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This study aimed to highlight the demand for upper limb compound

motion decoding to provide a more diversified and flexible operation for

the electromyographic hand. In total, 60 compound motions were selected,

which were combined with four gestures, five wrist angles, and three strength

levels. Both deep learning methods and machine learning classifiers were

compared to analyze the decoding performance. For deep learning, three

structures and two ways of label encoding were assessed for their training

processes and accuracies; for machine learning, 24 classifiers, seven features,

and a combination of classifier chains were analyzed. Results show that for

this relatively small sample multi-target surface electromyography (sEMG)

classification, feature combination (mean absolute value, root mean square,

variance, 4th-autoregressive coe�cient, wavelength, zero crossings, and slope

signal change) with Support VectorMachine (quadric kernel) outstood because

of its high accuracy, short training process, less computation cost, and stability

(p < 0.05). The decoding result achieved an average test accuracy of 98.42 ±

1.71% with 150ms sEMG. The average accuracy for separate gestures, wrist

angles, and strength levels were 99.35 ± 0.67%, 99.34 ± 0.88%, and 99.04 ±

1.16%. Among all 60 motions, 58 showed a test accuracy greater than 95%,

and one part was equal to 100%.

KEYWORDS

surface EMG, compound motion decoding, deep learning, machine learning,

myoelectric prosthesis

Introduction

Surface electromyography (sEMG) is a bioelectric signal naturally produced during

the neural activation of muscles (Vredenbregt and Rau, 1973). Through the mapping

relationship between the activation degree and the position of muscles, sEMG contains

the movement intention of the human body. It has been considered to be one of

the modalities of human-machine interface (HMI) in the context of human-centered

robotics (Zhang et al., 2015). Compared with other bioelectric signals, such as

electroencephalograms, sEMG shows stronger controllability, more decoding patterns,
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and higher stability. As one popular representation of human

intention, sEMG gets its widest application in controlling a

myoelectric hand (De Luca, 1997), an exoskeleton (Kiguchi and

Hayashi, 2012), and so on.

To realize the sEMG-based control, a number of research

studies focused on gesture decoding were carried out first. As

early as the 1970s, Taylor D began using the sEMG collected by

multi-electrode arrays to control upper limb prostheses (Wirta

et al., 1978). In 2007, Chu et al. (2007) achieved an average

accuracy of 97.4% in nine kinds of hand motion decoding with

four surface electrodes (Chu et al., 2007). In 2016, Adenike

realized the decoding of 19 classes, including hand grasps and

individual finger motions, and achieved an accuracy of 96% for

non-amputees (Adewuyi et al., 2016). To reduce the individual

differences, Xue proposed a novel user-independent framework

on 13 gesture decoding with an accuracy of 78.15% in 2021,

which combined the canonical correlation analysis and optimal

transport (Boschmann et al., 2013).

Gesture decoding above took the lead in ensuring the basic

grasping function. For a human hand, the complete movement

relies not only on the fingers and the palm but also on the

cooperation of the wrist and elbow. Beyond basic EMGdecoding

of gestures, researchers have paid attention to the wrist, the

elbow, and the compound motions. In 2010, Zeeshan used the

forearm sEMG to classify 19 wrist torques, which showed an

88% accuracy (Khokhar et al., 2010). In 2019, Zhang et al.

(2019) proposed a novel preprocessing method for joint force

estimation with high-density sEMG. In 2021, Xiang Chen

reported a convolutional neural network with a transfer learning

strategy in decoding 30 hand gestures involving various states

of the finger, elbow, and wrist, which achieved an accuracy

of 92.13% with high-density sEMG (Chen et al., 2021). Other

studies, such as Zhang et al. (2011), Lu et al. (2014), McIntosh

et al. (2016), and so on, have made gesture classification with

wrist coupling by combining sEMG with additional sensors.

The sEMG-based decoding of joint movement allows for a

more versatile application. Meanwhile, considering the spatio-

temporal difference, the decoding of compound actions also

guarantees the stability of gesture decoding in multiple poses

of the upper limbs. A more practical way to apply the decoded

targets to the control of the myoelectric hand is by combining

machine intelligence with human intention. By fully using the

closed-loop control and the sensory feedback, the decoded

target can be viewed as merely enabling a flag, relying upon

the prosthesis to complete the blind grasp. In 2011, Hao

Dang proposed a stable robotic grasping method based on

tactile feedback and hand kinematics, which can further be

applied to the blind grasping of the myoelectric hand (Dang

et al., 2011). In 2016, Xiong reported the implementation

of an anthropomorphic hand for replicating human grasping

functions, which realized the blind grasp automatically and was

further endued with myoelectric control (Xiong et al., 2016).

