
TYPE Original Research

PUBLISHED 06 July 2023

DOI 10.3389/fnbot.2023.1039644

OPEN ACCESS

EDITED BY

Yimin Zhou,

Chinese Academy of Sciences (CAS), China

REVIEWED BY

A. B. Ferozkhan,

C. Abdul Hakeem College of Engineering and

Technology, India

Eiji Uchibe,

Advanced Telecommunications Research

Institute International (ATR), Japan

*CORRESPONDENCE

Zhongxue Gan

ganzhongxue@fudan.edu.cn

Yi Liu

liuyi_@fudan.edu.cn

RECEIVED 08 September 2022

ACCEPTED 19 June 2023

PUBLISHED 06 July 2023

CITATION

Li W, Liu Y, Ma Y, Xu K, Qiu J and Gan Z (2023) A

self-learning Monte Carlo tree search algorithm

for robot path planning.

Front. Neurorobot. 17:1039644.

doi: 10.3389/fnbot.2023.1039644

COPYRIGHT

© 2023 Li, Liu, Ma, Xu, Qiu and Gan. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A self-learning Monte Carlo tree
search algorithm for robot path
planning

Wei Li1, Yi Liu1*, Yan Ma1, Kang Xu1, Jiang Qiu1 and

Zhongxue Gan1,2*

1Academy for Engineering and Technology, Fudan University, Shanghai, China, 2Ji Hua Laboratory,

Department of Engineering Research Center for Intelligent Robotics, Foshan, China

This paper proposes a self-learning Monte Carlo tree search algorithm (SL-MCTS),

which has the ability to continuously improve its problem-solving ability in single-

player scenarios. SL-MCTS combines the MCTS algorithm with a two-branch

neural network (PV-Network). The MCTS architecture can balance the search

for exploration and exploitation. PV-Network replaces the rollout process of

MCTS and predicts the promising search direction and the value of nodes, which

increases theMCTS convergence speed and search e�ciency. The paper proposes

an e�ective method to assess the trajectory of the current model during the self-

learning process by comparing the performance of the current model with that

of its best-performing historical model. Additionally, this method can encourage

SL-MCTS to generate optimal solutions during the self-learning process. We

evaluate the performance of SL-MCTS on the robot path planning scenario. The

experimental results show that the performance of SL-MCTS is far superior to

the traditional MCTS and single-player MCTS algorithms in terms of path quality

and time consumption, especially its time consumption is half less than that of

the traditional MCTS algorithms. SL-MCTS also performs comparably to other

iterative-based search algorithms designed specifically for path planning tasks.

KEYWORDS

Monte Carlo tree search (MCTS), path planning, neural network, Markov decision process
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1. Introduction

Path planning is a critical problem in logistics and robotics and has been further applied

to many areas (Zhang et al., 2019; Aggarwal and Kumar, 2020; Li et al., 2021). The objective

of path planning is to obtain an optimal and collision-free path from the origin to the

destination. In recent years, collective intelligence algorithms have been widely used for

path planning. These algorithms solve path planning problems by simulating some natural

phenomenon or biological behaviors such as particle swarm optimization (Cheng et al.,

2021; Halder, 2021; Yu et al., 2022), ant colony optimization (ACO) (Xiong et al., 2021),

and genetic algorithm (Lee and Kim, 2016). The collective intelligence algorithm is based on

the iterative search to find the solution but typically suffers from poor solution quality, slow

convergence and inefficient search (Dai et al., 2019; Cheng et al., 2021).

Monte Carlo tree search (MCTS) is an iterative approach which executes random

sampling in the simulation and collects action statistics to enable educated choice in

subsequent iterations. Since the number of simulations in each iteration can be considered

the number of agents searching in the state space, it is also regarded as a collective intelligence

algorithm (Qi et al., 2018, 2021). Agents find a reasonable solution, and then refine it to

find an optimal one in the subsequent iteration. One of the most significant advantages
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of MCTS is that the algorithm does not require domain-specific

knowledge, with only search rules specifying which actions are

possible and which are terminated in each state. It allows MCTS

to be used in any task that can be modeled with decision trees

(although it may be helpful to add domain-specific knowledge).

Moreover, MCTS can run additional iterations to improve its

performance. In particular, MCTS is biased towardmore promising

states when adding nodes to the search tree. These properties

of MCTS make its search process faster than most collective

intelligence algorithms. However, with the increasing number of

simulations, its search speed also becomes slow. This work proposes

an algorithmic framework of self-learning MCTS to address this

problem.

MCTS is often adopted in applications, such as games (Crippa

et al., 2022), combinatorial optimization problems (Perez et al.,

2012), planning problems (Pellier et al., 2010; Dam et al., 2022),

and scheduling problems (Huang et al., 2022; Kung et al., 2022).

MCTS was initially proposed by Gelly and Wang (2006). Later,

Kocsis and Szepesvári (2006) developedMCTS as the first computer

Go program, and MCTS rapidly gained widespread attention due

to its significant success in playing Go. While some new work

applies MCTS and its variations on tasks such as two-player

games (Gelly et al., 2012) and multi-player games (Sturtevant,

2008; Scariot et al., 2022), so far there is only a little work about

single-player tasks (Schadd et al., 2012). For SameGame, Schadd

et al. (2012) proposed Single Player Monte Carlo Tree Search

(SP-MCTS) to improve the performance of MCTS on this single-

player game. SP-MCTS overperformed previous works in single-

player deterministic complete information games by adjusting the

selection and back-propagation strategies. Furthermore, Crippa

et al. (2022) improved the performance of SP-MCTS in SameGame

by solving the deadlock problems. Dam et al. (2022) tried to use

MCTS to find feasible solutions in robot path planning. This work

shows that a suitable sampling range, hyper-parameter of sampling

configuration and exploration strategies could substantially boost

the performance of MCTS significantly. In summary, the MCTS

algorithms mentioned above are based on the conventional MCTS

framework, i.e., they focus on solving a single problem through a

large number of random searches in the simulation process, which

is a greedy way to find a solution. It leads the search process to be

inefficient.

In recent years, the outstanding performance of AlphaGo Zero

in playing the gameGo (Silver et al., 2016, 2017) further highlighted

the capabilities of MCTS. The critical characteristic of AlphaGo

Zero is to assess each game’s trajectories based on the self-play

results. However, self-play in two-player zero-sum scenarios is

based on game relationships, and it is not directly transferable to

be used in single-player scenarios. The main challenge is evaluating

the current model’s solution quality in the environment without

the game relationship. In this paper, we construct a self-learning

approach for single-player tasks, which enables the single-player

MCTS to improve its problem-solving ability by learning from

its historical experience. The proposed self-learning MCTS (SL-

MCTS) combinesMCTS with a neural network (PV-Network). The

framework of MCTS can balance the exploration and exploitation

of search. PV-Network replaces the rollout process of the traditional

MCTS framework and predicts the search probability of each

subsequent move and the state value, which reduces the operational

time of SL-MCTS. This work presents a method to evaluate

the performance of the current model’s solution for the self-

learning process of SL-MCTS by comparing the current model’s

performance with the solution obtained from the best historical

model so far. The current solution is scored higher (lower) if

better (worse) than the previous optimal solution. This method

can guide PV-Network to make predictions accurately, increasing

the effectiveness of SL-MCTS search. SL-MCTS generates training

data based on the solutions of the current model and their

corresponding scores. In the self-learning process, PV-Network

improves its selection probability and score prediction accuracy by

learning the historical experience of SL-MCTS. The enhanced PV-

Network can, in turn, guide SL-MCTS to find a better solution. The

above process is repeated to gradually improve the problem-solving

ability of SL-MCTS. In this paper, we validated the effectiveness of

the proposed method in the classic and widely used path planning

scenario.

