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Introduction: Brain-Computer Interfaces (BCI) can allow control of external

devices using motor imagery (MI) decoded from electroencephalography (EEG).

Although BCI have a wide range of applications including neurorehabilitation,

the low spatial resolution of EEG, coupled to the variability of cortical activations

during MI, make control of BCI based on EEG a challenging task.

Methods: An assessment of BCI control with different feedback timing strategies

was performed. Two different feedback timing strategies were compared,

comprised by passive hand movement provided by a robotic hand orthosis. One

of the timing strategies, the continuous, involved the partial movement of the

robot immediately after the recognition of each time segment in which hand MI

was performed. The other feedback, the discrete, was comprised by the entire

movement of the robot after the processing of the complete MI period. Eighteen

healthy participants performed two sessions of BCI training and testing, one with

each feedback.

Results: Significantly higher BCI performance (65.4 ± 17.9% with the continuous

and 62.1 ± 18.6% with the discrete feedback) and pronounced bilateral alpha and

ipsilateral beta cortical activations were observed with the continuous feedback.

Discussion: It was hypothesized that these effects, although heterogenous across

participants, were caused by the enhancement of attentional and closed-loop

somatosensory processes. This is important, since a continuous feedback timing

could increase the number of BCI users that can control a MI-based system

or enhance cortical activations associated with neuroplasticity, important for

neurorehabilitation applications.
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1. Introduction

Brain-Computer Interfaces (BCI) are systems that allow control of external devices
using information extracted from the central nervous system (Wolpaw et al., 2002). The
most common type of non-invasive BCI designs decode users’ intentions from their
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electroencephalogram (EEG). In order for users to encode their
intentions in the EEG, different strategies or paradigms have been
proposed, such as P300, steady-state visual evoked potentials, and
motor imagery (MI) (Rashid et al., 2020). Particularly, MI, the
mental rehearsal of the movement of a limb such as the hand or
foot, can elicit cortical activations similar to those observed during
passive and actual movement (Kraeutner et al., 2014). An advantage
of the MI paradigm is that it is endogenous (BCI users do not need
an external stimulus for controlling the system). Therefore, several
applications of MI-based BCI have been proposed, ranging from
entertainment to neurorehabilitation (Plass-Oude Bos et al., 2010;
Monge-Pereira et al., 2017). However, the non-stationary nature
of the EEG signal, its low spatial resolution, and the variability
of cortical activations during the performance of MI, makes the
correct identification of users’ intentions with this paradigm a
challenging task (Rashid et al., 2020).

Different strategies have been reported for increasing MI-based
BCI control. For example, feature extraction and classification
algorithms that comprise the BCI processing stage can affect
user control with the system, since these algorithms allow to
identify individuals’ EEG patterns of MI. For this reason, extensive
research has been performed regarding feature extraction and
classification algorithms in MI-based BCI applications (Blankertz
et al., 2008; Ang et al., 2012; Carino-Escobar et al., 2018; Tang
et al., 2019). The feedback stage of a BCI, which indicates the
degree of performance that users had with the system, can also
impact the ability to control the BCI. Specifically, MI-based BCI
feedbacks can be mainly cataloged into visual, such as the simple
movement of a cursor or the realistic movement of the imagined
limb displayed in a virtual reality setup (Choi et al., 2020), and
kinesthetic feedbacks, like vibration or passive movement exerted
by a robotic device (Cantillo-Negrete et al., 2019; Fleury et al.,
2020). It has been reported that kinesthetic feedbacks allow users
to elicit more pronounced cortical activations compared to other
feedback modalities (Shu et al., 2017; Cantillo-Negrete et al.,
2019). This is positive for BCI control since enhanced cortical
activations permit processing stages to better differentiate between
MI tasks. Enhanced cortical activations can also be desirable for
neurorehabilitation applications because they have been associated
with neuroplasticity, a recovery mechanism of neurological diseases
such as stroke (Ward and Cohen, 2004; Pekna et al., 2012).

