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Autonomous maneuver
decision-making method based
on reinforcement learning and
Monte Carlo tree search

Hongpeng Zhang*, Huan Zhou, Yujie Wei and

Changqiang Huang

Aeronautics Engineering College, Air Force Engineering University, Xi’an, China

Autonomousmaneuver decision-makingmethods for air combat often rely on

human knowledge, such as advantage functions, objective functions, or dense

rewards in reinforcement learning, which limits the decision-making ability

of unmanned combat aerial vehicle to the scope of human experience and

result in slow progress in maneuver decision-making. Therefore, a maneuver

decision-making method based on deep reinforcement learning and Monte

Carlo tree search is proposed to investigate whether it is feasible for maneuver

decision-making without human knowledge or advantage function. To this

end, Monte Carlo tree search in continuous action space is proposed and

neural networks-guided Monte Carlo tree search with self-play is utilized to

improve the ability of air combat agents. It starts from random behaviors

and generates samples consisting of states, actions, and results of air combat

through self-play without using human knowledge. These samples are used

to train the neural network, and the neural network with a greater winning

rate is selected by simulations. Then, repeat the above process to gradually

improve the maneuver decision-making ability. Simulations are conducted to

verify the e�ectiveness of the proposed method, and the kinematic model of

the missile is used in simulations instead of the missile engagement zone to

test whether the maneuver decision-making method is e�ective or not. The

simulation results of the fixed initial state and random initial state show that

the proposed method is e�cient and can meet the real-time requirement.

KEYWORDS

autonomous air combat, maneuver decision-making, deep reinforcement learning,

Monte Carlo tree search, neural networks

Introduction

Autonomous air combat through unmanned combat aerial vehicles is the future

of air combat and maneuver decision-making is the core of autonomous air combat.

Therefore, it is urgent to build maneuver decision-making methods. Maneuver

decision-making means that the aircraft chooses the appropriate maneuver (e.g., normal

overload, tangential overload, and roll angle) to change its state according to the acquired

information of the target (e.g., azimuth, velocity, height, and distance), so as to defeat

the target.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.996412
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.996412&domain=pdf&date_stamp=2022-10-25
mailto:hphpzhang@126.com
https://doi.org/10.3389/fnbot.2022.996412
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.996412/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.996412

Air combat can be divided into within-visual-range

air combat and beyond-visual-range air combat. With the

development of science and technology, the detection distance

of airborne radar and the range of air-to-air missiles have been

increased to hundreds of kilometers. Therefore, both sides of

the air combat can discover each other and launch missiles

at beyond-visual-range. Besides, the process of beyond-visual-

range air combat is different from that of within-visual-range

air combat because the principle and operation method between

radar-guided missiles and infrared (IR) missiles are different.

Radar-guided missiles are supposed to be used for beyond-

visual-range and IR-guided missiles for within visual range,

because the detection range of the radar is longer than that of

the IR detector. The IR-guided missile does not need external

equipment to provide target information after it is launched. It

can obtain information about the target by means of its infrared

detector and then attack the target. Therefore, the aircraft can

retreat after launching missiles. However, after launching, there

are two stages in the attack of radar-guided missiles, which are

called the midcourse guidance stage and the terminal guidance

stage. In the intermediate guidance stage, the radar of the missile

is not activated. Thus, it is necessary for the aircraft radar to

continuously detect the target, providing the information for

the missile and guiding it to the target. During the terminal

phase, the missile continues to chase the target according to the

information provided by its radar until it hits the target or loses

the target.

Therefore, the decision-making method in within-visual-

range air combat cannot be used for beyond-visual-range air

combat directly, so we need to find a new decision-making

method for autonomous air combat. At the same time, the

existing maneuver decision-making methods rely on human

knowledge, which can also be regarded as a dense reward in

reinforcement learning. Thus, sparse reward means only using

the result of air combat (i.e., win or not), which does not rely

on human knowledge. Moreover, if the task is complex, it is

difficult to define and design human knowledge or dense reward.

Therefore, it is necessary to explore maneuver decision-making

methods using a sparse reward.

Recently, most of the research on maneuver decision-

making is focused on within-visual-range air combat (Mcgrew

et al., 2010; Guo et al., 2017; Du et al., 2018; Huang et al.,

2018; Li et al., 2019). You et al. (2019) proposed a constrained

parameter evolutionary learning algorithm for Bayesian network

parameters learning with scarce data, which can be applied to

unmanned aerial vehicle autonomous mission decision-making.

Wu et al. (2011) proposed the situation assessment method of

beyond-visual-range air combat based on missile attack area,

and introduced a new angle advantage function, speed advantage

function, and height advantage function into the situation

assessment model. Li et al. (2020) proposed a cooperative

occupation method for autonomous air combat of multiple

UAVs based onweapon attack area. They used the weapon attack

area and air combat geometric description for one-to-one air

combat situation assessment and established a multiple UAVs

cooperative occupationmodel based on the encircling advantage

function. Therefore, the cooperative occupation problem was

transformed into a mixed integer non-linear programming

problem and solved by an improved discrete particle swarm

optimization algorithm. However, the flight model in this study

is two-dimensional, that is, the height of both sides of air combat

is always the same in air combat, and the control quantities do

not include roll angle, so this study can be further improved.