The main contributions of this paper are summarized as

follows:

1. We propose a self-learning framework to continuously improve

the problem-solving ability of SL-MCTS in a single-player

environment.

2. This study proposes a method to evaluate decision quality in

single-player scenarios, which utilizes the best historical models.

By utilizing this evaluation method, the SL-MCTS algorithm can

consistently and effectively enhance its decision-making capacity

in single-player scenarios.

3. We demonstrate that SL-MCTS effectively improves problem-

solving ability through self-learning process in robot path

planning scenario. Comparisons with other MCTS algorithms

and collective intelligence algorithms also confirm the superior

efficiency of SL-MCTS.

The rest of this paper is organized as the following. Section

2 presents the construction of environmental maps and the

definition of the path planning problem in this paper, the

procedure of conventional MCTS algorithms, and the detail

of SL-MCTS algorithm. Section 3 provides the experimental

setting and experimental results of SL-MCTS. We also compare

the performance of SL-MCTS with traditional MCTS SP-MCTS

algorithms and other collective intelligence algorithms in robot

path planning scenarios. The paper is concluded in Section 4, where

we also discuss ideas for future works.

2. Materials and methods

2.1. Problem formulation

2.1.1. Path planning problem
This paper utilizes the grid model to form the robot’s working

environment for path planning tasks. As shown in Figure 1A,

the space is partitioned into N × N blocks, whereby the black

grids represent obstacles (grids with barriers), and the white grids

represent free space (areas where the robot can move). To identify

obstacles, white grid cells are represented by 0, whereas back grid

units are represented by 1.
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A B

FIGURE 1

(A) Environment model. (B) An example of a two-dimensional path planning problem with eight directions.

Figure 1B is an example of a 6 × 6 grid map. The task

information includes a pair of origins and destinations. The set of

all nodes is denoted as X, where XO denotes the set of obstacles

and XE contains all the feasible. The origin and destination are

respectively denoted as ms and md. The relationship between all

feasible nodes (XE) is denoted as G = (M,E), where M ∈
XE and E is the edges to neighbor nodes of M. AE(m) =
{

m′ | (m,m′) ∈ E,m 6= m′
}

represents all feasible neighbors of

node m. N(AE(m)) is the number of the feasible nodes of m. The

cost of each edge is recorded as 1. Therefore the path planning

can be described as an agent starting from position xs at time

step t0 to position xd. At time step t1, the agent selects action

a1 and moves to the next state s1. After T steps, the agent

reaches the position xd in ST . The sequential solution is path =
((a0, a1, . . . , at , . . . , aT), a0 = xs, aT = xd, at ∈ AE(at−1)), and the

path length is
∑t=T−1

t=0 cost(at , at+1).

2.1.2. Markov decision process of path planning
We model the search process of path planning as a Markov

Decision Process (MDP). The process can be described as shown

in Figure 2. At each time step, the map is defined as state St(t =
0, 1, 2, 3, ...,T). The neural network predicts the state value vt and

the selection probabilities pt for each state St . The choice of action

at+1 is together determined by vt and pt , executing action at+1 and

transferring to the next state St+1. This process continues until the

agent reaches the end.

2.2. Monte Carlo tree search

To explicitly compare the differences between the framework

of traditional MCTS and that of SL-MCTS, we describe the flow

of the traditional MCTS algorithm in this part. For the family of

traditional MCTS algorithms, their steps are similar.

Two fundamental concepts guide the search process of MCTS

algorithms: (1) the true value of an action can be approached

by a large number of stochastic simulations; (2) these values

can be effectively used to adjust the policy to the best-preferred

strategy. MCTS builds a search tree to estimate the values of the

moves. These estimates (especially those of the most promising

directions) become more and more accurate as the iterative search

increases. Generally, the basic MCTS algorithm has four main

processes (as shown in Figure 3): selection, expansion, simulation,

and backpropagation. The tree policy is used to balance exploration

and exploitation in the search and also determines the search

direction. The Default Policy aims to calculate the action value

of the non-terminal state by rapidly exploring a certain depth of

the tree in the rollout. The rollout subtree provides the statistics

for MCTS decision-making. The general approach of the rollout

is to select actions based on uniform distribution. In the rollout

process, a quick search is performed according to the default policy

to produce a rollout subtree and find a result until the limits on

the maximum number of iterations and the maximum depth of

exploration are reached. In general, with a larger number of search

depths and iterations, MCTS performs well, but it also causes the

problem of inefficient search.

2.3. SL-MCTS algorithm

Algorithm 1 presents the pseudocode of SL-MCTS. SL-MCTS

combines MCTS with a two-branch neural network (PV-Network)

which guides the evaluation phase of SL-MCTS (Figure 4). The

search process of SL-MCTS is shown inAlgorithm 1, lines 3-12. PV-

Network has two branches that output the selection probabilities p

of all feasible nodes and a state value v, respectively (line 7). The

selection probability p of each node is output after the search (line

10). At the end of the task, the solution score z is evaluated by

comparing it with the optimal historical model (line 13), which

means the quality of paths. The training process is shown in lines

15–20. In the training process, the parameters of PV-Network are

updated, which makes the select probability p and state value v

closer to the search probability π and path quality score z of

previous SL-MCTS (line 16). Finally, these new network parameters

are used in the next iteration of self-learning to make the search

direction of SL-MCTS more accurate. The map and historical path

information are fused as input state St . The selection probability p is
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FIGURE 2

Modeling path planning problem as a Markov decision process.

FIGURE 3

The traditional MCTS in one iteration. This process starts from a root node. Tree Policy is used to select feasible nodes. Default Policy or Rollout

Policy is used to rapidly find the result in simulation. Finally, the result 1 is backpropagated to all nodes visited during this iteration.

a vector. It enables the quick search process of SL-MCTS to bemore

efficient than MCTS. The state value v is a scalar representing the

path quality in each direction predicted at this position. It guides

SL-MCTS toward the best-preferred strategy.

The pipeline of SL-MCTS is shown in Figure 4. It includes

four steps: Selection, Expansion, Evaluation and Backpropagation.

Suppose that at time step t, the agent is at node mt . Regard mt

as the root node. One iteration of SL-MCTS at time step t is as

follows:

1. Selection. Ifmt is not a leaf, the agent uses Tree Policy to descend

through the search tree until the most urgent expandable node

is found. The Tree Policy of SL-MCTS is represented by Eqs (1)

and (2). Equation (1) balances between exploitation (Q̄(x)) and

exploration (U(st , x)) of search.

mnext = argmax
x∈AE(mt)

(Q̄(x)+ U(st , x)) (1)

U(st , x) =
CpuctP(st , x)

√
ln N(mt)

1+ N(x)
(2)

where mt is the location of agent in the search tree; st is the

environment information atmt ; x is the child ofmt , x ∈ AE(mt);

P(st , x) is the selection probability of each child node x and is one

of the predictions of PV-Network; AE(mt) is a set of legal action

for mt ; N(mt) is the visit count of mt ; N(x) is the visit count of

x; Cpuct > 0 is a hyperparameter, which means the amount of

exploration performed; mnext is the branch selected for further

exploration.