Some studies have reported EEG-based BCI performance
and cortical activity changes with different types of feedback.
Vourvopoulos et al. (2016) compared different types of visual
feedback, reporting a lack of performance difference between
a virtual reality feedback and a simple 2-D feedback, albeit
more pronounced cortical activations were observed with the
virtual reality feedback. Barsotti et al. (2018) reported higher BCI
performance and more stable cortical activity with a vibrotactile
feedback compared with a solely visual feedback. Cantillo-Negrete
et al. (2019) reported higher BCI performance and cortical
activations with a kinesthetic robotic feedback compared to a visual
feedback. However, the timing of these BCI feedbacks within the
MI paradigm might also affect performance and elicited cortical
activity. This has been remarked by Fleury et al. (2020) by defining
two possible types of feedback timing, discrete and continuous.
A discrete feedback is presented to the BCI user at the end of a
MI trial, after the processing of all the EEG time windows in which
MI was performed. On the other hand, a continuous feedback is

presented to the BCI user immediately after one of the trial’s MI
time windows is processed, and thus, can be presented multiple
times during a single trial. Shu et al. (2017) reported one of the few
studies regarding the effects of a continuous kinesthetic feedback
in a MI-based BCI, by assessing vibrotactile stimulation effects in
BCI control and cortical activity when provided at the same time
as hand MI was performed. However, to the authors’ knowledge,
a direct comparison between a same feedback’s continuous and
discrete timing effects in BCI performance and cortical activations
has not been reported. This is important, since one type of
feedback timing could increase the number of BCI users that
can achieve control of a MI system or could enhance cortical
activations associated with neuroplasticity, which is important for
neurorehabilitation applications.

In this study, a comparison between a continuous and a
discrete kinesthetic feedback is presented in a MI-based BCI
application. The kinesthetic feedback was comprised by passive
hand movement elicited by a robotic hand orthosis. It was
hypothesized that the continuous feedback would elicit more
pronounced cortical activations in the somatosensory cortex during
a hand MI task, improving BCI control. The manuscript is
organized as follows: the sample, the BCI system, both feedback
types, the experimental procedure, the BCI metrics, and the
statistical analysis are detailed. This is followed by results regarding
a comparison between BCI metrics with the continuous and
discrete feedbacks and by a discussion of these results. Finally,
conclusions regarding the effects of both feedbacks on BCI control
and cortical activations are presented.

2. Materials and methods

2.1. Participants

Eighteen healthy participants were included in this study,
nine females and nine males, aged between 22 and 32 years
(mean 25.3 ± 3). All participants were right-handed according to
the Edinburgh Inventory for handedness (Oldfield, 1971), naïve
to BCI control, had normal or corrected-to-normal vision, and
did not report neurological pathologies or lesions. The research
was conducted as part of a study approved by the Ethical and
Research Committees of the National Institute of Rehabilitation
“Luis Guillermo Ibarra Ibarra” (registry number 25/19AC). An
informed consent was signed by all participants.

2.2. Brain-computer interface system

The BCI system was comprised by an EEG acquisition stage,
a computer monitor to provide instructions to the participants,
a processing stage, and the feedback stage. EEG recordings were
performed at a sampling rate of 256 Hz with a g.USBamp
biosignal amplifier (g.tec medical engineering GmbH, Schiedlberg,
Austria) and 16 g.LADYBIRD active electrodes from the same
manufacturer. These electrodes were located in the F3, FC3, C5, C3,
C1, CP3, P3, FCz, Cz, F4, FC4, C6, C4, C2, CP4, and P4 positions
of the international 10–20 system. The reference and ground
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FIGURE 1

Brain-computer interface setup employed for the experiment. A participant is shown while attempting to control the robotic hand orthosis using
motor imagery.

electrodes were placed in the right earlobe and in the AFz position,
respectively. Impedances were kept below 5 k� for all recordings.