In 2020, Mayer et al. (2020) reported a closed-loop control

method based on tactile feedback to ensure the grasping of the

myoelectric hand. Meanwhile, leading commercial prostheses

such as the Michelangelo prosthetic hand by Ottobock©

(Hashim et al., 2017) and the i-Limb by Össur© (van der

Niet et al., 2013) provide customers with EMG-based solutions

combined with intelligence control to ensure better practice for

daily usage.

By properly combining human intention and machine

intelligence, grasping the myoelectric can be more stable and

realistic than relying on real-time sEMG-decoding alone. In

addition to the grip, through daily observation, we have noticed

that different control purposes can exist within the same gesture,

such as “grip an egg” vs. “crush an egg.” The expression of

these detailed purposes has been mostly neglected in the design

of the myoelectric hand. Most of the research has focused on

one purpose, possibly firmly grasping, to carry out the closed-

loop control.

For a fixed gesture, different control purposes (such as

griping vs. crushing) mainly correspond to different strength

levels. Considering the controllability and the measurement

in research, we mapped the strength level to different load

levels. In addition to the distinction of control purpose, to

ensure the stability of gesture decoding at different wrist angles,

there was also a demand for composite motion decoding. In

this paper, focusing on flexible myoelectric control and the

control purposes of switching, the decoding of compound

motions was proposed. These compound motions consisted

of the product of gestures, wrist angles, and strength levels,

allowing for simultaneous control of the gesture and wrist, as

well as switching control purposes. The Materials and Methods

section describes the selection basis for compound actions, the

experimental setup and data segment, and the various methods

adopted for compound motion decoding and performance

comparison. The Result section reports the detailed result. The

Discussion and the Conclusion sections state the discussion and

conclusion separately.

Materials and methods

Demands of compound motion decoding

Control strategy of the myoelectric hand

In reality, the myoelectric hand control merely relies

on sEMG-decoding, which is obviously unstable due to the

inevitable onlinemisrecognition. Even a tinymisrecognition can

result in the failure of a whole task. Moreover, the misoperation

caused by the misrecognition may decrease the user’s faith in

the myoelectric system, resulting in a worse operating state.

Therefore, a good combination of human intention andmachine

intelligence is more realistic to ensure practical controllability.

When reaching into a bag, it is intuitive and straightforward

for a natural human hand to grasp objects without any
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FIGURE 1

The selection basis of compound motions (A) the sEMG-based control strategy for the myoelectric hand (B) the illustration of compound

motions.

pre-existing geometric or visual information (Dang et al., 2011).

To implement the same function in the anthropomorphic hand,

blind grasping, also known as the hot spot technique, has been

studied by many research groups worldwide. As human beings,

the grasping gesture was gradually formed according to the

tactile perception of the object’s surface. Depending on the

sensory-feedback closed-loop control, the myoelectric hand can

share the same grasping strategy as human hands. By adopting

blind grasping to grip firmly, the gesture of the myoelectric

hand can automatically be detected instead of being defined by

the sEMG-decoding. Compared with sEMG-dependent gesture

decoding, such a scheme has higher stability and practicability.

Thus, with this strategy, the sEMG target can be viewed as

an enabling flag rather than a real-time control command for

firmly grasping. It significantly reduced the grasping gestures

that needed to be decoded via sEMG. According to tactile-

based blind grasping, the robust control law tends to use all

known fingers to perceive unknown objects, thus completing

the power grasp (Shaw-Cortez et al., 2019). By selecting one

sEMG enabling flag corresponding to the blind power grasping

with all fingers (Shaw-Cortez et al., 2019), another sEMG-based

detailed decoding can be left to precision grasp gesture (such

as pinch), gestures with specific usage (such as poke) and other

sign languages.

During grasping, since there can be multiple purposes under

one same gesture (such as griping vs. crushing), the specification

of control purpose via sEMG is necessary. Under one fixed

gesture, different purposes mainly correspond to different levels

of muscle strength and can be mapped to multiple control logics

of the anthropomorphic hand. In the classic, such myoelectric

control directly associated with the proportion of strength is

regarded as the direct control (DC) approach (Mereu et al.,

2021). By going a step further to distinguish the strength level

under different postures, a more diverse purpose of control

can be provided to the myoelectric hand based on the existing

posture control logic.

Following the statement above, Figure 1A illustrates the

sEMG-based control strategy for the myoelectric hand in

this work.

Selection of compound motions

According to the control strategy, under different

combinations of multi-targets decoded via sEMG, the

myoelectric hand would adopt different logic to execute the

desired movements.