2. Expansion. If mt is a leaf node, the available neighbor node(s)

AE(mt) are added to expand the search tree.

3. Evaluation. PV-Network predicts the state value v and the

selection probability p in the iteration.

4. Backpropagation. The visited count and action value Q are

backpropagated through the search tree to update nodes’
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Output: PV-Network model fθ

1: Initialization: Map information, PV-network fθ

and other parameters.

2: repeat

3: while termination-condition-not-met do

4: state′ ← state

5: for Iter ←0, MaxIteration do

6: vl ← TreePolicy

7: (p, v) ← PV-Network(statevl)

8: Backup the visited count N and the action

value Q

9: end for

10: action, searchprob ← Select-action-by-visited

-number (state′)

11: state ← Interact-with-the-environment (action)

12: end while

13: score z ← Evaluating-with- optimal-historical

-model (path)

14: Output Dataset (st , searchprob, z)

15: value, selectionprob ← Prediction-by-PV-network

(st)

16: loss ← Loss-function (searchprob, selectionprob,

z, value)

17: Updating PV-network parameters f ′θ

18: if f ′θ better than fθ in tournament then

19: Recording f ′θ as the optimal historical model.

20: end if

21: until end

Algorithm 1. SL-MCTS path planning algorithm.

statistics. The Q value corresponds to the aggregate reward of

all rollouts that pass through this state. The statistics are update

by Eqs 3) and (4):

N(mn)
′ = N(mn)+ 1 (3)

and

Q̄′ =
N(mn)× Q̄+ v

N(mn)′
(4)

where mn is one node in the search tree. Q̄ is the action value of

mn before it is updated; Q̄
′ is the value after it updates; N(mn) is

the visited number ofmn; The state value v is one of the outputs

of PV-network.

When the iteration limit has been reached, the next movemt+1
is selected from node mt based on the search probability π of

SL-MCTS:

π(a|st) = argmax
a

N(a)

N(mt)
, a ∈ AE(mt) (5)

where a is the child node ofmt ; N(a) is the visited count of node a.

SL-MCTS differs from the Simulation phase of the traditional

MCTS algorithm. PV-Network replaces the rollout process in

the traditional MCTS algorithm and can predict the selection

probability of the feasible nodes and the state value. SL-MCTS has a

more efficient search process and a more accurate search direction.

2.3.1. PV-network
The architecture of PV-Network is shown in Figure 5. PV-

network consists of a backbone and then is divided into a policy

branch and a value branch to output the selection probability p

and the state value v. The backbone consists of three convolutional

layers, and the kernel size is 3 × 3 with stride one and activated by

the ReLU function. This network utilizes the convolutional layers to

extract local information on the map, followed by fully connected

layers to extract global information. The number of channels of

these three convolutional layers in the backbone is 32, 64, and 128,

respectively. The output of the backbone is used as input to the

policy branch and value branch. The policy branch outputs a vector

p. The value branch outputs a scalar, v.

Figure 6 represents transforming from map information to the

input features of PV-Network. The size of input St is n × n × 4

where n × n is the map size. The input comprises four binary

feature matrices. The first matrix represents the start position of

the task (Figure 6, Layer 0); the second represents the end position

(Layer 1); the third represents the position of all obstacles on the

map (Layer 2); the fourth represents the position of the nodes on

the historical route (Layer 3). The four metrics are represented

by “1” for existence and “0” for non-existence. For example, in

Layer 3 in Figure 6, the node on the path is noted as “1” and

the other as “0.” p is a vector including the probability of the

feasible nodes at St . The state value is a scalar in the range

of (0, 1).

2.3.2. The framework of self-learning
Self-learning is the process of SL-MCTS generating data for

training and gradually improving its decision-making ability by

learning those data. Firstly, the initial model is recorded as the

optimal historical model. Then, the quality of SL-MCTS’s solutions

is evaluated using the optimal historical model. A higher score

is given to the solution of the current model if it is better than

the existing model. As a result, the current model is recorded as

the optimal historical model, and the optimal historical mode is

generally updated during the training. The data for model training

is generated based on the solutions and scores. Repeating the above

process, SL-MCTS improves its ability to find the optimal path and

generates better training data.

The detail of the self-learning framework is shown in Figure 7.

The beginning and destination of the task represent m0 and mE,

and the parameters of the PV-Network fθ are denoted by θ . The

initialization state of each task is noted as s0. The Evaluation process

of SL-MCTS makes sampling based on the predicted selection

probabilities p and the state value v by the network fθ . Then,

SL-MCTS selects a node m1 to move and transfer from s0 to s1.

The search finishes until the endpoint xd is reached. As shown

in Figure 7, SL-MCTS generates a path path. The quality of its

path is evaluated by the result of the optimal historical model

to get a score z. The optimal historical model is the best model

based on the evaluation method of the Elo rating system (details

in Section 3.2) during the training process. SL-MCTS with the

optimal historical model produces a result of pathb. The path

score is calculated depending on Eqs (7) and 8). path is split into

data of the format (st , pt , z) based on the number of nodes. These
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FIGURE 4

The pipeline of SL-MCTS. fθ is PV-Network. The state is the input of the neural network. The output is the selection probabilities p of each child node

and the state value v. The deep blue node indicates the endpoint, the red node indicates the historical route during the search, and the yellow node

indicates the feasible space under the current state.

FIGURE 5

The architecture of PV-Network. W is the width of the map and H is the height of the map. p is the output of the policy branch and v is the output of

the value branch.

FIGURE 6

Transformation process from map information to input features.

data are independent and are stored in the training data set. In

the training process, SL-MCTS solves many random tasks and

generates data. Lastly, PV-network is trained by randomly sampling

the training data set in a small batch. This method of splitting data

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1039644
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2023.1039644

FIGURE 7

Training pipeline of SL-MCTS algorithm. path is the result of SL-MCTS algorithm in the training process. pathb is the path planning result of SL-MCTS

with the optimal historical model, which is used to assess the path score of path. The outcome of the assessment is recorded as path score z. The

historical experiments are saved in the training data set. The beginning and destination positions of path and pathb are the same, but the path lengths

may di�er. m0 and mE are the beginning and destination of the example task in this figure. SL-MCTS generates training data by solving many tasks

with di�erent beginning and destination positions.

can significantly break the association between paths and improve

the algorithm’s stability.

The loss function of PV-Network is:

loss = (z − v)2 − π
T log p+ c ‖θ‖2 (6)

where c is a hyperparameter controlling the level of L2 weight

regularization, which is to prevent overfitting and controls the

contribution of the regularization term to the loss function. The

network parameters θ are adjusted based on the loss function

Eq. (6) to minimize the error between the predicted state value

v and path score z and to maximize the similarity between the

selection probability p and the search probability π .