The processing stage was implemented in a Precision
5820 workstation (Dell Inc., Texas, USA) through a Graphical
User Interface programmed in MATLAB (MathWorks Inc.,
Massachusetts, USA). It was comprised by a calibration (offline)
and a testing (online) mode. In the calibration mode, pre-recorded
EEG data were filtered in the bands 8–12, 12–16, 16–20, 20–24,
24–28, and 28–32 Hz with 30th order band-pass and notch FIR
filters. Afterward, logarithmic variance features for recognizing
between tasks were extracted using Common Spatial Patterns (CSP)
from 1-s windows of each trial, channel, and frequency band,
encompassing the Filter Bank Common Spatial Patterns algorithm
(Blankertz et al., 2008; Ang et al., 2012). CSP relevant features,
selected with Particle Swarm Optimization (PSO), were used to
train a Linear Discriminant Analysis (LDA) classifier (Shi and
Eberhart, 1998). Thus, the calibration mode produced subject-
specific frequency bands, spatial filters, and LDA coefficients
that were used in the testing mode. In the testing mode, 1-s
windows of EEG data were acquired, temporal and notch filtered
in the frequency bands selected with PSO, and classified into
two tasks, using the computed LDA and CSP parameters. Further
details of the BCI system processing stage can be found in the
work of Cantillo-Negrete et al. (2018).

The system had a kinesthetic feedback stage comprised by
a robotic orthosis that was placed in the participants’ right
hand. This robotic orthosis could elicit passive finger flexion
and extension, using a screw mechanism in each finger that
converted rotational motion, provided by an electric motor, into
linear motion. The orthosis was manufactured for the study,
using 3D-printing technology, and aimed at BCI applications. The
maximum linear displacement that could be exerted by the orthosis
was 5.5 cm in either flexion or extension movements, which
was translated into approximately 70–85% of fingers’ maximum
movement range. The orthosis velocity was approximately 1.4 cm/s,
measured as the time that was needed to complete a full extension

of the finger mechanisms in the absence of a load. The orthosis
and its circuitry weighted 386 g and measured 23 and 14 cm
in length and width, respectively. The orthosis was activated
using a Bluetooth communication command transmitted via the
workstation, generated as an output by the BCI processing stage.
Figure 1 depicts the BCI system with each of its stages.

2.3. Continuous and discrete feedbacks

Continuous feedback trials were comprised by the time
structure shown in Figure 2A. First, a rest period of 4 s was
presented in which the participant observed a white cross on the
computer screen. Three seconds after initiating the rest period
a beep sound was played by the monitor’s speakers, alerting the
participant of the incoming MI task. Four seconds after the trial’s
onset, a white arrow pointing to the right side of the monitor
appeared on the computer screen, indicating the participant to start
performing right-hand MI (the instruction was: imagine that you
grasp and release the baseball placed under the palm of your right
hand). This arrow lasted 1.5 s and afterward disappeared, turning
the computer screen black for another 3.5 s. Participants were
instructed to continue to perform right-hand MI while the black
screen was on. Immediately after the BCI system classified a 1-s
window from the 4 to 8 s of the trial’s time structure (the MI period)
as right-hand MI, participants received passive finger flexion at 25%
of the orthosis’ maximum displacement (i.e., a 1.38 cm movement).
Hence, a maximum of four flexion movements could be elicited per
trial. At 9 s from the trial’s onset, the orthosis performed finger
extension movement if the participant previously received finger
flexion. Regardless of the orthosis activation, the screen turned gray
for 5 s after 9 s from the trial onset, indicating the participant to stop
performing the MI task. Finally, the computer screen turned blue
after 14 s from the trials’ onset, in which participants were allowed
to move, blink, and relax. This blue screen lasted randomly between
4 and 6 s to prevent habituation.
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FIGURE 2

Visual instructions and time structure of the trials with: (A) The continuous feedback and (B) The discrete feedback.

The time structure of trials with the discrete feedback is shown
in Figure 2B. The time structure was the same as for the continuous
feedback. However, for trials with the discrete feedback, if three or
more of the 1-s windows processed by the BCI during the MI task
(within the range of 4–8 s of the trial’s structure) were classified
as MI, the robotic orthosis performed a single flexion movement
until its maximum displacement (5.5 cm) was reached, followed
by an extension movement to return to its original position. This
complete movement sequence initialized at 9 s from the trials’
onset. The structure of trials with each feedback was based on the
Graz paradigm and on previous studies that allowed to infer that
the proposed time structures were feasible from the computational
and user perspective (Cantillo-Negrete et al., 2018, 2021).