As stated in Feix’s report, there are 33 different grasp

types in daily usage, including power and precision (Feix

et al., 2016). By adopting this sEMG-based strategy above, for

power blind grasping with all myoelectric fingers participating,

the fist gesture (five-finger fist) was set as the enabling

flag, which represents the grasp intention intuitively. Once

enabled, according to the control strategy, the myoelectric

hand would execute the blind grasp or the crush according

to different strength levels. Besides the power grasp, the

most representative pinch gesture (with index finger and

thumb) was selected in the instruction set for precision

grasp. Meanwhile, to fulfill the prior functionality, the
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poke (as one commonly used specific gesture with index

finger stretch) and the palm (corresponding to the reset of

myoelectric hand gesture) was also chosen as the sEMG-

decoded gestures.

Since the gestures needed to be significantly decoded were

reduced to only a few gestures, the core comes down to

the decoding stability under various postures. Completing the

hand task is inseparable from the flexible movement of the

wrist. The angle of the wrist was taken into consideration

to ensure the sEMG decoding stability. To ensure robust

gesture decoding and further provide potential wrist control

ability for the myoelectric prosthesis, discrete wrist angles

were selected to form complex wrist-hand compound motions.

The wrist has two degrees of freedom flexion/extension and

radial/ulnar deviation. Thus, five discrete wrist angles were

set, including flexion maximum, extension maximum, radial

deviation maximum, ulnar deviation maximum, and neutrality

position. As for the angle values, considering the individual

differences and the feasibility when being applied to the

myoelectric control, each maximum corresponds to the user’s

own limit.

Three strength levels were determined to increase the

difference sufficient to switch the control purpose while

providing adequate possibilities for subsequent development.

Since the measurement of the strength level lacked calibration,

as one initial work, different load levels were adopted to activate

corresponding strength levels. Considering the experimental

repeatability, the dimension of the adult’s hand (Standardization,

1988) and counterweight, and the strength difference across

genders, with the Fe adhesive weight, 0 g, 480 g, and 960 g, were

selected. The underside of the weight was 134mm in length and

37mm in width, which fit the size of most adults’ hands. Among

three levels, 0 g represented the stably grip in blind grasping,

480 g (the approximated weight of a bottled drink) represented

the grip with deformation, and 960 g represented the crush.

According to the basis above, by multiplying these four

gestures, five wrist angles, and three strength levels, 60 modes

decoded via sEMG were formed, as illustrated in Figure 1B.

FIGURE 2

Experiment. (A) The Neuracle EMG acquisition system. (B) The electrode’s placement. (C) The illustration of upper limb posture. (D) The way to

load counterweight with di�erent gestures. (E) The timing diagram of one session, along with the on-screen prompt example.
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Materials

sEMG recording

The commercial wireless portable EMG acquisition system

(Neuracle Technology Co., Ltd., Changzhou, PRC) supporting

up to 16 channels (each channel consisted of two surface

differential electrodes) with a 1000Hz sampling rate was

adopted, as shown in Figure 2A. To decode the composite

motion of fingers and wrist, sEMG electrodes were placed on

the forearm. Eight large forearm muscles, which play a major

role in grasping gestures and wrist movements, were selected,

as illustrated in Figure 2B. Eight channels were targeted at these

muscles with electrode patches (sized 42mm in length and

25mm in width), and the reference electrode was placed at the

elbow. Before sticking the sEMG patches, alcohol was used to

clean the skin.

Subjects

In total, 12 healthy subjects (aged 22–30 years, ten males and

two females) participated in this study (Association, 2013). None

of the subjects has a history of the upper extremity or other

musculoskeletal complaints. Before starting, each subject was

informed of the content, the purpose, and the detailed process

of this experiment.

Experimental protocol

The experiment was conducted on the right arm. During the

experiment, subjects sat with their elbows naturally hung down,

and their forearms raised nearly horizontally. All the motions

were completed with the palm kept vertically. The upper body

posture is shown in Figure 2C.

In the experiment, each motion was recorded for one trial.

Each trial began with a countdown for 3 s, followed by a motion

mode hold for 60 s. Between every two trials, a 1-min break was

arranged to avoid fatigue. A total of 60 trials were collected,

corresponding to 60 modes (multiplied by four gestures, five

wrist angles, and three strength levels). During the experiment,

the loads were added to the hand. To stably add loads, tapes

were attached to ensure the loads could be directly stuck to the

palm. Figure 2D demonstrates how to load the counterweight

with different gestures.

During the collection, subjects followed the on-screen

prompt and the beeper to complete the specified motions. The

timing diagram of each trial and the on-screen prompt example

are illustrated in Figure 2E.