To expand the range of exploration of SL-MCTS in the training

process and avoid falling into the local optimal trap, Dirichlet noise

is added to the selection probability p(s, a)← (1−ε1)p(s, a)+ε1ηa,

where s is the state, a is legal action, and p(s, a) is the predicted

selection probability of each a. ε1 is set to 0.5, and it is used to

encourage the exploration of different actions. Dirichlet noise is

also added into the search probability π ← (1−ε2)π+ε2ηa, where

ηa ∼ Dir(0.3) and ε2 is 0.25, to encourage SL-MCTS to explore

every feasible node during the training process. The higher ε2 is,

the more different states are explored and thus enhance the data

diversity of the PV-Network.

In the path planning task, the path evaluation is not only related

to whether the endpoint is reached but also considers the length

of the path. Using only Euclidean distance or Manhattan distance

is not reasonable to evaluate path quality. This method can not

reflect the existence of obstacles on the line between two points

and provides the agent with ambiguous feedback that does not

reflect changes in the quality of its solution. Therefore, SL-MCTS

generates a path score representing the current problem-solving

ability by comparing their results with the optimal historical model.

The path score is given by Eqs (7) and (8):

l = len(pathb)− len(path) (7)

z =
2

1+ e−γ l
− 1 (8)

where γ ∈ (0, 1]. If the result of Eq. (7) is <0, it denotes that

the solution of the optimal historical model is better than the

solution of the current model. path receives a score under zero,

which means that similar decisions are discouraged. In contrast,

if the result of Eq. (7) exceeds 0, indicating that the path length

of the optimal historical model is longer than that of the current

model, path receives a score above zero, which means that those

similar decisions are encouraged. Furthermore, if SL-MCTS with

the current model fails to reach the destination, this path receives

a score, −1. The evaluator of SL-MCTS is dynamically adjusted

according to the update of the optimal historical model during the

training process.

2.4. Computational complexity

As there are many different tasks in path planning, it is

difficult to assess the computational complexity accurately. The

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1039644
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2023.1039644

computational complexity of SL-MCTS is analyzed by referring

to the calculation method in Yonetani et al. (2021) and Qi et al.

(2021). The difference in computational complexity between SL-

MCTS and MCTS is mainly in the simulation phase at each time

step. Therefore, the analysis focuses on the differences in their

computational complexity during the simulation phase. Suppose

the length of the path is l, a is the feasible space for each node, and k

is the number of simulations per search process. For the traditional

MCTS algorithm, the maximum search depth in the rollout process

is d, and its computational complexity is denoted as O(lk(ad)).

The computational complexity of PV-Network is defined asO(|V|)
in the training process, according to Yonetani et al. (2021). After

training, the computational complexity of the SL-MCTS inference

phase isO(lka) andO(lk) for worst and best cases.

3. Experiments and analysis

This section provides detailed descriptions on the experimental

settings, parameter adjustments, and evaluation methods. We

conducted the training process of SL-MCTS on maps with

different scales and analyzed the variability of its problem-solving

capability. Additionally, we compared the performance of SL-

MCTS with other advanced single-player MCTS algorithms and

collective intelligence algorithms. Furthermore, we verified the

generalization of SL-MCTS on random layout maps with specific

obstacle densities and the dynamic environmental map. Finally,

we conducted ablation experiments to explore the impact of

different simulation times on SL-MCTS. The open-source code,

experimental data, and detailed visualizations of the experimental

data and results can be found in Liu (2023).

3.1. Experimental settings

These experiments were implemented in Python 3.7 using

PyTorch. They were executed on a high-performance computing

server, using two GeForce RTX 2080 SUPER GPUs for algorithm

training in parallel and CPUs that are 3.20 GHzwith 16GBmemory.

The number of simulations of SL-MCTS is set to 30 and Cpuct

is 1/
√
2. The Adam optimizer optimizes the neural network. The

learning rate is 10−3, and its initial multiplier (lrm) is 1.0. To avoid

updating the policy parameters too much at each training iteration,

the KL divergence (Nielsen, 2020) is used to adjust lrm to improve

the training stability. Referring to the Proximal Policy Optimization

algorithm (Schulman et al., 2017), the probability distributions

generated before and after policy updating (pold and pnew) are used

to calculate their KL divergence based on the result of Eq. (9). lrm is

adjusted by Eq. (10).

KL(pold ‖ pnew) =
∑

pold · log
pold
pnew

(9)

lrm =

{

1.5·lrm, if KL <
kltarg
2 and lrm < 10

lrm
1.5 , if KL > 2· kltarg and lrm > 0.1

(10)

where the parameter kltarg is 0.02.

In order to investigate the performance of SL-MCTS on

environmental maps of varying scales, we conducted experiments

on 6 × 6 and 16 × 16 maps, respectively. The size of the training

data set is 10,000. If the data set is completely full, older data is

automatically removed as newer data are added Positive samples

are defined as those paths that reach the destination and achieve

equal to or shorter lengths than the optimal historical model’s

results. To provide a high-quality training data set for the initial

training process of SL-MCTS and rapidly promote the ability of SL-

MCTS, the positive sample and negative sample is stored by a 1 : 1

ratio in the training data set at the initial stage of training.

In this paper, SL-MCTS algorithm compares with variants of

MCTS like UCB1 (Auer et al., 2002), MCTS (or UCT) (Kocsis and

Szepesvári, 2006) and the variations of SP-MCTS (such as those

presented in Schadd et al., 2012; Crippa et al., 2022), to verify its

performance. SP-MCTS-CRIPPA (Crippa et al., 2022) is one of

the best single-player MCTS algorithms. Additionally, this paper

compares SL-MCTS algorithm to prevailing collective intelligence

algorithms, including ACO algorithm (Dorigo et al., 2006) and

PPACO algorithm (Luo et al., 2020). PPACO is an improved ACO

algorithm for path planning problems, which is one of the best

ACO algorithms for solving path planning. It has domain-specific

knowledge.

3.2. Evaluation method

Elo rating system (Coulom, 2008) is used to evaluate the

variation of SL-MCTS’s problem-solving ability in the training

process. The initial Elo ratings of algorithms are 1,000. MCTS-

50 and MCTS-150 (Kocsis and Szepesvári, 2006) were chosen for

comparison with SL-MCTS, where the number of them denotes

the number of simulations. The solution of MCTS-150 is generally

better than that of MCTS-50 because the MCTS algorithm can

improve its problem-solving capabilities by increasing the number

of simulations and the depth of exploration. In this paper, we define

the case where SL-MCTS finds the destination, and the path is

shorter than the competitor as a win; the case where it finds the

destination but the path length is the same as the competitor as the

tie; otherwise, it is considered as the failure. The two algorithms

update their rating by a “shorter path finding” tournament, which

consists of 100 different random tasks. The details of updating the

rating are as follows. The expected score of player a is presented as

Ea =
1

1+ 10
Rb−Ra
400

(11)

and the expected score of player b is

Eb =
1

1+ 10
Ra−Rb
400

, (12)

where Ra is the rating of player a. After the tournament, if the actual

rating of player a (Sa) differs from its expectation of Ea, the level Ra
is adjusted as follows:

R
′
a = Ra + K(Sa − Ea), (13)

where K is the hyperparameter, which means the range of changes

in Elo rating. In this paper, the algorithm’s high rating means that it
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wins more times than its opponent in the tournament, i.e. most of

its path lengths are shorter than its opponent’s.