Wei et al. (2015) proposed a cognitive control model with three-

layer structure for multi-UAVs cooperative search according

to the cognitive decision-making mode of humans performing

searching behavior. The mission area is carried on cognitive

match, reduction, and division based on this model and the

fuzzy cluster idea. The simulation experiments indicate the great

performance of the fuzzy cognitive decision-making method for

cooperative search. Zhang et al. (2018) proposed a maneuver

decision-making method based on the Q network and Nash

equilibrium strategy, and combined the missile attack area in

the reward function to improve the efficiency of reinforcement

learning. However, the maneuver library of this method only

contains five maneuvers, which cannot meet the needs of air

combat. Hu et al. (2021) proposed to use the improved deep

Q network (Mnih et al., 2015) for maneuver decisions in

autonomous air combat, constructed the relative motion model,

missile attack model, maneuver decision-making framework,

designed the reward function for training agents, and replaced

the strategy network in deep Q network with the perception

situation layer and value fitting layer. This method improves the

winning rate of air combat, but the maneuver library is relatively

simple and difficult to meet the needs of air combat.

It is worth noting that deep reinforcement learning has

achieved professional performance in video games (Watkins

and Dayan, 1992; Hado et al., 2016; Matteo et al., 2017), board

games such as GO (Silver et al., 2016, 2017; Schrittwieser et al.,

2020), real-time strategy games such as StarCraft (Oriol et al.,

2019), magnetic control of tokamak plasmas (Jonas et al., 2022),

data fusion (Zhou et al., 2020b), and intention prediction of

aerial targets under Uncertain and Incomplete Information

(Zhou et al., 2020a). Therefore, using deep reinforcement

learning to improve the level of air combat maneuver decision-

making is a feasible direction. AlphaStar is a multi-agent

reinforcement learning algorithm based on supervised learning.

It introduces league training: three pools of agents (the main

agents, the league exploiters, and the main exploiters), each

initialized by supervised learning, were subsequently trained

with reinforcement learning. In AlphaStar, each agent is initially

trained through supervised learning on replays to imitate human

actions. Concretely, it uses a dataset of 971,000 replays played

on StarCraft II from the top 22% of players. Therefore, it can

be concluded that two features of AlphaStar are multi-agent

reinforcement learning and human knowledge. However, we
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mainly focus on one-on-one air combat, which means that a

multi-agent algorithm is not suitable and we are supposed to use

a single-agent algorithm to address this problem. Meanwhile,

replays of games from top players are not difficult to obtain, but

it is difficult and expensive to obtain data from human pilots,

which means that we cannot use supervised learning as the first

phase of AlphaStar.

Ma et al. (2020) described the cooperative occupation

decision-making problem of multiple UAVs as a zero-sum

matrix game problem, and proposed a solution of double oracle

algorithm combined with neighborhood search. In maneuver

decision-making, at first, the position to be occupied by each

aircraft is determined, and then the target to be attacked by

each aircraft is determined, to reduce the threat and increase

the advantage. Yang et al. (2020) studied the evasive maneuver

strategy of unmanned combat aircraft in BVR air combat,

and the problem was solved by the hierarchical multi-objective

evolutionary algorithm. In this method, the decision variables

are classified according to the physical meanings and then coded

independently. Four escape maneuvers are designed, including

turning maneuver, vertical maneuver, horizontal maneuver, and

terminal maneuver. The evolutionary algorithm is used to

find approximate Pareto optimal solutions and reduce invalid

solutions, thus, the efficiency of the algorithm is improved. Ma

et al. (2018) built an air combat game environment and train the

agent with deep Q-learning.

Eloy et al. (2020) studied the attack against static high-value

targets in air combat. It analyzed the confrontation process with

game theory and put forward a differential game method of air

combat combined with the missile attack area (Wu and Nan,

2013; Li et al., 2015; Wang et al., 2019). In this method, the

air combat process is divided into the attack stage and retreat

stage, while the attacker is divided into leader and wingman. In

the attack stage, the leader enters the target area and launches

missiles, and the wingman flies in formation. In the retreat

stage, the wingman protects the leader from the missile attack

of the other party. However, the flight model of aircraft is

two-dimensional rather than three-dimensional. However, the

authenticity of the two-dimensional motion model is worse

than that of the three-dimensional motion model, so the three-

dimensional motion model should have been used. He et al.

(2017) proposed a maneuver decision-making method based on

Monte Carlo tree search (MCTS), and it uses MCTS to find the

action with the greatest air combat advantage among the seven

basic maneuvers. This method verifies the feasibility of MCTS in

maneuver decision-making.