Dataset

For each subject, a total of 60 trials were collected. The

first 20 trials were sEMG under-strength with 0 loads. The

21st-40th trials were with a 480 g load, and the 41st-60th trials T
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FIGURE 3

Summary of methods.

were with a 960 g load. Each gesture was held for five trials in

order at one strength level, with the wrist angle shifted in turn,

according to the order in Figure 1B. The specific number ID

of each compound motion is listed in Table 1. All data were

preprocessed through detrending, the 2nd-order infinite impulse

response notch filter at 50Hz, and the 4th-order Butterworth

bandpass filter at 20–250Hz (Zhao et al., 2020).

Considering the real-time performance of sEMG decoding,

Lauer et al. (2000) stated that any delay greater than

200ms would degrade the performance of one neuro-based

task accomplishment. Taking the data acquisition and signal

processing processes together, to ensure the system delay was less

than 200ms, data were sliced with a window length of 150ms

and 0 overlap. Thus, for each mode, there were 400 samples.

Decoding methods comparison

To study the decoding performance with these 60 compound

motions, both deep learning and machine learning combined

with different designs were evaluated, as summarized in

Figure 3. The dataset from S1-S6 was adopted in the methods

comparison. According to the chronological order, the first 90%

of samples of each mode were selected as the training set (i.e.,

1s−54s), and the rest were the validation set (i.e., 55s∼ the 60s).

Within each dataset, the samples were shuffled.

Deep learning

Structure

The most well-known typical computations in deep learning

were convolutional neural network (CNN), which originated

from image decoding (Bengio and Lecun, 1997), and the

recurrent neural network (RNN) from the natural language

processing (Rumelhart et al., 1986). Developed from the RNN,

the long short-term memory (LSTM) layers (Hochreiter and

Schmidhuber, 1997) gained broader attention as its variant.

Based on the CNN and the LSTM, lots of works achieved

impressive results in sEMG decoding (Zhai et al., 2017; Hu et al.,

2018; Rehman et al., 2018; Ameri et al., 2019). This work studied

three structures (CNN-based, LSTM-based, and CNN+LSTM

based) for their performance in 60 compound motion decoding.

CNN-based: In the CNN-based structure (Figure 4A), each

convolution block consisted of a 2-dimensional convolution

layer (Conv2D), a batch normalization layer (BN), a max

pooling layer, and a dropout layer. Formulti-convolution blocks,

the number of filters descended, as the first block was 32 filters,

the second was 16 filters, and the third was 8. For both 2

convolution blocks and 3 convolution blocks, the dense layer

with 4096 nodes were deleted.

LSTM-based: Based on the RNN concept, the LSTM layer

as a variant was adopted instead for better performance. Both

the time positive and the time reverse order were considered the

bidirectional LSTM, as illustrated in Figure 4B.

CNN+LSTM-based: This study adopted their combination

to take advantage of CNN and LSTM. For the temporal

sequence, the 1-dimensional convolution layer (Conv1D) along

the temporal domain was taken first, followed by the LSTM,

as in Figure 4C. For the convolution block, the same as the

CNN-based structure, the first block comprised 32 filters.

Label encoding

Since these 60 compound motions consisted of gestures,

wrist angles, strength levels, and two different ways of label

encoding were adopted to compare their performance.

One-hot label: One-hot label treated compound motion

decoding as a single-labeled multiclass problem. The

corresponding output was 60 dimensions (Figure 4D). In

accordance, the activation for the output layer was SoftMax.
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FIGURE 4

Deep learning methods have di�erent structures and label encoding ways. (A) CNN-based structure. (B) LSTM-based structure. (C)

CNN+LSTM-based structure. (D) One-hot label. (E) Multilabel.

TABLE 2 The specific number ID of each compound motion.

Feature Mathematical definition

MAV TMAV = 1
N

N
∑

i=1
|xi|

RMS TRMS =

√

1
N

N
∑

i=1
xi2

VAR TVAR = 1
N−1

N
∑

i=1
(xi − x)2

4th-ARC xi = −
4

∑

k=1

akxi−k + ωi

WL Twl =
N−1
∑

i=1
|xi+1 − xi|

ZC Tzc =
N−1
∑

i=1
sgn(−xixi+1)

SSC (xi − xi−1)× (xi − xi+1) ≥ ω, where ω = 0.05std

Multilabel: By decomposing these compound motions into

their corresponding modes in gesture, wrist angle, and strength,

the problem could be transferred to the multilabel, multiclass

classification. Thus, the output dimension was 12 (Figure 4E).

For multilabel, the activation adopted was Sigmoid.

Machine learning

As mentioned in the dataset segment ahead, there were only

400 samples for each motion. The scale of the dataset was far

from large. Thus, the traditional machine learningmethods were

also adopted in this work.