2.4. Experimental procedure

All recordings took place in a sound-attenuated environment to
reduce external perturbations. Participants were instructed to seat
in a comfortable armchair with a computer monitor placed in front
of them at approximately 1.5 m. Recordings were done across two
sessions in two consecutive days; participants received either the
continuous or the discrete feedback in each session. The sequence
in which each participant received first a continuous or a discrete
session was randomized.

Each session was comprised by a calibration and a testing
phase. In each phase, participants were instructed to perform a

total of 80 trials of right-hand MI, distributed in four runs of 20
trials each with at least 1 min of rest between runs. During the
calibration phase, EEG information was recorded and analyzed to
set the BCI subject-specific parameters for the testing phase (as
described in the BCI System section). In this phase, participants
always received the corresponding feedback in each trial regardless
of the BCI system processing stage’s outputs (Cantillo-Negrete et al.,
2018). In the testing phase, participants received the corresponding
feedback only if the BCI system determined that the MI task was
correctly performed.

2.5. Brain-computer interface system
performance

The percentages of sensitivity (Sens) and classification accuracy
(CA) were used to measure participants’ performance during the
testing phase of each session. Sens reflects the participants’ ability
to control the robotic orthosis during the execution of the MI
task, whereas CA assesses participants’ overall performance with
the BCI system (ability to elicit MI when instructed and to not elicit
it during the rest period). Sens and CA were computed for each
participant using the following definitions:

• True Positives: number of 1-s windows correctly
classified by the BCI system as MI in a trial during the
execution of the MI task.
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FIGURE 3

Participants’ mean Sens (left) and CA (right) achieved with the discrete and the continuous feedback.

• True Negatives: number of 1-s windows correctly determined
as rest by the BCI system in a trial during the rest period.
• False Positives: number of 1-s windows wrongly detected as

MI during the rest period.
• False Negatives: number of 1-s windows wrongly classified as

rest during the execution of the MI task.

2.6. Electroencephalogram analysis

Due to the modulation of sensorimotor rhythms during hand
MI, alpha (8–13 Hz) and beta (14–30 Hz) frequency bands were
analyzed (Pfurtscheller et al., 2006; Leuthardt et al., 2009). Recorded
raw EEG data from each trial of the testing phase was processed
with a 30th order FIR filter from 8 to 30 Hz, and a common
average reference (CAR) spatial filter to reduce reference placement
effects in EEG recordings (Bertrand et al., 1985). Afterward, a
visual inspection of EEG channel data was performed to eliminate
trials with excessive noise artifacts. Cortical activations were
quantified using event-related desynchronization/synchronization
(ERD/ERS) (Pfurtscheller et al., 1999). To this end, power was
calculated for each participant and trial in the alpha and beta
frequency bands using a time-frequency wavelet analysis (Tallon-
Baudry et al., 1997). Complex Morlet wavelets (CMW) were chosen
as the wavelet method due to its reliability for spectral estimations
and common use in the analysis of EEG data (Mouraux and
Iannetti, 2008; Pavlov et al., 2012; Ullah and Halim, 2021). Here,
the EEG signal was convoluted with CMW w

(
t, f0

)
with a Gaussian

shape in time (σt) and frequency domains (σf = 1/2πσt), as
described in Eq. 1 (Tallon-Baudry et al., 1997):

f : w
(
t, f0

)
= A(e−t

2/2σ2
t ) (e2iπf0t) (1)

where A is the normalizing factor
(
1/σt
√

π
)1/2, and the wavelet

family had a ratio of f0/σf = 6. The time-varying power P of the
EEG signal SEGG at frequency f was computed through the square
modulus of the convolution between wavelets and SEGG, as shown
in Eq. 2 (Tallon-Baudry et al., 1997):

P
(
t, f

)
=

∣∣w (
t, f

)
× SEGG (t)

∣∣2 (2)

This analysis was performed from 0 to 8 s of each trial with a
resolution of 0.1 s, and from 8 to 30 Hz, with a 0.5 Hz resolution. To
compute ERD/ERS, power was normalized concerning the average
power calculated during the rest period (PR) in the alpha and beta
frequency bands, as described in Eq. 3 (Pfurtscheller et al., 1999).
Finally, grand averaged topographic brain maps were computed
from the ERD/ERS data of all participants.