To assess the performance of SL-MCTS on the path

planning problem, we compared the average path length, time

consumption, the standard deviation of path lengths (SD-L) and

time consumption (SD-T), visited range and the percentage of

successfully solved tasks (Success rate). A smaller average path

length reflects a better solution quality of the algorithm. Average

time consumption reflects the algorithm’s efficiency in solving

problems. SD-L and SD-T reflect the variation of the algorithm in

the quality and efficiency of solutions. The visited range represents

the ratio between the number of visited nodes and the total number

of feasible nodes in the map. The success rate is defined as the

proportion of successfully completed tasks to the total number of

tasks and serves as one of the criteria of the algorithm’s problem-

solving performance. We also employed the Mann-Whitney U test

as a significance test to determine the mean difference between the

experimental results for algorithms. The significance level is set to

0.05.

3.3. Results and discussion

3.3.1. Performance of self-learning
SL-MCTS’s self-learning performances in two scale

environmental maps are respectly present. One hundred tasks

with different origins and destinations are randomly selected as

a tournament from each environment. We used the Elo rating to

illustrate the variation of SL-MCTS’s problem-solving ability. The

initial rating of the Elo rating system (Detailed in Section 3.2) is set

to 1,000.

Figure 8A shows the Elo rating curves of SL-MCTS, MCTS-

50 and MCTS-150 in an obstacle-free 6 × 6 environmental map.

Figure 8B shows the performance of SL-MCTS in the 16 × 16

map, which includes 211 feasible nodes and 45 obstacle nodes (as

shown in Figure 10). As traditional MCTS (Kocsis and Szepesvári,

2006) has no ability to learn the history experiment, its Elo rating

is not changed. As shown in Figure 8A, the Elo rating score of

MCTS-150 is 1,234, while that of MCTS-50 is 766. In contrast, SL-

MCTS algorithm has a considerably lower rating of 680 before any

training has taken place, in contrast to the other two traditional

MCTS algorithms. At the 1th evaluation in the training process of

the SL-MCT, the rating of SL-MCTS is 904, which is higher than

MCTS-50. At the 7th evaluation, its Elo rating is 1,240, which has

already exceeded MCTS-50 and MCTS-150. These results indicate

that the problem-solving capability of SL-MCTS in the 6 × 6 map

is better than MCTS algorithms at 7th evaluation. Eventually, the

Elo rating of SL-MCTS is 1,368. This value is approximately twice

the original Elo rating of the SL-MCTS. As shown in, Figure 8B,

the Elo rating of MCTS-50 is 712, and the Elo rating of MCTS-150

is 1,288. The Elo rating of the SL-MCTS algorithm is 576 before

the training process, much lower than MCTS. The Elo rating of

the SL-MCTS at the 1th evaluation exceeds the rating of MCTS-

50, which is 760. At the 3th evaluation, SL-MCTS’s Elo rating is

1,280, which is much similar to that of MCTS-150. The rating of

SL-MCTS exceeds that of MCTS-150 at the 6th evaluation. The Elo

rating of SL-MCTS finally reaches 1,632, which is almost triple the

initial rating of SL-MCTS. These results show that the performance

of SL-MCTS in the 16× 16 map is better than MCTS algorithms at

6th evaluation. In conclusion, the experimental results in Figure 8

indicate that SL-MCTS performs much worse than MCTS-50 in

the beginning (the maximum difference in their Elo rating is

136), which indicates SL-MCTS’s initialized PV-Network cannot

compete with the rollout process of conventional MCTS. Through

self-learning, the Elo rating of SL-MCTS exceeds that of MCTS-50

at the first evaluation in both size environmental maps and exceeds

that of MCTS-150 at about the seventh evaluation. Finally, after

several training iterations, the Elo rating of SL-MCTS increased

approximately three-fold from its initial Elo rating. This also

implies that the performance of SL-MCTS significantly enhanced

via the self-learning process. The experimental results suggest that

SL-MCTS, guided by the PV-Network, can navigate toward a more

efficient direction in comparison to the traditional MCTS’s rollout

process, ultimately leading to better solutions.

To further verify the variation of SL-MCTS’s path-finding

capability in the self-learning process, we randomly selected 50

tasks in the 6 × 6 map as a test set and compared the average

total path length of SL-MCTS at different training stages with

that of MCTS-50 (as shown in Figure 9). For each algorithm, the

experiments were conducted five times on the test set, using the

same parameters. The average of these experiments was used to

determine the average total path length (pathat) of algorithm, which

is calculated by:

pathat =
1

5

5
∑

i=1

50
∑

j=1
lenij, (14)

where i represents the times of repeated experiments, while j

denotes the number of tasks within the test set. pathat for MCTS-50

is 152. Figure 9 illustrates the pathat values generated by SL-MCTS

at various learning stages. During the second training iteration, SL-

MCTS generated an pathat value of 134, which is comparatively

shorter than that of MCTS-50. The pathat value of SL-MCTS shows

a decreasing trend as the number of training iterations increase.

In particular, the final pathat of SL-MCTS compared to that in

the second training iteration decreased by 26%. The evidence of

Figures 8, 9 implies that SL-MCTS has significantly improved its

path-finding capacity through the process of self-learning.

In order to further investigate the guiding role of the PV-

network during the reasoning process of SL-MCTS, the predicted

probability results of feasible action selection in each step of SL-

MCTS were analyzed in this section. As shown in Figure 10, the

number on the map means the predicted probability and guides

the search direction. “S” represents the start and “E” represents the

destination of the task. “C” represents the position of the agent in

that state. Figures 10A–C present the three states of the two tasks

in 6 × 6 map. Figures 10D–F present the three states of one task

in 16 × 16 map. Figure 10A shows that the probability of nodes

close to the side of node E is significantly higher than nodes far

from node E. The selection probability of node (3, 0) is 0.86, the

highest value at that state. Figures 10B, C are the two states of

another task which starts at (0,1) and ends at (2,4). The agent

starts from node S in Figure 10B, and the agent is at node C in

Figure 10C.
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A B

FIGURE 8

The Elo rating curves of SL-MCTS algorithm. (A) Represents the Elo rating curve for SL-MCTS in the 6× 6 map. (B) Represents the Elo rating curve for

SL-MCTS in the 16× 16 map.

In Figure 10B, the maximum probability value is 0.79 at the

node (1, 2). The agent executed action (1, 2) and transferred to the

next state, as shown in Figure 10C. The node (2, 3) has the highest

probability of 0.78 in this stage. The prediction results of SL-MCTS

(shown in Figures 10A–C) all present that the nearest node to the

destination has the highest selection probability. Figures 10D–F

show the three states of one task in the 16 × 16 map, which starts

at node (2, 6) and ends at node (14, 14). In Figure 10D, the agent

starts from node S. Node (3, 7) has the highest selection probability

of 0.5. The agent in Figure 10E is at point C, and the selection

probability of (10, 14), which is closest to (14, 14), is the highest,

and others are low; Figure 10F is the next state of Figure 10E,

where the selection probability of node (11, 15) is the highest. The

results in Figure 10 show that the well-trained PV-Network can

provide a reasonable selection probability for SL-MCTS based on

the global information of the map environment and the current

location.

