a

200 Nm/rad stiffness and tested.

High-precision parametric design of the flexible coupler is the key

to improving the performance of flexible joints. Carpino et al. (2012)

proposed a torsional spring for a serial elastic actuator and arranged it

in parallel to acquire enough torque load capacity for robot joints and

verified the design. Paine et al. (2015) proposed a distributed torque

control design and provided suppression of disturbance according

to the joint order and torque error controlled to a level of 1.38%.

Palli et al. (2011) proposed a design method of a nonlinear flexible

part for a compact design actuator. Negrello et al. (2015) developed a

novel serial flexible element and applied it to humanoid robots, and

successfully improved the impact resistance of the robot. Baccelliere

et al. (2017) designed a modularized flexible drive device for the

robot arms and validated the impact resistance with experiments.

Sun et al. (2018a,b) proposed an Archimedes spiral repositioning

mechanism for a variable stiffness structure and further improved the

output structure to enlarge the stiffness range. Generally, the spring

or flexible element can be parameterized, and the finite element

method can be used to analyze the performance, such as stiffness,

but the parameter optimization is still a big challenge because of the

complex geometry.

This paper proposed a neural network aided flexible joint

structure optimization method with Design of Experiment (DOE)

for the nuclear power plant inspection robot. With this method, the

dual-spiral flexible coupler of the joint was optimized with regard

to the minimum mean square error of the stiffness successfully.

The optimal flexible coupler was demonstrated and tested. The

FIGURE 1

The schematic diagram of the inspection robot and the flexible joint.

(A) Schematic diagram of the inspection robot. (B) Schematic diagram

of the flexible joint.

remaining article is structured as follows. In Section 2, the inspection

robot and flexible joint solutions are proposed, and the response

relationship between each parameter and the stiffness of the flexible

coupler is studied. In Section 3, the topological structure parameters

of the flexible coupler are optimized by the neural network and

the DOE optimization method. In Section 4, the performance

evaluation experiment conducted is shown and the abilities achieved

by the flexible joint are presented, along with the performance

indicators. Finally, in Section 5, the conclusions of this article

are presented.

2. Methods and materials

According to the work requirements (flexible interaction

between robots and nuclear power facilities), an inspection

robot and flexible joint solutions are proposed. The topology

structure of a flexible coupler is proposed and represented by

parameterization, and the processing materials of the flexible

coupler are selected. The finite-element method (FEM) was used

to analyze the response relationship between each parameter

and stiffness.

2.1. The flexible joint of inspection robot

The schematic diagram of the inspection robot composed of a

machine arm (with six flexible joints) and tracked chassis is shown

in Figure 1. The tool equipped at the end of the arm can move in

six degrees of freedom with the support of six flexible joints. Every

joint is driven by an independent motor through the gearbox, and

the output of the gearbox is connected with the external load by

the flexible coupler. The flexible coupler can avoid/filter out the

impact forces in operation and ensure the force feedback stable

and reliable.
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FIGURE 2

Symmetric dual-spiral flexible coupler.

TABLE 1 Available spring steels for the flexible coupler.

Material 65 Mn 60 CrMnBA 55 CrMnA 50 CrVA

Yield strength,

MPa

430 1080 1080 1127

TABLE 2 Mechanical property of the spring steel, 50CrVA.

Property Value

Yield strength ≥1,127 MPa

Tension strength ≥1274 MPa

Hardness ≤321 HB

Density 7.85 g/cm3

Young’s modulus 2.06× 105 MPa

Poison’s ratio 0.3

2.2. The topological design parameters and
materials of the flexible joint

The typical symmetric dual-spiral structure is selected for the

flexible coupler, as shown in Figure 2. The topological design can be

parameterized as the initial inner radium, R1, initial outer radium,

R2, and beam thickness, h, with a center offset of 3mm. The spiral

beam width is constant and equals R2-R1. The spiral starts from 0◦

and ends at 360◦. If the initial radius, R1 and R2, and beam thickness,

h, are given, the geometry of the flexible coupler can be created. The

three structural parameters of the flexible coupler are involved in the

geometrical optimization.

The available spring steel specifications are listed in Table 1.

Comparing the available spring steels, 50 CrVA is the best with

regard of the yield strength, can be used as material for flexible

coupler. The mechanical properties of 50 CrVA are listed in Table 2.