Feature

Considering the short window length (150ms), several

commonly used features in the time domain were selected,

such as mean absolute value (MAV), root means square

(RMS), variance (VAR), 4th-autoregressive coefficient (ARC),

wavelength (WL), zero crossings (ZC), and slope signal change

(SSC) (Englehart and Hudgins, 2003; Zhao et al., 2020). Their

mathematical definitions are listed in Table 2, where xi(i =

1, 2, ...,N) is the EMG time series, N equals 150 according to

the window length, ak is the autoregressive coefficient, and is the

white noise. Different feature vectors can be formed through the

permutations of these three features from eight sEMG channels.

Combining these three features, a 56-dimension feature vector

can be extracted in maximum, as shown in Figure 5A.

Algorithm

Various types of classifiers were adopted to evaluate the

decoding performance, including tree, discriminant, support

vector machine (SVM), K-nearest neighbor (KNN), and some

ensemble methods. The details of these 24 algorithms are

listed in Table 3, where G(xi, xj).denotes elements in the gram

matrix, xi, xj denote the observations, and γ is the width of the

Gaussian kernel.

Chain

Similar to the label encoding way in deep learning, the

structure of machine learning classifiers can also be designed

in one integrated or three separated ways (Figures 5B,C). There

was a single classifier decoding 60 categories for the integrated

structure. The separate, triple-parallel structure was set, and each

took charge of strength, wrist angle, or gesture separately.

Compound motion decoding

Throughout the methods above, the best was selected

under the comparison with average accuracy, prediction speed,

training speed, and so on. Then, with the best decoding method,

datasets from S1-S12 were all adopted to provide a detailed
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FIGURE 5

The feature vector and the classifier chain of machine learning methods. (A) Feature vector. (B) Integrated classifier. (C) Separated classifier.

TABLE 3 The specific number ID of each compound motion.

Algorithm Subdivided Attribute Notes

Decision trees Fine Maximum leaf 100 Split criterion Gini Index

Medium Maximum leaf 20

Coarse Maximum leaf 4

Discriminant Linear \ \

Quadratic \ \

Naïve bayes Gaussian Distribution Normal

Kernel Type Gaussian Width Automatic

SVM Linear Kernel G(xi , xj) = xi
′xj

Quadratic G(xi , xj) = (1+ xi
′xj)

2

Cubic G(xi , xj) = (1+ xi
′xj)

3

Fine gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scale γ 0.56

Medium gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scaleγ 2.2

Coarse gaussian G(xi , xj) = exp(−
∥

∥xi − xj
∥

∥

2
/γ ) Scaleγ 8.9

KNN Fine Distance d2st = (xi − xj)(xi − xj)′ Neighbors 1

Medium d2st = (xi − xj)(xi − xj)′ Neighbors 10

Coarse d2st = (xi − xj)(xi − xj)′ Neighbors 100

Cosine dst = (1− xixj
′/

√

(xix′ i)(xjx′ j) ) Neighbors 10

Cubic dst = 3

√

n
∑

u=1

∣

∣xiu − xju
∣

∣

3
Neighbors 10

Weighted d2st = (xi − xj)V−1(xi − xj)′ Neighbors 10

Ensemble Boosted trees \ \

Bagged trees \ \

Subspace discriminant \ \

Subspace KNN \ \

RUSBoosted trees \ \

decoding performance analysis among all these 60 compound

motions. Similarly, according to the chronological order, the first

samples of each mode were selected as a training set, and the rest

were test-set. Within each dataset, the samples were shuffled.

To focus more on the decoding performance among all 60

compound motions, the analysis included (1) the change of

test accuracy with the decrease of the training set; (2) the test

accuracies of each motion and their confusion matrix; (3) and

the test accuracy for separatemotions of strength levels, gestures,

and wrist angles.

Results

Decoding methods comparison

Deep learning

Through comparisons, considering the accuracy, stability,

overfitting, and training time, the CNN+LSTM-based structure

with one-hot label achieved the best performance at 94.61 ±

3.20% for training and 94.20± 4.06% for validation. The details

are given below.
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Structure

The TensorFlow (Abadi et al., 2016) 2.0 framework

was adopted as the supporting backend for deep

learning realization. The optimizer and batch size

remained the same for CNN-based, LSTM-based, and

CNN+LSTM-based structures (Table 4). At first, a one-

hot label connected with SoftMax activation was adopted.

The training and validation curves are illustrated in

Figure 6.