ERD/ERS =
P − PR
PR

(3)

2.7. Statistical analysis

A Lilliefors-corrected Kolmogorov-Smirnov test (α = 0.05) was
used to determine non-Gaussian distributions for computed Sens
and CA with each feedback. Thus, differences in Sens and CA
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FIGURE 4

ERD/ERS analysis for the continuous and discrete feedback in the alpha and beta frequency bands. (A) Grand average ERD/ERS time-frequency
maps of central channels C3, Cz, and C4. (B) Effect between the averaged ERD/ERS of the continuous and the discrete feedback in electrodes C3,
Cz, and C4. (C) Topographic maps of the averaged ERD/ERS during the MI task in the alpha and beta frequency bands for both feedback types.
(D) Topographical distribution of the statistically different clusters (p < 0.05) between the continuous and the discrete feedback.

with each feedback were assessed via a Wilcoxon signed-rank test
(α = 0.05).

Statistical power of tested BCI performance differences between
the continuous and the discrete feedback was performed with the
G∗Power analysis software (Heinrich Heine University Düsseldorf,
Düsseldorf, Germany) (Faul et al., 2007). This analysis provided the
probability of committing a type II statistical error with the sample
of 1,440 trials for each feedback type (80 trials for each of the 18
participants included in the analysis).

ERD/ERS differences between the continuous and the discrete
feedback during the MI task were assessed via a cluster-based
permutation test. This analysis is based on non-parametric cluster
randomization with multiple comparison correction (MCP) and
has shown higher statistical sensitivity than traditional MCP
methods such as the Bonferroni correction (Maris and Oostenveld,
2007). This method was selected after a Lilliefors-corrected
Kolmogorov-Smirnov test (α = 0.05) determined that the ERD/ERS
did not have a Gaussian distribution. Two separate analyses were
performed for the alpha and beta frequency bands (α = 0.05).
The cluster-based permutation test was implemented in MATLAB
using the Fieldtrip Toolbox (Radboud University, Nijmegen,
Netherlands) (Oostenveld et al., 2011). To compute the cluster
analysis, the following steps were performed as proposed by Maris
and Oostenveld (2007):

1. The ERD/ERS computed from each participant’s trials during
MI with the continuous feedback (80 trials) were averaged, as well
as, for each participant with the discrete feedback (80 trials). Then,
a dataset containing the participants’ averaged ERD/ERS values for
each of the 16 recorded EEG channels was created.

2. The dataset was randomly divided in two subsets with an
equal number of participants’ averaged ERD/ERS values. Thus, a
random partition was performed.

3. A t-student statistic value was computed via a
paired t-student test between continuous and discrete
ERD/ERS per patient.

4. Channels which ERD/ERS value was larger than the 97.5th
quantile or lower than the 2.5th quantile of a t-distribution were
selected. These selected samples were then clustered into connected
sets based on spatial and temporal closeness.

5. The cluster-level statistics were computed as the sum of the
t-values within every cluster.

6. The maximum of the cluster-level statistics was taken.
7. Steps 2–6 were repeated 5,000 times using a Monte

Carlo approximation, and a histogram of the test statistics
was constructed.

8. The proportion (p-value) of random partitions with larger
cluster-level statistic values in comparison to the previously
calculated histogram was computed.

9. The ERD/ERS clusters of the continuous and the discrete
feedbacks are determined to be significantly different if the p-value
is smaller than the selected critical alpha value of 0.05.