3.3.2. Comparative experiments
SL-MCTS is compared with UCB1 (Auer et al., 2002), MCTS

(Kocsis and Szepesvári, 2006), SP-MCTS (Schadd et al., 2012), and

SP-MCTS-CRIPPA (Crippa et al., 2022) to show its performance

in path planning. The comparison algorithms include UCB1-50,

UCB1-150, MCTS-50, MCTS-150, SP-MCTS-50, SP-MCTS-150,

SP-MCTS-CRIPPA-50, SP-MCTS-CRIPPA-150 where the numbers

indicated the number of simulations. SL-MCTS is also compared

with the prevailing collective intelligence algorithm, ACO (Dorigo

et al., 2006) and PPACO (Luo et al., 2020). The comparison

algorithms included ACO-15-15, and ACO-30-30, where the

numbers indicate the number of populations and iterations of

ACO. The parameters of the ACO algorithms are set as follows:

α = 1, ρ = 0.3, β = 1. We chose three tasks with different

origins and destinations: (1, 0) to (8, 0), (2, 14) to (7, 3), and (14,

2) to (6, 15). The span of the tasks’ beginning and destination

is increasing, which means that the task’s difficulty is increasing.

This is because, for the algorithm, a larger task span means that

it needs to explore a wider area and potentially deal with more

obstacles, making it more challenging to search for the destination.

The algorithms’ shortest path length (Best) in the fifty times of

repeated testing, results of the average path length, the average

time consumption, the visited range, the standard deviation of path

length (SD-L) and time consumption (SD-T), the success rate of

finding the destination and p-value after executing the task 50 times

are shown in Table 1.

Table 1 shows that, for the traditional MCTS algorithms, in

Task 1, UCB1-50 have the shortest optimal path of 10, with

the shortest average path length of 14.1. In Task 2, SP-MCTS-

CRIPPA-150 obtained an optimal path length of 12 and a shortest

average path length of 15.5, but its success rate in solving problems

is 0.94. In Task 3, UCB1-150 has an optimal path of 26 than

other traditional MCTS algorithms and an average path length

of 48.08. It’s worth mentioning that the time consumption of the

traditional MCTS algorithm increases significantly as the iteration

times increase. For collective intelligence algorithms, ACO-30-

30 has the smallest optimal solution and average path length

for Task1, at 10 and 10.68 respectively. For Task 2 and Task 3,

PPACO-30-30 has the shortest average path length out of all ACO

algorithms, which is 15.22 and 17.68 respectively. Compared to

traditionalMCTS algorithms and collective intelligence algorithms,

SL-MCTS-30 only explored 14.69% of the environment in Task

1 and it takes an average of 2.99 s. The quality of SL-MCTS-

30’s path is only inferior to ACO-30-30 and ACO-15-15. Its time

consumption is the least. Its optimal path length is 10, with an

average path length of 11.08. Furthermore, the standard deviation

of SL-MCTS-30 in terms of path length and time consumption

is the lowest among other compared algorithms, at 1.59 and 0.04

respectively. This suggests that the performance of SL-MCTS-

30 is more stable. Mann–Whitney U-tests were performed to

obtain the results between the algorithm with the best Average

length (shown in bold italics) and other algorithms. In Task 1,

ACO-30-30 is determined to be the best method. The results of

the significance test show that there is no significant difference

between AS-30-30 and SL-MCTS-30. In Task 2, the optimal
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TABLE 1 Performance of UCB1, MCTS, SP-MCTS, SP-MCTS-CRIPPA, ACO, PPACO, and SL-MCTS algorithms on di�erent tasks.

Algorithm Best Average
length

Average
time(s)

Visited
range(%)

SD-L SD-T Success
ratio(%)

p-value

Task 1

UCB1-50 10 16.42 6.93 100 3.52 1.60 1 1.44×10−17

UCB1-150 10 14.1 19.00 100 2.22 3.50 1 1.03× 10−5

MCTS-50 12 16.92 4.16 100 3.43 0.90 1 2.26× 10−3

MCTS-150 10 14.41 18.33 100 2.59 3.59 0.99 2.12× 10−3

SP-MCTS-50 12 19.08 8.35 100 8.34 5.09 1 1.12×10−11

SP-MCTS-150 12 18.84 24.41 100 4.00 6.63 1 5.93×10−24

SP-MCTS-CRIPPA-50 11 15.3 6.54 100 3.22 1.45 0.92 8.33×10−15

SP-MCTS-CRIPPA-150 12 15.5 21.48 100 2.17 3.49 0.94 2.73×10−24

ACO-15-15 11 99.52 11.00 6.24 0.52 0.68 1 3.99× 10−5

ACO-30-30 10 10.68 10.05 98.10 0.69 0.94 1 –

PPACO-30-30 11 11.58 6.24 99.22 1.04 0.68 1 0.007

SL-MCTS-30 10 11.08 2.99 14.69 0.59 0.04 1 1.85× 10−1

Task 2

UCB1-50 17 28.2 13.04 100 5.96 2.92 1 1.60×10−26

UCB1-150 17 24.78 41.16 100 5.26 10.96 1 3.13×10−21

MCTS-50 16 39.08 17.59 100 11.04 6.67 1 2.92×10−27

MCTS-150 16 38.94 64.97 100 9.13 20.66 1 8.04×10−33

SP-MCTS-50 12 19.08 8.35 100 8.34 5.09 1 6.15× 10−4

SP-MCTS-150 12 18.84 24.41 100 4.00 6.63 1 7.03×10−10

SP-MCTS-CRIPPA-50 30 42.36 20.75 100 9.18 4.91 0.76 1.61×10−20

SP-MCTS-CRIPPA-150 12 15.5 21.48 100 2.17 3.49 0.94 2.82×10−22

ACO-15-15 15 17.66 10.46 99.52 1.19 0.48 1 3.39×10−12

ACO-30-30 14 16.46 61.57 99.52 0.98 0.69 1 9.16× 10−8

PPACO-30-30 13 15.22 60.84 99.52 1.86 2.24 1 –

SL-MCTS-30 13 16.20 5.34 19.90 3.12 1.17 1 2.08× 10−2

Task 3

UCB1-50 42 59.27 29.46 100 10.62 6.02 0.98 2.36×10−47

UCB1-150 26 48.08 94.42 100 9.74 23.47 1 2.65×10−39

MCTS-50 33 56.85 28.89 100 13.03 6.76 0.96 8.61×10−38

MCTS-150 26 47.24 65.84 100 9.18 12.71 1 2.26×10−40

SP-MCTS-50 42 73.16 42.66 100 19.97 17.76 1 3.66×10−44

SP-MCTS-150 42 73.16 42.66 100 19.97 17.76 1 1.30×10−35

SP-MCTS-CRIPPA-50 – – – – – – – –

SP-MCTS-CRIPPA-150 84 84 172.21 100 – – 0.04 –

ACO-15-15 17 20.70 16.62 90.05 1.75 1.08 1 1.65×10−14

ACO-30-30 16 18.9 82.97 98.52 1.45 3.09 1 5.67× 10−5

PPACO-30-30 16 17.68 69.46 99.60 1.55 2.19 1 –

SL-MCTS-30 18 42 24.48 28.90 21.89 14.13 0.92 2.82×10−14

The best value for each evaluation metric is marked in bold.
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FIGURE 9

The average total path length of SL-MCTS in di�erent training stages (as shown in columns 2, 3, 4, 5) compared with that of MCTS-50 (As shown in

column 1).