The subject-average accuracy curve in Figure 6 indicates

that the CNN+LSTM-based structure outstands these three

structures. The final subject-averaged training and validation

accuracies for CNN+LSTM-based are 94.61 ± 3.20% and

94.20 ± 4.06%. Especially for subject S4, the validation

accuracy approaches 99.77% for 60 modes with CNN+LSTM.

Structure (a) with only one convolution block showed an ideal

training curve but poor validation. An extensive validation

TABLE 4 Compile setting in structure comparison.

Type Method Parameter Value

Optimizer RMSprop Learning rate 0.0008

Clip value 1.0

Decay 1e-8

Training Batch Batch size 1,024

Epoch 70

decay in the post-training period emerged from S3, S5,

and S6 (9.36, 2.19, and 40.36%); for S1, S2, and S4, the

validation accuracy ended at 78.72, 87.19, and 99.47%. Such

huge individual differences indicate the instability of structure

(a) in this compound motion decoding. For bidirectional

LSTM-based structure (b), the highest validation accuracy

was 61.38% by S4, while the rest of the subjects remained

below 10%. Under the same configuration environment,

with Win 10, i5-6500 (3.20 GHz), and GTX 960, the

average time cost for training 70 epochs was 278.91s for

CNN-based, 1,491.74s for LSTM-based, and 528.94s for

CNN+LSTM based.

For the CNN-based network, with the increase of

convolution blocks and the deletion of the dense layer

(4,096 nodes), the final decay in Figure 6 has been greatly

relieved, as shown in Figure 7. Compared with only one

convolution block in Figure 6, the validation performances

are largely improved, ending at nearly 90%. However, more

blocks led to higher overfitting, with the gaps between

training and validation being 8% for two blocks and 10%

for three blocks. The early decline in the validation curve

indicated that great overfitting occurred in the early stage

due to insufficient training. The validation accuracy is

improved with the adjustment of convolution blocks but

is within the CNN+LSTM. The average training time cost

for two blocks was 76.90 s and 56.54 s for three blocks. The

training was accelerated by reducing trained parameters as the

block increased.

FIGURE 6

Accuracy curves during training and validation with three structures. (A) CNN-based structure with a one-hot label. (B) LSTM-based structure

with a one-hot label. (C) CNN+LSTM-based structure with a one-hot label.
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FIGURE 7

Subject-averaged training and validation performance of CNN based networks with increased convolution block. (A) 2 CNN blocks. (B) 3 CNN

blocks.

FIGURE 8

Performance with multilabel. (A) CNN-based structure. (B) LSTM-based structure. (C) CNN+LSTM-based structure.

Label encoding

The influence of multilabel is shown in Figure 8. The

performance of the one-hot label is already shown in Figure 6.

The compilation was kept the same as in Table 4. Compared

with the one-hot label, the filling part in Figure 8 shows a larger

individual difference, led by the multilabel. For bidirectional

LSTM, the performance of S3–S6 was significantly improved

with multilabel, while there was no help for S1 and S2. It

illustrates that multilabel classification of compound motion

resulted in greater instability.
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TABLE 5 Comparison of machine learning classifiers.

Model type Accuracy* (%) Training

time* (sec)

Prediction

Speed*

(obs/sec)

Accuracy* (%)

S1 S2 S3 S4 S5 S6 AVE Std Dev Strength Gesture Angle

Tree Fine 63.9 63.9 63.4 99.9 63.7 99.0 75.63 16.84 \ \ 96.50 93.05 85.38

Medium 27.4 22.9 30.0 35.0 29.7 35.0 30.00 4.23 \ \ 94.20 78.30 66.87

Coarse 6.6 6.5 8.2 8.3 7.0 8.3 7.48 0.80 \ \ 88.72 57.68 47.73

Linear

discriminant

90.7 90.3 91.9 99.5 96.7 99.7 94.80 3.98 11.3 228.3 92.98 77.95 72.02

Quadratic

discriminant

94.2 94.5 95.2 \ 99.3 99.9 \ \ \ \ 92.57 89.75 87.73

Naive bayes Gaussian 90.2 91.0 87.1 99.9 96.9 99.6 94.12 4.93 \ \ 83.45 56.32 47.50

Kernel 92.1 93.8 92.3 99.6 97.9 99.6 95.88 3.25 619.3 429.3 91.65 79.93 \

SVM Linear 96.0 96.1 96.4 100.0 98.8 99.8 97.85 1.73 467.0 696.7 94.28 87.72 81.70

Quadratic 96.5 96.5 97.3 100.0 99.2 99.9 98.23 1.51 443.8 586.7 98.35 98.57 97.35