While human knowledge or dense reward can make the

algorithm achieve the goal quickly, it also limits the diversity

and potential of the algorithm to the scope of human experience.

For example, AlphaGo with human knowledge is defeated by

AlphaGo Zero without human knowledge, and AlphaZero can

defeat the world champion without human knowledge and

has found several joseki that human players have never found

before. Meanwhile, AlphaGo with human knowledge was once

defeated by the world champion Lee Sedol, but AlphaGo Zero

without human knowledge has not been defeated by any human

players ever since. Thus, it is a reasonable conjecture that

human knowledge is not good enough for training purposes for

autonomous weapon deployment, and we propose a method in

this article for air combat to investigate whether it is feasible for

maneuver decision-making without human knowledge.

To this end, an air combat maneuver decision-making

method based on deep reinforcement learning and MCTS is

proposed, which aims at investigating whether it is feasible for

maneuver decision-making without human knowledge or dense

reward. First, different from existing methods, this method does

not use human knowledge to assist the agent in maneuvering

decision-making, but only uses the outcome of air combat

simulations. Second, existing methods often make maneuver

decisions in discrete and finite action space (e.g., maneuver

library consists of finite maneuvers), however, the proposed

method is based on continuous action space, which is more

reasonable than discrete action space. Third, to select actions

in continuous space, we proposed the method of MCTS in

continuous space which is different from MCTS of existing

decision-making methods. Moreover, existing methods often

use missile engagement zone in simulations, but the missile may

miss the target even if the target is in the missile engagement

zone, therefore, the kinematic model of the missile is used in

simulations instead of missile engagement zone to test whether it

can hit the target, which reflects whether the maneuver decision-

making method is effective (Li, 2010; Zhang et al., 2015). Our

research logic is: if it works well in simulations, we may consider

investigating it in the real world and modifying it if it does not

work well. However, if it does not work well even in simulations,

we do not consider transferring it to the real world. Therefore,

we do the first step here, that is, investigating the method in

simulations to make sure it works well in simulations at least

before transferring it to the real world.

The main contributions are as follows: (1) To investigate

whether it is feasible for maneuver decision-making without

human knowledge, we propose to use the algorithm of self-

play and MCTS which learns to search actions in continuous

action space. (2) We provide a method to address the

problem of MCTS in continuous space since MCTS cannot be

applied to continuous space directly. (3) The simulation results

demonstrate that although maneuver decision-making without

human knowledge cannot completely defeat that with human

knowledge, it is still feasible in air combat. The rest of this paper

is organized as follows: In Section Aircraft model and missile

model, the motion dynamics model of aircraft and missile

is established. In Section Maneuver decision-making method

based on deep reinforcement learning and MCTS, the process of

self-play and neural network training is described (Hinton and

Salakhutdinov, 2006; Goodfellow et al., 2017), and the role of

human knowledge in maneuver decision-making is interpreted.
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In Section Experiments and results, the training results of the

neural network and the simulation results of air combat are

given, and the decision-making ability of the proposed method

is discussed according to the simulation results. The method in

this article is summarized in Section Conclusion.

Aircraft model and missile model

The aircraft model adopts normal overload, tangential

overload, and roll angle as control parameters. To simplify the

complexity of the problem, the angle of attack and the angle of

side slip are regarded as zero and the ground coordinate system

is treated as the inertial system, meanwhile, the effects of the

rotation of the earth are overlooked. The kinematic and dynamic

model is shown as follows (Williams, 1990):







































ẋ = v cos γ cosψ

ẏ = v cos γ sinψ

ż = v sin γ

v̇ = g(nx − sin γ )

γ̇ =
g
v (nz cosµ− cos γ )

ψ̇ =
g

v cos γ nz sinµ

(1)

where x, y, and z indicate the positions of the aircraft in the

inertial coordinate system; γ is the pitch angle, ψ is the yaw

angle, v is the velocity, and g is the acceleration of gravity. Roll

angle µ, tangential overload nx, and normal overload nz are

control parameters. The kinematic model of the missile is Wang

et al. (2019):











ẋm = vm cos γm cosψm

ẏm = vm cos γm sinψm

żm = vm sin γm

(2)

where xm, ym, and zm indicate the positions of the missile in

the inertial coordinate system; vm is the velocity, γm is the pitch

angle, and ψm is the yaw angle. The dynamic model of the

missile is:











v̇m =
(Pm−Qm)g

Gm
− g sin γm

ψ̇m =
nmcg

vm cos γm
γ̇m =

nmhg
vm

−
g cos γm

vm

(3)

where Pm and Qm are thrust and air resistance, Gm is the mass

of the missile, and nmc and nmh are control overload in the yaw

direction and pitch direction. Pm,Qm, and Gm can be calculated

by the following formula (Fang et al., 2019):

Pm =

{

12000 t ≤ tw

0 t > tw
(4)