2.3. The e�ects of the geometrical
parameters on the sti�ness

The DOE method is used to investigate the effects of the

geometrical parameters on the stiffness of the flexible coupler. The

mesh created is shown in Figure 3A. Totally 32613 elements are

generated. Eight lugs are created with equal space for anti-rotation

on the outer diameter of the flexible coupler.

The beam thickness is from 6 to 8mm with the step of 0.2mm;

the initial inner radium is from 22 to 30mm with the step of 0.2mm;

the initial outer radium is from 34 to 41mm with the step of 0.2mm;

the load applied is from 10Nm to 60Nm with the step of 1Nm. The

DOE flow chart is shown in Figure 3B.

The surface response of the effects of the beam thickness and

load is plotted as shown in Figure 4A. The stiffness increases with the

beam thickness but not in a linear relation; it decreases with the load

increase, quickly in the beginning and gently afterward.

The effects of the inner radium and load are plotted as shown in

Figure 4B. The stiffness decreases with the inner radium increase and

increases gently with the load.

The effects of the outer radium and load are shown in Figure 4C.

The stiffness increases with the outer diameter if the load is big

(50–60Nm); the stiffness increases with the outer diameter in the

beginning and then decreases if the load is low (10–20 Nm).

3. Optimization of the flexible coupler
by neural network

According to the response relationship between the topological

structure parameters and the mechanical properties of the flexible

coupler obtained above (introduced in Section 2), the flexible

coupler is optimized by the neural network and the DOE

optimization method.

3.1. Neural network for sti�ness modeling

The flexible coupler stiffness, K, is a function of the beam

thickness, initial inner radium, initial outer radium, external load,

and the properties of the given material (50CrVA) in Section 2.2.

K = f (E, ρ, γ ,R1,R2, h,T) (1)

where E is the Young’s modulus, ρ is the density, γ is the Poison’s

ratio and T is the torque.

According to the analysis of the parameter effects on the stiffness,

the stiffness function is too complex to formalize. To create the

stiffness function for further geometrical parameter optimization,

the neural network method is a good option for complex function

modeling (Wang et al., 2016).

The neural network is composed of the input, hidden layer,

output layer, and output, as shown in Figure 5, whereW is the weight

and b is the bias.

The neural network output is the displacement angle, A and

A =
T

K
=

T

f (E, ρ, γ ,R1,R2, h,T)
(rad). (2)

The Levenberg-Marquardt algorithm was used as the training

algorithm of the neural network to train the neural network model,

including the input layer, the hidden layer, and the output layer.

In the hidden layer, 20 neurons are used for training with the

Levenberg-Marquardt method (Huang and Ma, 2019). The finite
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FIGURE 3

The mesh created and flow chart for the finite element analysis (FEA) of the flexible coupler. (A) Mesh created. (B) Flow chart.

FIGURE 4

The e�ects of the geometrical parameters on the sti�ness. (A) Thickness e�ects on the sti�ness. (B) Inner radium e�ects on the sti�ness. (C) Outer

radium e�ects on the sti�ness.

element analysis results in DOE are used for the neural network

training. 70% of the results are used for the training dataset, 15% are

used for the calibration dataset and the rest 15% are used for the test

dataset. The sample number and fitting mean square errors are listed

in Table 3.

The error and sample distribution are shown in Figure 6.

Most of the samples concentrate around the error of

0. Error is the difference between the flexible coupler’s

target deformation angle and the flexible coupler’s output

deformation angle.
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FIGURE 5

Neural network for the sti�ness modeling.

TABLE 3 Sample number and fitting mean square errors.

Data Training
dataset

Test
dataset

Calibration
dataset

Sample number 126 27 27

MSE 3.515× 10−9 1.782× 10−8 3.18× 10−7

FIGURE 6

Error and sample distribution of the neural network.

3.2. Geometrical parameter optimization
with DOE

DOE method can be used for geometrical optimization,

particularly for the parameterized topological structure. For the

flexible coupler, three geometrical parameters are involved in the

optimization, R1, R2, and h.