3. Results

Participants’ mean Sens and CA with the continuous and
the discrete feedback during the testing phase are shown in
Figure 3. Grand average Sens with the continuous feedback (mean
73.9 ± 29.1) was significantly higher (p = 0.001) than grand
average Sens with the discrete feedback (mean 69.9 ± 28.8).
Participants who achieved a higher Sens with the continuous
feedback, showed greater improvements during the MI task
between feedbacks (mean slope 14.9 ± 9.8) than participants who
achieved a higher Sens with the discrete feedback (mean slope
7.1 ± 7.5). Similarly, grand average CA was significantly higher
(p = 0.001) with the continuous feedback (mean 65.4 ± 17.9)
in comparison to the discrete feedback (mean 62.1 ± 18.6). The
participants that presented a higher CA with the continuous
feedback, had a more pronounced increase in performance across
feedbacks (mean slope 7.2 ± 4), compared to the participants that
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had a higher CA with the discrete feedback (mean slope 4.4± 4.5).
With the continuous feedback, 12 out of 18 participants achieved
a greater classification accuracy compared to the discrete feedback.
Statistical power for both the Sens and the CA comparison was 0.99.

Grand average ERD/ERS time-frequency maps for central
channels C3, Cz, and C4 during MI for the continuous and
the discrete feedbacks are shown in Figure 4A. These electrode
locations were selected due to their importance in hand MI
differentiation (Pfurtscheller et al., 2006). The effect between the
time-frequency maps of both feedbacks is depicted in Figure 4B
along with the statistically different clusters (p < 0.05) found via
the cluster-based permutation test in electrodes C3, Cz, and C4,
denoted by a black contour. Dashed lines indicate the onset of the
MI task. Figure 4C shows grand average ERD/ERS topographic
maps during the MI task in the alpha and beta frequency bands for
both feedback types, allowing to visualize the average modulations
of both bands in the complete set of recorded EEG channels.
Finally, the results of the cluster-based permutation test between
feedbacks’ ERD/ERS during MI, are shown in topographic maps
presented in Figure 4D, where EEG channels with statistically
different clusters (p < 0.05) between feedbacks are marked (∗). In
Figure 4B, more pronounced ERD for the continuous feedback is
indicated in blue tones, whereas red tones denote more pronounced
ERD with the discrete feedback. Figure 4D indicates a higher (blue
tones) or a lower (red tones) ERD difference between feedbacks,
both indicating significantly more pronounced cortical activations
with the continuous feedback.

Time-frequency maps showed that with both feedbacks,
cortical activations (ERD), were elicited during MI in contralateral
(C3), sagittal (Cz) and ipsilateral (C4) sensorimotor regions. The
cluster analysis showed statistically different clusters (p = 0.05) in
these regions, indicating more pronounced cortical activations with
the continuous feedback in alpha and beta. The largest cluster in
time and frequency domains was observed in the ipsilateral region.

Topographic maps in alpha and beta showed contralateral
activation in the sensorimotor cortex during MI, mainly observed
in central and parietal areas, with both feedbacks. The cluster
analysis showed statistically different clusters (p = 0.05) between
both feedbacks that comprised these sensorimotor regions. In
alpha, more pronounced contralateral and ipsilateral activations
were observed with the continuous feedback, across all recorded
cortex regions. In beta, differences were comprised by more
pronounced ipsilateral activations with the continuous feedback.

4. Discussion

Participants’ ability to control the robotic orthosis was higher
with the continuous feedback than with the discrete feedback. The
averaged difference in Sens across participants was 3.9%, favoring
the continuous feedback. This gain indicates that providing
kinesthetic feedback during the execution of hand MI could
increase the control of an EEG-based BCI system. In addition, this
result is within the range of other reported changes in sensitivity
between different EEG-based BCI strategies. For example, Gwak
et al. (2014) reported a difference in sensitivity of 9.5% between
visual and tactile feedbacks, whereas Bashashati et al. (2007)
described a difference of 2.1% in sensitivity between two different

3-state asynchronous BCI systems. However, it is relevant to
notice that half of the participants achieved a higher sensitivity
with the continuous feedback and the other half with the
discrete feedback. These results suggest that there is a possibility
that a continuous kinesthetic feedback could allow certain BCI
users to receive more kinesthetic stimuli during BCI control.
This could be of particular relevance in the neurorehabilitation
field since a higher BCI therapy dose and intensity has been
associated with a better outcome in patients with physical disability,
like stroke patients (Young et al., 2015). Hence, a continuous
timing feedback could be advantageous for patients’ outcomes in
neurorehabilitation procedures.