Qm =
1

2
ρv2mSmCDm (5)

Gm =

{

173.6− 8.2t t ≤ tw

108 t > tw
(6)

where tw = 8.0s, ρ = 0.607, Sm = 0.0324, and CDm = 0.9. It is

assumed that the guidance coefficient of proportional guidance

law is K in control planes. The two overloads in yaw and pitch

directions are defined as:

{

nmc = K ·
vm cos γt

g [β̇ + tan ε tan(ε + β)ε̇]

nmh = vm
g

K
cos(ε+β)

ε̇
(7)

{

β = arctan(ry/rx )

ε = arctan(rz/
√

r2x + r2y )
(8)











β̇ = (ṙyrx − ry ṙx)/(r
2
x + r2y )

ε̇ =
(r2x+r2y )ṙz−rz(ṙxrx+ṙyry)

R2
√

r2x+r2y

(9)

where β and ε are yaw angle and pitch angle of the line of

sight, and β̇ and ε̇ are the corresponding derivatives. The line

of sight vector is the distance vector Er, where rx = xt − xm, ry =

yt − ym, rz = zt − zm and R = ‖Er‖ =
√

r2x + r2y + r2z .

The maximum overload of the missile is 40. When the

minimum distance between the missile and the target is <12m,

the target is regarded as a hit; when missile flight time exceeds

120 s and it still fails to hit the target, the target is regarded

as missed; during the midcourse guidance stage, the target is

regarded as missed when its azimuth relative to the aircraft

exceeds 85◦; during the final guidance stage, the target is

regarded as missed when its azimuth relative to missile axis

exceeds 70◦.

Maneuver decision-making method
based on deep reinforcement
learning and MCTS

He et al. (2017) uses MCTS to find the maneuver that

makes the most air combat advantage among the seven basic

maneuvers, in which human knowledge is used to define the

air combat advantage. However, its action space is discrete

and only contains seven basic maneuvers. In this paper,

the search scope of maneuver is extended from seven basic

maneuvers to continuous action space, which contains countless

maneuvers theoretically, and human knowledge is not used

to assist maneuver decision-making, but only the outcome

of air combat simulations. The main idea of the proposed

reinforcement learning algorithm is to use neural networks to

generate the maneuver and value in each state and then use

the neural network-guided MCTS to search the maneuver in

the continuous action space. The maneuver selected by MCTS

is more effective than the maneuver directly generated by the

neural network. Then, repeat the above steps in the self-play

to generate training samples and update the neural network

with these training samples to make the neural network more

closely match the improved maneuver and self-play winner. The

repetition steps are stopped and the training is regarded as good
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enough usually when the rating of the agent (Silver et al., 2016,

2017; Schrittwieser et al., 2020) or the scores obtained by the

agent (Mnih et al., 2015; Hado et al., 2016) does not increase

visibly. The new network is used in the next iteration to make

MCTS more powerful.

AlphaGo with human knowledge is defeated by AlphaGo

Zero without human knowledge, and AlphaZero can defeat

the world champion without human knowledge and has found

several joseki that human players have never found before.

Meanwhile, AlphaGo with human knowledge was once defeated

by the world champion Lee Sedol, but AlphaGo Zero without

human knowledge has not been defeated by any human players

ever since. Therefore, we write “While human knowledge or

dense reward can make the algorithm achieve the goal quickly,

it also limit the diversity and potential of the algorithm to the

scope of human experience” in the introduction, which mainly

refers to the game of GO but not the autonomous weapon

deployment. However, it is a reasonable conjecture that human

knowledge is not good enough for the training purposes for

autonomous weapon deployment, thus we propose this method

for air combat to investigate whether it is feasible for maneuver

decision-making without human knowledge.

Our method is inspired by and built upon AlphaGo Zero.

However, AlphaGo Zero is not suitable for air combat because

of continuous action space, so we modified it to make it

able to handle continuous action space. Since AlphaGo with

human knowledge is defeated by AlphaGo Zero without human

knowledge, we want to know if the method without human

knowledge is feasible in air combat or even better than the

method with human knowledge; therefore, we investigate the

problem in this paper. It is true that human knowledge is

indeed useful, and we will study maneuver methods with

human knowledge in future. On the other hand, considering

the development of AlphaGo, although the AlphaStar approach

used human knowledge, a new approach called AlphaStar Zero

may appear just like AlphaGo Zero, which can defeat AlphaStar

and the world champion in the game of StarCraft II without

using any human knowledge.

MCTS in continuous space

MCTS is usually used for searching in discrete action space

(He et al., 2017; Silver et al., 2017; Hu et al., 2021). In this paper,

we use neural networks to guide MCTS as in Silver et al. (2017).

Since MCTS is typically used in discrete space and cannot be

used in continuous space directly, we propose the method of

MCTS in continuous space to address the problem of maneuver

decision-making in air combat. The generation and selection of

action in continuous space are shown in Figure 1.