The objective of the geometrical optimization is to acquire the

optimal parameters, R1, R2, and h, of the flexible coupler to ensure

the stiffness is closer to the design requirement, 450 Nm/rad, with the

error no more than 0.3% in the given load range, 0Nm≤T ≤ 60 Nm.

The above geometrical optimization objective can be summarized

as the stiffness mean square error is the minimum in the load range

of (10, 60) Nm with the step of 10Nm, the objective function is

defined as,

S =
1

6

6
∑

i=1

(

10i

A (10i)
− 450

)2

(3)

TABLE 4 Parameter ranges and steps of initial iteration.

Parameter Min (mm) Max (mm) Step

R1 24 30 2

R2 34 40 2

h 6 8 1

TABLE 5 Parameter ranges and steps for the second iteration.

Parameter Min (mm) Max (mm) Step

R1 25 27 1

R2 39 41 1

h 6.5 7.5 0.5

TABLE 6 Parameter ranges and steps for the third iteration of Point 1.

Parameter Min (mm) Max (mm) Step

R1 24.5 25.5 0.5

R2 38.5 39.5 0.5

h 6 7 0.5

TABLE 7 Parameter ranges and steps for the third iteration of Point 2.

Parameter Min (mm) Max (mm) Step

R1 26.5 27.5 0.5

R2 40.5 41.5 0.5

h 6.5 7.5 0.5

3.2.1. Initial iteration
The initial iteration is to find the possible optimal point with a

big step to ensure the computation load on an affordable level. The

parameter ranges and steps are listed in Table 4. The beam thickness,

h, is from 6mm to 8mmwith a step of 1mm; the initial inner radium

is from 24mm to 30mmwith a step of 2mm; the initial outer radium

is from 34 to 40mm with a step of 2mm. The load applied is from

10Nm to 60Nm with a step of 10Nm. The iteration results show

that the best point is the parameter set 17, with h = 7mm, R1=

26mm, andR2 = 40mm.However, the average stiffness is only 387.76

Nm/rad, which is 14.78% lower than the target stiffness, 450 Nm/rad.
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FIGURE 7

The sti�ness and angular displacement of the optimal coupler. (A) Sti�ness. (B) Angular displacement.

3.2.2. The second iteration
The result of the initial iteration shows the outer radium, R2, is

40mm, which reaches the boundary. The second iteration is to reduce

the parameter range according to the result of the initial iteration and

refine the step to half level. Meanwhile, slightly increase the up limit

of R2 to 41mm. The parameter ranges and steps are listed in Table 5.

The second iteration results show that the best result with regard to

the objective function value is the geometrical parameter set 1, (h =

6.5mm, R1 = 25mm, R2 = 39mm), with the objective function value

of 6.6 (Nm/rad)2. The second best is the geometrical parameter set 13

(h = 7mm, R1 = 27mm, R2 = 41mm), with the objective function

value of 65.5 (Nm/rad)2. Both the best and second-best points are

selected for further iteration to ensure the real global optimal point

to be found.

3.2.3. The third iteration
The third iteration is around the best (Point 1) and the second-

best point (Point 2) obtained in the second iteration with a refined

step of 25% of the initial step used in the initial iteration. The

parameter ranges and steps for Point 1 are listed in Table 6, and those

for Point 2 are listed in Table 7. The third iteration results of Point

1 show that the best point is the geometrical parameter set 14 (h

= 6mm, R1 = 25mm, R2 = 39.5mm) with the objective function

value of 4.2 (Nm/rad)2. The third iteration results of Point 2 show

that the best point is the geometrical parameter set 18 (h = 7mm,

R1 = 27.5mm, R2 = 41.5mm) with the objective function value of

6.6 (Nm/rad)2.

The comparison of the third iteration results about Point 1 and

Point 2 shows that the optimal geometrical parameter set is (h =

6mm, R1 = 25mm, R2 = 39.5 mm).

The result shows that the parameter-optimized coupler meets

the optimization target. The stiffness and angular displacement of

the optimal coupler are plotted in Figure 7. The stiffness means the

square error is 0.91 (Nm/rad)2 and the stiffness error is less than 0.2%

of the target stiffness (450 Nm/rad).

3.3. Strain stress analysis of the optimal
coupler

The optimal coupler properties were verified by FEA. The optimal

coupler is analyzed with FEA under the load of 60Nm applied on

the central hole. The stress distribution is shown in Figure 8. The

maximum stress is 1111.1 MPa, which does not exceed the yield

strength of 50CRVA (1127 MPa).