Cubic 96.2 96.2 97.1 100.0 99.1 99.9 98.08 1.64 452.0 485.0 \ \ \

Fine Gaussian \ \ \ 95.6 \ \ \ \ \ \ 98.62 98.13 97.27

Medium

Gaussian

95.4 95.8 96.0 99.9 98.9 99.9 97.65 1.95 538.8 421.7 98.48 98.17 96.00

Coarse

Gaussian

93.5 93.9 94.0 100.0 97.9 99.7 96.50 2.78 539.2 418.3 94.18 84.52 74.28

KNN Fine 91.0 90.2 94.5 100.0 97.4 99.7 95.47 3.89 153.4 730.0 98.63 98.33 97.30

Medium 91.9 91.0 94.5 99.9 97.2 99.7 95.70 3.51 158.8 768.3 98.68 98.38 97.38

Coarse 88.0 87.2 90.5 99.4 94.1 99.3 93.08 4.94 \ \ 97.70 97.05 95.60

Cosine 91.0 89.6 93.2 100.0 96.8 99.6 95.03 4.04 \ \ 98.52 98.02 97.03

Cubic 91.0 89.9 \ 99.9 \ \ \ \ \ \ \ \ \

Weighted 92.4 91.7 94.8 100.0 97.5 99.7 96.02 3.29 196.7 935.0 98.80 98.52 97.65

Ensemble Boosted Trees 65.2 62.4 59.0 99.9 73.8 97.3 76.27 16.43 \ \ 73.52 89.52 77.18

Bagged Trees 94.7 94.8 95.6 100.0 98.3 99.7 97.18 2.23 225.7 661.7 98.98 98.55 97.57

Subspace

Discriminant

88.0 87.8 90.2 99.4 95.1 99.6 93.35 4.97 \ \ 91.62 71.85 65.47

Subspace KNN 89.3 88.3 93.4 99.9 97.4 99.5 94.63 4.64 \ \ \ 97.70 \

RUSBoosted

Trees

26.2 21.3 30.0 35.0 29.7 35.0 29.53 4.81 \ \ 71.97 78.32 66.87

*Evaluated on the Win10, AMD R7 (integrated graphics). The ‘ín accuracy indicated that the training time for this classifier exceeded 1,000 s. The ‘ín training time and prediction speed

indicated that the performance of this classifier did not meet expectations, so no analysis was done.

Machine learning

For this relatively small sample multiclass sEMG

classification, combined with feature engineering, several

machine learning classifiers show great applicability and

excellent performance. Through comparison, the quadratic

SVM for 60 modes once achieved the best (p= 0.04 < 0.05 with

T-Test). The details are as given below.

Algorithm

The averaged validation accuracy of 60 modes from various

machine learning classifiers is listed in Table 5, along with their

training times and prediction speeds. In Table 5, among all 24

classifiers, the average accuracies of 16 classifiers exceed 90%,

and ten classifiers exceed 95%. Such generally high performance

demonstrates the applicability of traditional feature extraction

and machine learning methods in the small sample multiclass

sEMG decoding. Among all classifiers, the SVMwith a quadratic

kernel achieved the highest subject-averaged accuracy at 98.23±

1.51%. Its 1.5% standard deviation indicates a small individual

difference among subjects and stable overall performance. In

terms of time spent, the average time cost for quadratic SVM

training is 443.8 s without acceleration.

Chain

The subject-averaged validation accuracies using the triple-

parallel classifier chain for decoding the gestures, the wrist

angles, and the strength levels are presented in Table 6. The

highest accuracies were achieved by subspace discriminant for
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TABLE 6 Averaged validation accuracies for triple-paralleled classifier

chain.

Model type Accuracy (%)

Strength

level

Gesture Wrist angle

Tree Fine 96.50 93.05 85.38

Medium 94.20 78.30 66.87

Coarse 88.72 57.68 47.73

Linear discriminant 92.98 77.95 72.02

Quadratic discriminant 92.57 89.75 87.73

Naive bayes Gaussian 83.45 56.32 47.50

Kernel 91.65 79.93 \

SVM Linear 94.28 87.72 81.70

Quadratic 98.35 98.57 97.35

Cubic \ \ \

Fine Gaussian 98.62 98.13 97.27

Medium Gaussian 98.48 98.17 96.00

Coarse Gaussian 94.18 84.52 74.28

KNN Fine 98.63 98.33 97.30

Medium 98.68 98.38 97.38

Coarse 97.70 97.05 95.60

Cosine 98.52 98.02 97.03

Cubic \ \ \

Weighted 98.80 98.52 97.65

Ensemble Boosted Trees 73.52 89.52 77.18

Bagged Trees 98.98 98.55 97.57

Subspace Discriminant 91.62 71.85 65.47

Subspace KNN \ 97.70 \

RUSBoosted Trees 71.97 78.32 66.87

three strength levels (98.98 ± 1.51%); quadratic SVM for four

gestures (98.57 ± 1.15%); and weighted KNN for five wrist

angles (97.65 ± 1.72%). By combining these three classifiers to

form the triple-paralleled chain, we can see that the theoretical

decoding accuracy was the product of three accuracies, which

equals 92.93, 90.79, 92.47, 100.00, 96.05, and 99.60% for S1∼S6.