The green rectangle in Figures 1, 2 is the continuous action

space, which contains countless actions theoretically. Therefore,

it cannot be searched by MCTS directly and we propose the

following method to make MCTS able to search in continuous

action space. First, a state is sent to neural networks as input

and the neural network outputs the action and value according

to the state, in which the action is regarded as the mean

of a Gaussian distribution, the action output by the neural

network is represented by the red rectangle in Figure 1. After

that, a Gaussian distribution is acquired as shown in the blue

shadow part in Figure 1. Then, N-1 actions are sampled from

the Gaussian distribution, which are represented by the black

rectangles in Figure 1, so N actions are acquired totally and

MCTS is used to search for these N actions. Figure 2 illustrates

the search process of MCTS in continuous space.

Each node s in the tree contains all actions of edges (s, a), and

each edge stores a set {N(s, a),W(s, a), Q(s, a), P(s, a)}, where N

represents the number of visits, W represents the total action

value, Q represents the average action value, and P is the a priori

probability of selecting this action, which can be computed by

the Gaussian probability density function.

MCTS repeats four operations to find the action: selection,

play, expansion, and backpropagation. Selection: take the

current state as the root node, start the simulation from the root

node, and stop until the simulation reaches the leaf node at time-

step L. Before time-step L, the action is selected according to the

a priori probability and average action value in the tree, at =

argmax [Q(st, a)+U(st, a)] (Rosin, 2011),

U(s, a) = P(s, a)

√

∑

b

N(s, b)

1+ N(s, a)

the probability of at is proportional to the maximum of

Q(st, a)+U(st, a), in which Q(st,at) = W(st,at)/N(st,at). Here,

W(st,at) is computed by the value head of neural networks, and

actions are generated by the acting head of neural networks,

which is different from the original MCTS used in He et al.

(2017) and Hu et al. (2021) since the original MCTS chooses

action randomly instead of using neural networks.

Play: when in the selection step an action is chosen, which

has not been stored in the tree, the play starts. Actions are

selected in self-play until the leaf node sL is reached, and the leaf

node sL means it has not been expanded.

Expansion: the neural network is used to evaluate the leaf

node sL added to the queue, expand the leaf node sL, and each

edge (sL, a) is initialized to {N(sL, a)= 0,W(sL, a)= 0, Q(sL, a)

= 0, P(sL, a) = pa} and pa is the priori probability of the action.

This part is another different part from the original MCTS used

in He et al. (2017) and Hu et al. (2021), since the original MCTS

evaluates the leaf node sL by rollouts. However, the proposed

method evaluates the leaf node sL by neural networks, that is,

the MCTS is guided by neural networks.

Backpropagation: update the number of visits and value

of each step t in turn, N(st,at) = N(st,at)+1, W(st,at) =

W(st,at)+v, Q(st,at)=W(st,at)/N(st,at).
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FIGURE 1

Generation and selection of action in continuous space.

After several iterations, MCTS outputs the action

according to at = argmax[Q(st, a)+U(st, a)] among N

actions in continuous action space, as shown in the top right

of Figure 2.

Reinforcement learning from self-play

Self-play reinforcement learning method has achieved

professional performance in such games: chess (Baxter et al.,

2000), othello (Sheppard, 2002), and poker (Moravcík, 2017).

Therefore, this paper adopts self-play reinforcement learning

for maneuver decision-making, and does not use any human

knowledge. Starting from a completely random maneuver

strategy, the neural network is trained by the data generated

by self-play, so that the neural network can gradually produce

effective maneuver strategies during the training pipeline.

Figure 3 illustrates the self-play procedure.

As shown in Figure 3, at each time-step, the two sides of

air combat execute the maneuvers selected by MCTS and reach

the next time-step and a new state. In this state, the two sides

continue to execute the maneuver obtained by MCTS until the

final result of the simulation is obtained. The final result at the

end T is rT = {-1, 0, 1}, where −1 represents lose, 0 represents

draw, and 1 represents win. It can be seen that there is no

reward function in of self-play process except the final result

of air combat, that is, human knowledge is not added to self-

play, which is another feature of the proposed method. Self-

play uses MCTS to generate state-action pairs in each iteration

and takes these state-action pairs as samples to train the neural

network. As shown in Figure 3, the air combat data of each

time-step t is saved as (st, at, zt) in the experience pool, zt =

±rT is the winner from the perspective of the current aircraft

at time t. Uniform sampling (st, at, zt) from all time-steps of

the last iteration of self-play is used to train the network to

minimize the error of prediction value and winner and the

error of neural network output and MCTS output as shown in

Figure 4, and the loss function is the sum of mean square error

and L2 weight regularization.