Participants’ average global performance with the BCI system,
assessed via the CA, was higher with the continuous feedback
compared to the discrete feedback. Although this difference in
averaged performance was 3.3%, it suggested that the timing
strategy of a same feedback type can have an effect on BCI control.
Furthermore, this difference was higher compared to changes of
less than 2% between visual feedbacks reported by Vourvopoulos
et al. (2016), and also higher than 2.8% of performance difference
between kinesthetic and visual feedbacks (Cantillo-Negrete et al.,
2019). If individual participants’ performance is considered, more
than half of the participants achieved a higher BCI control with
the continuous feedback, showing the likeliness of a greater BCI
control with the continuous feedback. However, this difference
in control was not very different for some participants. These
observations support previously supported evidence that different
feedback types can have an effect in BCI control. For example,
in the study by Barsotti et al. (2018) 14 out of 16 participants
had a better performance with a combination of a visual and
a kinesthetic vibratory feedback compared with only the visual
feedback. McCreadie et al. (2013) reported that most participants
performed slightly better with a visual feedback compared to an
auditory feedback in the first sessions of BCI control. Furthermore,
10 out of 12 participants had a higher performance with a
visual feedback comprised by the movement of a real robotic
avatar, compared to a virtual feedback in the study of Batula
et al. (2017). Therefore, the evidence provided by the current
study implies that there is a chance of significantly improving
a user’s performance with a hand MI-based BCI, if continuous
kinesthetic feedback is used. Furthermore, the overall performance
is competitive compared to other hand MI-based studies (Cincotti
et al., 2007; Lo et al., 2016; Sollfrank et al., 2016; Barsotti et al.,
2018; Zhang et al., 2020). This suggests that the choice of feedback
type is important for achieving an acceptable degree of EEG-based
BCI control and can be further enhanced in some participants
by providing a continuous feedback strategy. Interestingly, three
participants had a lower performance with the discrete feedback
compared to the others, and one had a noticeable low performance
with the continuous feedback. A possible explanation for these
participants’ low performance with one feedback type, could be
that they were part of the approximately 40% reported population
that will have great difficulty in controlling a MI-based BCI,
sometimes referred as BCI illiteracy (Ahn et al., 2013; Lee
et al., 2019). If this is the case, then different feedback choices
could be explored for these types of BCI users since it was
shown that they could increase their performance with one of
the feedback types that they received during the experiment.
This could be important for neurorehabilitation scenarios, since
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patients’ withdrawal from experimental therapies comprised by
BCI interventions have been attributed to frustration caused by
a lack of BCI control, particularly in the first sessions of the
intervention (Simon et al., 2021). Therefore, assessing if a patient
can have a better performance with a continuous or a discrete
feedback strategy could be potentially useful for improving patients’
chances of completing neurorehabilitation interventions.

Cortical activity was significantly more pronounced in alpha
and beta bands with the continuous feedback. This difference
could have been caused by a reinforcement of MI-related cortical
activities due to the closer timing of MI and feedback, and a higher
dosage of stimuli per trial with the continuous strategy. A lower
time between task performance and stimulus could have enhanced
time-dependent neuroplasticity processes, that have been related
with motor learning and improvement of motor function (Murata
et al., 2015). On the other hand, a direct association between the
frequency of a kinesthetic stimulus and more pronounced cortical
activations has been observed in animal models (Ureshi et al.,
2004). In addition, movement repetition has been related to the
induction of neural network changes in humans (Halder et al.,
2005). Therefore, presenting more stimuli in the form of passive
movement during the same time window, could have enhanced
neuroplasticity mechanisms related to motor learning processes
that increased cortical recruitment during MI. A relationship
between more pronounced cortical activity and a continuous
feedback was also reported by Shu et al. (2017) with a vibrotactile
device and was attributed to an improvement of MI vividness
due to the feedback. Interestingly, unlike the study of Shu et al.
(2017) in the present work, stimulation was not always provided to
participants during MI, but was provided only if there was a correct
recognition of MI. In addition, the enhanced cortical activations
were observed during MI of the dominant hand, which were not
observed in the study of Shu et al. (2017) suggesting that continuous
feedback triggered by MI recognition can have a higher impact on
participants’ ability to elicit cortical activations.