4. Experiment and result

To verify the optimization result, the flexible coupler was

processed according to the optimized parameters, and a test rig was

built for experimenting.

4.1. The setup of experiment

The test piece of the optimal coupler is fabricated with a wire

EDM process, as shown in Figure 9A. The material is 50 CrVA.

The test rig is shown in Figure 9B. The joint equipped with a

flexible coupler is fixed on the base of the test rig. One end of

the F/T sensor (SRI-M4325K1) is connected to the output end

of the flexible coupler through a flange, and the other end is

fixed on the base. The work of the joint is controlled by the

motor driver (ELMO G-SOLTWI15/100EE1) and the software (EAS

II). The angular displacement is measured by the encoder (RLS

MRA029BC010DSE00) on the opposite of the flange. Output force

and moment of the flexible coupler are measured by the F/T

sensor, and the data is recorded by software (iDAS R&D). Detailed

information on the F/T sensor is shown in Table 8.

4.2. Experiment steps

4.2.1. Step 1: Gage calibration
The F/T sensor and encoder must be calibrated before the

experiment. The calibration of the F/T sensor adopts the standard

weight loading method, and the calibration of the encoder adopts the

standard protractor measurement.

4.2.2. Step 2: Equipment operation
Power on all experiment equipment (motor, F/T sensor, driver,

and so on) and start the software to ensure that all equipment is

functional. Rotate the gearbox (shown in Figure 1) output shaft to the

initial point (the point where the deformation of the flexible coupler

is 0). Reset the indications of the F/T sensor and encoder to zero.
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FIGURE 8

Static structure analysis of the optimal coupler.

FIGURE 9

The setup of experiment. (A) The optimal flexible coupler. (B) Test rig

for the flexible coupler.

4.2.3. Step 3: Experiment and data record
Control the output shaft of the gearbox (shown in Figure 1) by

the software to rotate to the experiment point and stay for 3 s, record

the F/T sensor data of the 3 s, and take the average value as the

measurement result. After one test, return the output shaft position

of the gear box to the initial point (introduced in Section 4.2.2), reset

the indications of the F/T sensor and encoder to zero. Then start the

next measurement. Each group of data is measured three times, and

the average value is taken as the experiment result.

4.3. Experiment result

The experiment result of the optimal flexible coupler is plotted in

Figure 10. The stiffness error is within the range of±0.25 % and align

TABLE 8 The information of F/T sensor.

Parameter Value Unit

Sensor SRI-M4325k1 /

Fx 200 N

Fy 200 N

Fz 400 N

Mx 20 Nm

My 20 Nm

Mz 20 Nm

Crosstalk 2.5 %F. S

Non-linearity 0.5 %F. S

Hysteresis 0.5 %F. S

Free air resonant freq 1,500 Hz

FIGURE 10

Test results of the optimal coupler.

with the optimization target (introduced in Section 3.2, the error is

no more than 0.3%).

5. Conclusion

This paper proposed a neural network aided flexible joint

structure optimization method with DOE for the nuclear power plant

inspection robot. With this method, the flexible coupler of the joint

was optimized with regard to the minimummean square error of the

stiffness. The optimal flexible coupler was demonstrated and tested.

According to the analysis and test results, the following conclusions

can be drawn:

(1) The neural network method can be used for modeling the

stiffness of the flexible coupler with regard to the geometrical

parameters as well as the load on the base of the results of the

FEA with DOE.

(2) With the aid of the neural network model of the stiffness, the

dual-spiral flexible coupler structure can be fully optimized for a

target stiffness, 450 Nm/rad in this case, and a given error level,

0.3% in the current case, with regard of the different loads.

(3) The optimization with DOE should be iterated at least three

times with the refined parameter ranges and steps to ensure the

result is the real global optimal.

(4) The optimal flexible coupler meets the design requirement; the

stiffness is 450 Nm/rad, and the error is <0.3%.
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Further research includes (a) the modeling and analysis of the

dynamic performance of the flexible joint; (b) the control system and

frequency response analysis of the flexible joint; (c) the other tests of

the inspection robot.
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