To ensure the generalization ability of the neural network,

the initial state of each game is randomly selected from the

following scope: azimuth scope (-45◦, 45◦), speed scope (250,

400 m/s), and the distance between aircraft (40, 100 km). In self-

play, MCTS is used to search 90 times for each decision. The first

10 maneuvers are sampled according to the visit count of each

node and the subsequent maneuvers are those with the largest
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FIGURE 2

MCTS in continuous space.

FIGURE 3

Air combat self-play.
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FIGURE 4

Training neural networks.

FIGURE 5

Training agent.

visit count, so as to balance the exploration and exploitation of

the algorithm.

Figure 5 indicates the whole procedure of agent training.

First, the agent generates air combat state-action pairs by MCTS

in self-play and stores these data in the experience pool. Then,

the neural network is trained with the data generated by 350

times of air combat self-play. During each training, 64 samples

are uniformly sampled from the experience pool. The optimizer

is stochastic gradient descent with a momentum of 0.9, and

the L2 regularization coefficient is 0.0001. After 1,000 times of
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Build neural networks with random weights

For iteration= 1,..., M do:

Randomly initialize state s0

For t= 0,..., max step do

State st

Red side selects action by MCTS

Blue side selects action by MCTS

Simulate and reach the next state

If find the winner:

Beak

Else:

Continue

t= t+1

Store the state-action pairs and the winner

If required amount of experience:

Beak

Else:

Continue

Sample data from experience pool and train the neural

networks

Save and evaluate the neural networks

If wins> 5+ failures:

Load it as the current best neural network

Algorithm 1. Training agent.

training, a new neural network is obtained and saved. To ensure

the quality of the data generated from self-play, the latest neural

network after each training is evaluated: use the latest neural

network to simulate air combat against the current best neural

network 100 times. If the number of wins of the latest network

is five more than failures, the latest neural network is loaded as

the current best neural network and it is used to generate data

in subsequent self-play, otherwise, the latest neural network is

only saved but not loaded as the current best neural network.

Algorithm 1 describes one iteration of agent training in Figure 5.

Air combat state and neural network
architecture

The input of the neural network is a one-dimensional

vector with 44 elements, which are composed of the state of

the current time-step and the state of the first three time-

steps. As shown in Table 1, each state contains 11 quantities:

ψ , γ , v, z, d, f1,ψ1, γ1, d1,β , f2, whereψ and γ are yaw angle and

pitch angle of velocity vector relative to the line of sight, v is the

velocity of the aircraft, z is the flight altitude, d is the distance

between the two sides in air combat, and r1 and r2 are the

coordinates of the two sides, respectively. f 1 represents whether

our side launched a missile. Where ψ1 and γ1 are yaw angle and

pitch angle of the missile’s velocity vector relative to line of sight.

TABLE 1 Air combat state.

State Symbol Formula

Yaw angle ψ ψ = ψ +
∫ g

v cos γ
nz sinµ dt

Pitch angle γ γ = γ0 +
∫ g

v
(nz cosµ− cos γ ) dt

Velocity v v = v0+
∫

g(nx − sin γ ) dt

Altitude z z = z0 +
∫

v sin γ dt

Distance between the two sides d d = ‖r1 − r2‖

Launch missile f 1 0 or 1

Yaw angle of missile ψ1 ψm = ψm0 +
∫ nmcg

vm cos γm
dt

Pitch angle of missile γ1 γm = γm0+
∫ nmhg

vm
−

g cos γm
vm

dt

Distance between the missile and

the other side

d1 d = ‖rm1 − r2‖

Heading crossing angle β β = arccos( v1 ·v2
‖v1‖‖v2‖

)

Launch missile of the other side f 2 0 or 1

d1 is the distance between the missile and the other side and rm1

is the coordinate of the missile of the side in air combat. β is

heading crossing angle, that is the angle between two velocity

vectors of the two sides, which is represented by v1 and v2 in

Table 1. f 2 represents whether the other side launched missile.

The input layer is followed by three hidden layers. The number

of neurons of the first two layers is 128 and the number of

neurons of the third layer is 64. Finally, it output five quantities.

The first three outputs are normal overload, tangential overload,

and roll angle, respectively. The fourth output is whether to

launch the missile and the fifth output is the value of the current

state. The activation function is tanh.

Experiments and results

Parameter setting

The maximum flight speed is 420 m/s, and the minimum

flight speed is 90 m/s; The maximum flight altitude is 20,000m

and the minimum flight altitude is 50m; the initial roll angle

is always zero; the decision interval is 1 s and the maximum

simulation time is 200 s. The outcome of the air combat

simulation is defined as follows: if the missile hit the target,

record it as a win; either the aircraft or the missile misses the

target, it is regarded asmissing the target; when the flight altitude

of one side is greater than the maximum altitude or less than

the minimum altitude, if the other side has launched missile and

does not miss the target, record it as lose, otherwise, record it

as a draw; when both sides miss the target, record it as a draw.