A B C

D E F

FIGURE 10

(A–F) The predicted selection probability of SL-MCTS for di�erent states. “S” represents the start and “E” represents the destination of the task. “C”

represents the position of the agent in the state. Where the value of the number represents the predicted selection probability value of SL-MCTS. The

number in red indicates the position with the highest value in the predicted result.
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FIGURE 11

Visualization of path planning results for ACO, MCTS, and SL-MCTS. Black nodes indicate obstacles. Blue nodes indicate origins, green nodes indicate

destinations and red lines indicate the found paths. The range visited by the algorithm is marked with light blue nodes.

solution of SL-MCTS-30 is 13, which is the same as PPACO-

30-30, second only to SP-MCTS and SP-MCTS-CRIPPA-150.

The average path length of SL-MCTS is 16.20, only 0.7 longer

than that of SP-MCTS-CRIPPA-150 and PPACO-30-30, but the

exploration space of SL-MCTS is only 19.9%, one fifth of other

algorithms. Additionally, the average consumption time for SL-

MCTS was the shortest amongst all algorithms, taking only 5.34s.

PPACO-30-30 is determined to be the best method. The results

of the significance test show that there is no significant difference

between PPACO-30-30 and SL-MCTS-30. In task 3, the optimal

solution of SL-MCTS-30 is 18, which is only second to the ant

colony algorithms. Moreover, SL-MCTS explores only 28.90% of

the environment space and solves the problem in just 25.48 s,

making it a highly efficient algorithm. In conclusion, SL-MCTS

with a simulation count of 30 performed significantly better than

traditionalMCTS and SP-MCTS algorithms with simulation counts

of 50 or 150. Its performance is comparable to that of ACO,

which is proficient at solving path planning tasks. The experimental

results show that under the guidance of the PV-Network, SL-

MCTS converges faster than other MCTS algorithms. However,

SL-MCTS is considerably more efficient than ACO in terms of

time consumption and search space for most tasks, with time

consumption of less than half and search space only one fifth that

of ACO. It is meaningful to mention that some MCTS algorithms

are unable to solve the complex path planning problem (such

as SP-MCTS-CRIPPA), mainly because most traditional MCTS

algorithms are designed for game scenarios and not proficient at

solving path planning tasks. However, with the proposed method

in this paper, SL-MCTS has made significant improvements over

MCTS algorithms

Figure 11 visualizes the planning results of SL-MCTS, MCTS-

50, MCTS-150, SP-MCTS-50, ACO-15-15, and ACO-30-30. Black

nodes indicate obstacles, blue nodes indicate origin, green nodes

indicate destinations and red lines indicate found paths. The range

visited by the algorithm is marked with light blue nodes. The

visualization of these algorithms’ path planning results presents

that the paths of SL-MCTS have fewer inflection points than other

traditional MCTS algorithms, and the number of visited nodes is

much less than others. This also indicates that the search of SL-

MCTS is efficient, and the path of SL-MCTS is reasonable and

competitive with other baselines.

3.3.3. Generalization of SL-MCTS
This section aims to evaluate the potential of SL-MCTS in

tackling tasks in previously unseen environmental maps. Two sets

of experimental maps, each with three different obstacle densities,

were constructed based on the two map sizes. Fifty tasks of random

starting and ending points were selected on each map to form the

test set of each map. The map size is 6 × 6, defined as MAP 1, and

16× 16, defined as MAP 2. The number of SL-MCTS’s simulations

is 30. Maps are named Sparse Map 1, Moderate Map 1, Dense Map

1, Sparse Map 2, Moderate Map 2 and Dense Map 2 according to

the density of obstacles in the maps (5%, 25%, and 55%). In Table 2,

we presented the performance of SL-MCTS by analyzing the ratio

of SL-MCTS to MCTS-50 in terms of path length (Ratiolength) and
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TABLE 2 Comparative analysis of path lengths and time consumption for

SL-MCTS and MCTS-50 in the test map sets.

Ratiolength Ratiotime Success rate(%)

Sparse-Map 1 0.92 0.59 100

Moderate-Map 1 0.94 0.67 100

Dense-Map 1 0.91 0.55 100

Sparse-Map 2 0.84 0.54 100

Moderate-Map 2 0.82 0.58 100

Dense-Map 2 0.64 0.42 100

time consumption (Ratiotime), which were calculated by:

Ratiolength =
1

50

50
∑

i=1

pathAi

pathBi
(15)

Ratiotime =
1

50

50
∑

i=1

timeAi

timeBi
(16)

where i is the number of the testing tasks. A represents SL-MCTS

and B represents MCTS-50. A lower ratio indicates that SL-MCTS

performs better than MCTS-50 in terms of path quality or time

consumption. The success rate is defined as the proportion of

successfully completed tasks to the total number of testing tasks.

In Table 2, the success rates of SL-MCTS in maps are 100%.

It means that SL-MCTS can successfully tackle the tasks in these

unseen environmental maps. The Ratiolength value is about 0.90

on the set of maps for MAP 1 and about 0.76 on that for

MAP 2. The Ratiotime value is about 0.5 both on maps 1 and 2.

These experiments indicate that SL-MCTS performs significantly

better than MCTS-50 in terms of path quality, particularly in

environments with a map size of 16. Furthermore, SL-MCTS

completes the same task using only half of the time computation

required by MCTS-50. SL-MCTS performs better on MAP2 than

on MAP1, which may be due to the larger search space and greater

number and variety of obstacles on MAP2, making tasks more

challenging and enabling SL-MCTS to demonstrate its superior

capabilities. In general, these experiments demonstrated that SL-

MCTS not only is able to find the tasks’ solutions on the new maps

but also completes them with half the time required by MCTS-50,

particularly for tasks with shorter lengths.

We conducted additional experiments on random maps

with different obstacle distributions. By comparing the proposed

algorithm’s performance in solving the same task in these diverse

environmental maps, we further assessed SL-MCTS’s ability to

adapt to novel environmentalmaps.We chose two test tasks: one on

a map with a size of 6, with a starting point at (0, 0) and an ending

point at (5, 5); the other on a map of size 16 with a starting point

at (3, 8) and an ending point at (14, 14). The considerable span of

both tasks on their respective maps allowed us to examine different

obstacle distributions. Tables 3, 4 display the results performed by

SL-MCTS on different-sized maps, and these results are compared

with those of MCTS-50. The “prior map” in these tables refers to

the environmental map utilized for SL-MCTS learning, while the

“random map” denotes an environment with a different obstacle

distribution compared with “prior map,” which SL-MCTS has

unseen before. We have provided more information about the

environmental map in the public code repository (Liu, 2023). The

test tasks were repeated 50 times per map. This section analyzed

the ability of SL-MCTS to handle tasks in new environments by

comparing its best and average path lengths, the standard deviation

of path lengths (SD-L), average time consumption (average time)

and standard deviation (SD-T) of time consumption, and success

rate with those of MCTS-50. We also employed the Mann-Whitney

U test as a significance test to determine the mean difference

between the experimental results for SL-MCTS and MCTS-50 (the

best Average length, shown in bold italics).