Ipsilateral and contralateral cortical activation differences
between feedbacks were observed in alpha, with ERD for the
continuous feedback consistently elicited across the MI period
within trials. Alpha activity has been related to motor control
processes, specifically with the generation of the initial motor
representation during MI (Llanos et al., 2013), and with the
attentional processes required for maintaining MI (Aleksandrov
and Tugin, 2012). Therefore, it can be hypothesized that the
continuous feedback can aid in maintaining the level of attention
required for performing MI tasks, and thus, improving the
ability to perform it. This is probably achieved by providing the
feedback in a shorter time window, which in turn reinforces
multiple times across a single trial, the mental processes of
attention and onset of the MI task. On the other hand, with
beta, cortical activation differences were ipsilateral. Beta has
been related with neural networks that process closed-looped
sensory information during movement tasks (Athanasiou et al.,
2018). Suggesting that the continuous feedback had an effect
in the somatosensory cortex, but unlike the discrete feedback,
this effect extended to both hemispheres by eliciting bilateral
activations. Interestingly, these bilateral activations shown with
the continuous feedback in both alpha and beta could be desired
in neurorehabilitation scenarios, particularly those intended for
stroke. This is because neuroplasticity changes in stroke often

involve both hemispheres, with severely affected patients relying
on the unaffected hemisphere for movement processes (Cassidy
and Cramer, 2017). Therefore, feedback capable of eliciting
somatosensory cortical activations among both hemispheres could
enhance neuroplasticity in stroke patients.

The continuous feedback strategy could be used in BCI
applications that are benefited from more feedback repetitions
in a shorter time window, such as motor reinforcement learning
or neurorehabilitation. In addition, most BCI applications
are benefited by a higher degree of user control with the
system, which seems possible for some users if a continuous
feedback strategy is used. As previously mentioned, perhaps
the main application of a continuous feedback strategy with
MI-based BCI could be in the field of neurorehabilitation,
due to the increased movement-related cortical activations that
the continuous strategy provides. These enhanced activations
could promote neuroplasticity in a larger degree compared to
a discrete feedback strategy. For these reasons, a continuous
feedback strategy could be used in a clinical trial, aimed
at stroke upper extremity recovery, which would allow to
clinically evaluate the effects of this feedback type in a
neurorehabilitation scenario.

Finally, the current study’s limitations must be assessed.
Firstly, BCI performance was heterogenous across participants
and still needs to be evaluated with a larger sample in order
to more precisely assess the likeliness of a higher performance
with the continuous feedback. However, current results had a
high statistical power (0.99) and allowed to infer that with
the continuous robotic feedback some participants will achieve
a significantly better performance. Secondly, effects of both
feedbacks were only assessed during a short time window
comprised by a single session of BCI control with each feedback.
Therefore, the effects of feedback timing strategies should also
be evaluated in multiple BCI control sessions, to better observe
the evolution of BCI control and cortical activations elicited
during MI. Despite these limitations, to the authors’ knowledge,
the current study shows for the first time that a continuous
feedback strategy comprised by passive movement provided by
a robotic device, can have a more positive effect on EEG-based
BCI control and enhanced cortical activations compared to a
discrete BCI feedback strategy, suggesting its applicability in
neurorehabilitation scenarios.

5. Conclusion

A continuous feedback strategy has the potential to increase
control of a BCI based on MI decoded from EEG. Although the
level of enhanced BCI control still needs to be further assessed,
it is possible that some users will have a significant increase of
performance with this feedback timing strategy. This enhanced
BCI control can aid neurorehabilitation protocols by providing
a higher performance with the system for patients, thus, helping
to improve their outcomes while reducing frustration due to
a lack of BCI control. In addition, the continuous feedback
elicited more pronounced cortical activations in both hemispheres.
Therefore, a continuous feedback strategy could be applied for
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neurorehabilitation, especially in stroke scenarios, where bilateral
cortical activations can enhance neuroplasticity processes that
improve motor function.
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