The decision interval is 1 s, because it is common in the field

since previous work (Guo et al., 2017; Du et al., 2018; Huang

et al., 2018) usually uses the decision interval of 1 s. Meanwhile,

a shorter decision interval requires more computational sources

and a longer time span is obviously irrational.
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FIGURE 6

Neural networks training result.

TABLE 2 Statistic results.

Initial state Win Lose Draw Average time(s)

Fixed 23 17 60 0.38

Random 22 21 57 0.37

It is true that maneuver decisions are not of any use if

decisions cannot be done in a reasonable time span. Here, the

rate for maneuver decision of 1 per 1 s does not mean that the

maneuver is static within 1 s. For example, the aircraft takes

the maneuver of changing the roll angle from 0 degrees to 45

degrees within 1 s (the case of 1 maneuver per second), thus, it

gradually increases its roll angle from 0 to 45 degrees, which is a

dynamic process. On the other hand, increasing the roll angle

from 0 to 45 degrees may be interpreted as three maneuvers

as well, for example, 0–15, 15–25, and 25–45 degrees. More

importantly, even if we send several different maneuvers to the

real aircraft within 1 s (such as changing the roll angle from 0

to 30 degrees, then changing it from 30 to −10 degrees, and

then changing it from −10 to 50 degrees), it may not be able to

realize it because of the limitations of the hardware (e.g., aircraft

servomechanism). On the other hand, even if the real aircraft

can realize it, it is unacceptable, because it is harmful to the

aircraft to change its maneuver several times within 1 s (lack of

aircraft strength). Minimum reaction time of the human brain is

∼0.1 s. Meanwhile, it takes much more than 0.1 s for a human

to decide what to do before the reaction, namely decision-

making time. Therefore, the time span of 1 s is appropriate for

a real-world application.

Results and analysis

Neural networks training result

In the process of self-play, record the net number of wins

of each latest neural network in 100 times air combat, that is,

subtract the number of failures from the number of wins. The

reason why 100 times is selected is that 100 times is enough to

distinguish the better one from both sides of the competition and

does not cause too much time consumption. The total training

time is about 84 h, and the change of net wins with time is shown

in Figure 6.

As can be seen from Figure 6, the number of net wins

is increasing along with the training. Although it sometimes

decreases in the training process, it generally shows an upward

trend, which indicates that the maneuvering decision-making

ability of the proposedmethod gradually becomesmore effective

during self-play.

Air combat simulation results

We verify the effectiveness of the method we proposed by

a fight against the MCTS method (He et al., 2017): (1) 100

simulations with a fixed initial state of the following simulation
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2, which is a fair initial state for both sides. (2) 100 simulations

with a random initial state. Table 2 indicates the win, lose, and

draw times and the average time consumed by each decision-

making of the proposedmethod. As shown in Table 2, on the one

hand, the proposed method won five more times than theMCTS

method, and 60 simulations is drawn. These results indicate that

the proposed method is feasible and effective, even though the

proposed method is just slightly better. On the other hand, when

simulations started from a random initial state, the proposed

method is almost the same as theMCTSmethod, which indicates

that the initial state has a significant influence on the decision-

making method. As can be seen from Table 2, for the proposed

method, the average time taken for each decision-making is

∼0.38 s. We also compute the average time of the original MCTS

method (He et al., 2017), which is 0.11 s, this means that the

proposed method is slower.

Next, we show the process of the MCTS maneuver decision-

making method in continuous action space, then we show the

process of the method we proposed by a fight against the MCTS

method. The initial position of aircraft 1 is (40,000, 40,000,

10,000), the pitch angle is 0◦, the yaw angle is 180◦, and the

initial velocity is 300 m/s. The initial position of aircraft 2 is

(0, 0, 10,000), the pitch angle is 0◦, the yaw angle is 0◦, and

the initial velocity is 300 m/s. Aircraft 1 moves at a constant

speed in a straight line, and aircraft 2maneuvers using theMCTS

method with human knowledge. The simulation result is shown

in Figure 7.

Figure 7A shows the trajectory of both sides, in which the

blue solid line represents the flight trajectory of aircraft 1 and

the orange solid line represents the flight trajectory of aircraft 2.

In Figure 7B, the solid blue line indicates the velocity change of

aircraft 1 and the orange solid line represents the velocity change

of aircraft 2. Figure 7C indicates the overload change of missiles

of aircraft 2. It can be seen that the MCTS method with human

knowledge can react to the aircraft with simple maneuver and at

the end of the simulation, the missile of aircraft 2 hit the target,

which suggests the effectiveness of the MCTS method.

In simulation 2, aircraft 1 uses the proposed method and

aircraft 2 uses the MCTS method (He et al., 2017), but the

action space of the two methods is the same. As described

in He et al. (2017), it combines the angle advantage function,

distance advantage function, velocity advantage function, and

height advantage function with MCTS, which means that

it makes maneuver decisions with human knowledge. These

advantage functions which stem from human knowledge can

guide the aircraft to approach the target. However, our method

uses only the final result rT = {-1, 0, 1}, as described in

Section Reinforcement learning from self-play, including no

human knowledge.