According to the results in Table 3, SL-MCTS outperforms

MCTS-50 in both the “prior map” and new “random map”

environments. Specifically, SL-MCTS had a much shorter average

path length thanMCTS-50, along with a smaller standard deviation

in path lengths. This indicates a higher solution quality and

lower fluctuation compared to MCTS-50. In addition, SL-MCTS

also consumed significantly less time on average than MCTS-50.

Furthermore, the results of the significance test in both “random

map1” and “random map2” show that there is a significant

difference between SL-MCTS and MCTS-50, with SL-MCTS being

the best method. Table 4 shows that SL-MCTS’s average path length

and SD-L in “random map” environments were similar to those

of MCTS-50. SL-MCTS’s success rate on “random maps” was 0.68

lower than that on the “prior map.” This could be attributed to the

excessive density of obstacle distribution between the start and end

points, including an obstacle corridor that blocks access between

the beginning and the destination. This significantly increases the

difficulty of the testing task on the “random map” compared to

that on the prior map. The results of the significance test in

the “random map” show that there is no significant difference

between SL-MCTS and MCTS-50. The results show that SL-

MCTS can solve the tasks on the new maps, indicating that the

problem-solving ability of SL-MCTS has generalization in unseen

environmental maps.

3.3.4. Ablation experiments
This section presents the effect of PV-Network on the SL-MCTS

algorithm with a different number of simulations. Thirty tasks

are randomly selected from the 16 × 16 map as a test set. The

variation of the total length and the total time consumption of SL-

MCTS-30 and MCTS-30 was compared on the test set. As shown

in Figure 12, five different simulations (10, 30, 50, 70, and 90) are

chosen. The total path lengths of SL-MCTS and MCTS decrease as

the number of simulations increases, which means that increasing

the number of simulations can improve the quality of MCTS’s

solution. However, for different simulation numbers, SL-MCTS

has significantly shorter path lengths than MCTS, being almost

half of MCTS’s lengths. Although the time consumption of both

algorithms increases with the number of simulation, traditional

MCTS algorithms become more time-consuming with higher

simulation numbers. And the time consumption of SL-MCTS is

consistently lower than MCTS, about two-fifths of MCTS’s total

time. Experiments show that PV-Network can provide accurate

guidance for the search process of SL-MCTS, and SL-MCTS is more
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TABLE 3 Results of SL-MCTS and MCTS on di�erent 6 × 6 maps.

Best Average length SD-L Average time SD-T Success rate(%) p-value

Prior map

SL-MCTS 6 8.42 2.43 0.51 0.35 0.95 –

MCTS-50 9 15.16 4.16 0.86 0.22 1 3.01× 10−11

Random map1

SL-MCTS 7 9.55 2.45 0.56 0.34 0.78 –

MCTS-50 16 26.60 12.85 0.78 0.22 1 0.017

Random map2

SL-MCTS 7 10.45 2.36 0.68 0.144 0.83 –

MCTS-50 8 13.8 3.42 0.94 0.27 1 1.69× 10−10

The best value is highlighted in italic bold.

TABLE 4 Results of SL-MCTS and MCTS on di�erent 16 × 16 maps.

Best Average length SD-L Average time SD-T Success rate(%) p-value

Prior map

SL-MCTS 12 20.16 13.61 7.12 5.19 0.74 –

MCTS-50 20 33.84 9.09 15.17 4.03 1 5.79× 10−8

Random map

SL-MCTS 15 32.5 15.63 5.11 7.06 0.68 0.07

MCTS-50 15 32.20 15.05 12.72 6.04 1 —

The best value is highlighted in italic bold.

FIGURE 12

Comparison of the variations in total path length and total time consumption of SL-MCTS and MCTS with di�erent numbers of simulations.

efficient in finding higher quality solutions than the traditional

MCTS algorithms.

3.3.5. Test on dynamic environmental map
Finally, we tested the performance of SL-MCTS in a dynamic

obstacle environment to deal with stochastic environments. In

addition to the eight actions shown in Figure 1B, the robot’s actions

included the “wait” action. As shown in Figure 13, there was a

dynamic obstacle in the environmental map, which is clockwise,

and its movement trajectory was shown as an orange line. The

trajectory has the starting point of (1, 2) and four turning points

at (4, 2), (4, 4), (0, 3), and (0, 2). The robot’s initial position was

(0, 0) and the endpoint was (5, 5). Figure 13 shows two trajectories
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A B

FIGURE 13

(A, B) The path planning results of the robot in a dynamic environment.

of the robot to deal with this dynamic obstacle. Figure 13A shows

the robot successfully reached the destination without colliding

with the dynamic obstacle. The robot chooses to bypass the area

of the dynamic obstacle to reach the endpoint. Figure 13B shows

the trajectory of the robot colliding with the dynamic obstacle at

position (3, 3). To avoid collision and task failure, the robot waits

in position (3, 2). These experiments demonstrated that SL-MCTS

can handle dynamic environments. More related animations have

been uploaded to the public repository (Liu, 2023).

4. Conclusion

Inspired by the idea of “self-player” for two-player zero-sum

games, this paper proposes a self-learning single-player MCTS,

named SL-MCTS, to continually enhance the problem-solving

ability of agents in single-player scenarios. The main contributions

of this paper include constructing the self-learning framework

for single-player scenarios and designing an efficient evaluation

method to assess the quality of the agent’s strategies in the learning

process. In the experiment section of this paper, a widely-renowned

robot path planning scenario was utilized to validate the efficacy

of SL-MCTS. In the self-learning process, the increasing Elo

ratings of SL-MCTS show that the “self-learning” method for the

single-player task is effective. The performance of SL-MCTS is

also compared with that of MCTS, SP-MCTS, SP-MCTS-CRIPPA,

and the currently popular collective intelligence algorithms in

many different tasks. The results demonstrate that SL-MCTS can

find better solutions with fewer iterations than other iteration-

based algorithms, which indicates the convergence speed of SL-

MCTS is faster. Additionally, in terms of time consumption,

the speed of SL-MCTS in solving problems is faster than other

comparative algorithms. It can solve problems in less than one-

third of the time required by other algorithms. These indicate

that the guidance of the PV-Network greatly improves the search

efficiency and the resulting quality of SL-MCTS in path planning

tasks. Furthermore, we validated the adaptability of SL-MCTS in

many new environmental maps. The results show that SL-MCTS

can find solutions with better quality in half the time required by

MCTS-50. This experiment demonstrates that the problem-solving

ability of SL-MCTS is universal across different environmental

maps. Finally, we validated SL-MCTS’s adaptability in a dynamic

environment. The experimental results show that it can successfully

solve tasks in dynamically complex scenes. In conclusion, this paper

demonstrates that the mechanism of “self-learning” can be applied

in single-player scenarios. It provides a new way for the agent with

learning capabilities to break through its ceiling of problem-solving

ability. Comparative experiments have confirmed that SL-MCTS

can alleviate the common issues of slow convergence, poor search

quality and inefficient search in traditional MCTS algorithms, while

also significantly improving search speed.

In the future, we will further explore applying self-learning with

other collective intelligence algorithms. We will also try to extend

self-learning to improve the performance of the robotic arms in the

continuous action space of the path planning problem.
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