The initial position of aircraft 1 is (70,000, 70,000, 10,000),

the pitch angle is 0◦, the yaw angle is 180◦, and the initial velocity

is 300 m/s. The initial position of aircraft 2 is (0, 0, 10,000), the

pitch angle is 0◦, the yaw angle is 0◦, and the initial velocity is

300 m/s. As can be seen that the initial situation of both sides is

equal. The simulation result is shown in Figure 8.

Figure 8A shows the trajectory of both sides, in which the

blue solid line represents the flight trajectory of aircraft 1, the

orange solid line represents the flight trajectory of aircraft 2, the

green dotted line represents the flight trajectory of missile 1, and

the red dotted line represents the flight trajectory of missile 2.

In Figure 8B, the solid blue line indicates the velocity change

of aircraft 1 and the orange solid line represents the velocity

change of aircraft 2. Figure 8C indicates the overload change of

missiles of the two sides, and it can be seen from Figure 8C that

the missile overload is small when it is far from the target and

reaches the maximum when it hit the target.

As can be seen from Figure 8A, when the simulation begins,

both sides deflect toward each other and launch missiles,

but their decision-making principles are different: aircraft 1

concludes that deflecting to aircraft 2 is of high value according

to a large number of self-play data, while aircraft 2 chooses to

deflect to aircraft 1 because it can increase the value of the air

combat advantage function. In the end, the missile of aircraft 1

hit aircraft 2, and the distance between missile 2 and aircraft 1

is about 8 km. This suggests that the proposed method without

human knowledge is stronger.

The initial position of aircraft 1 is (80 000, 80 000, 10 000),

the pitch angle is 0◦, the yaw angle is 180◦, and the initial velocity

is 300 m/s. The initial position of aircraft 2 is (0, 0, 10 000), the

pitch angle is 0◦, the yaw angle is 45◦, and the initial velocity is

300 m/s. As can be seen that the initial situation of aircraft 2 is at

an advantage. The simulation result is shown in Figure 9.

The simulation ended because the altitude of aircraft 2

exceeded the maximum altitude. The air combat advantage

function of aircraft 2 includes the constraint on flight altitude

to keep the altitude difference between it and the target within a

certain range. However, although it used the advantage function

based on human knowledge to guide maneuver decision-

making, it failed to control the flight altitude properly because

of the randomness of MCTS. On the contrary, the proposed

method also based on MCTS can keep the flight altitude within

a reasonable range without human knowledge, which indicates

the effectiveness of the proposed method.

At the same time, according to Figures 7B, 8B, 9B, it can

be seen that decision-making guided by human knowledge

always increases the speed, while decision-making without

human knowledge accelerates and decelerates, which shows

that the method without human knowledge is more reasonable.

Because the maximum speed is set as 420 m/s, it can be seen

from the speed-increasing trend in Figures 7B, 8B, 9B that if

the maximum speed is not set, the decision-making method

guided by human knowledge will continue to increase the speed

and always maintain the maximum speed in the subsequent

air combat, which is not reasonable. Therefore, the method

proposed in this paper without human knowledge is more

reasonable and effective.
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FIGURE 7

Simulation result 1. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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FIGURE 8

Simulation result 2. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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FIGURE 9

Simulation result 3. (A) Air combat trajectory. (B) Velocity. (C) Missile overload.
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Conclusion

The maneuver decision-making method based on deep

reinforcement learning and Monte Carlo tree search without

human knowledge is proposed in this paper. According to the

simulation results, it can be concluded that a pure reinforcement

learning approach without human knowledge is feasible and

efficient for autonomous air combat maneuver decision-making.

On the one hand, the strengths of the proposed method are as

follows: (1) The method can achieve similar performance as the

method with human knowledge. (2) The method is simple to

implement since elaborately designed reward based on human

knowledge is not necessary. (3) The method can train neural

networks from scratch without using any data from human

pilots, which indicates that it can be used in the domains

where human data are deficient or expensive to acquire. On

the other hand, the weaknesses of the proposed method are as

follows: (1) The performance of the method is not as good as

its counterparts in board games, such as Go and chess. (2) The

time consumption of the method is more than some traditional

methods. (3) It takes plenty of time for training an agent using

this method.

We aim to investigate whether it is feasible for maneuver

decision-making without human knowledge by means of

simulations and using the results for a recommendation system

or pilots in manned aircraft is out of the scope of the article.

In future work, considering AlphaGo Zero without human

knowledge can defeat previous algorithms and human players

in Go, and it is necessary to improve the performance of the

method without human knowledge since the proposed method

does not completely defeat the methods with human knowledge.

Meanwhile, decreasing the time consumption of the method is

also another future work because the time consumption of the

proposed method is more than some traditional methods. And

the training procedure needs to be improved since it takes plenty

of time for training an agent.
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