The average subject accuracy for the classifier chain was 95.30±

3.54%. The classifier chain did not show superiority compared

with the one integrated classifier.

Feature

In total, seven kinds of temporal features were adopted.

Figure 9 illustrates the change in validation accuracy as the

number of features increases. As the number of features

increases, the average validation accuracy and the standard

deviation decrease from 1.68 to 0.63%. The performance

remained above 99.00% in the range of 5–7 features. Among

them, the combination of all seven features was the best.

Compound motion decoding

In the overall comparison, the SVM with a quadratic kernel

performed the best after 443.8 s of training. Feature engineering

was the combination of all seven features. Figure 10 depicts the

variation in test accuracy resulting from altering the proportion

of the training set to the testing set for such a decoding method.

In each mode, the latter data were used for testing.

As the training proportion decreased from 90 to 50%, the

average test accuracy remained higher than 95%, which showed

great generalization. However, the standard deviation increased

from 1.71 to 2.96%, and the individual differences became

prominent. Six of the twelve subjects kept their test accuracy

higher than 95% in all the processes, while S3 and S8 gradually

dropped to approach 90%. S3 performed the worst (from 94.29

to 89.98%). S8 decreased the most (from 99.21 to 90.07%). S6

achieved the most stable performance (with an average accuracy

of 99.97 ± 0.01% from 90% training to 50%). Figure 11A shows

the test accuracy of each mode with a 90% training set.

The average test accuracy with a 90% training set was 98.42

± 1.71%. Among all subjects, S4 and S6 achieved the best at

99.96 ± 0.32%. Four of these twelve subjects maintained their

accuracies for 60 modes to be all greater than 95%, and most

were equal to 100%. Figure 11B is the confusion matrix.

Within 60 modes in Figure 11B, eleven modes achieved

100% test accuracy for all twelve subjects. Thirty-one modes

are higher than 99%. Fifty-eight modes are higher than 95%.

Motion 38 [palm, ulnar deviation, 480g], and motion 57 [palm,

extension, 960g] performed lower than 95%, with motion 38

the worst at 85.2%. Table 7 lists the test accuracy for separate

motions, which achieved 99.35 ± 0.67% for three classes of

strength-level decoding, 99.34± 0.88% for four classes of gesture

decoding, and 99.04 ± 1.16% for five classes of wrist-angle

decoding. Meanwhile, since the addition of wrist angles ensures

decoding stability in various postures, the average test accuracy

of “strength+ gesture” is 98.95± 1.11%.

Discussion

This study stated the need for compound motion decoding

in myoelectric control and further investigated and realized

the classification of 60 compound motions with 150ms sEMG

collected from eight forearmmuscles. Different methods of deep

learning and machine learning were adopted to assess their

capability. In deep learning, three structures and two ways of

label encoding were analyzed. Among them, the CNN+LSTM

with a one-hot label performed the best. In machine learning,

24 classifiers, different combination of features, and classifier

chain were tested. The quadratic SVM combined with seven

features showed the highest validation accuracy and the smallest

variance. Comparedwith deep learning, classifiers frommachine

learning showed more stability and robustness. Overall, the

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2022.979949
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2022.979949

FIGURE 9

Validation accuracies of quadratic SVM with an increased number of features.

FIGURE 10

The change of validation accuracies with quadratic SVM combining seven features.

quadratic SVM exceeded the CNN + LSTM with higher

validation accuracy, lower training time, and less variance. This

result demonstrated the ability of traditional machine learning

on relatively small sample sEMGmulti-classification problems.

The significance and the performance

Considering the ultimate goal to be a more flexible control

of the myoelectric hand by incorporating the blind grasp,

this study proposes the need for sEMG-based compound

motion decoding, paying particular attention to the need

for control purpose switching (such as grip vs. crush), the

differentiation between power grasp and precision grasp, and

the manipulation of the wrist joint. With the 60 compound

motions in this work (as the product of four gestures, five

wrist angles, and three strength levels), we shall not only

guarantee the flexibility of control ability but also guarantee

the stability of sEMG-based decoding under a variant upper

limb posture.
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FIGURE 11

Testing performance of 60 compound motions with quadratic SVM combining seven features. The label 1∼60 match Table 1. (A) The validation

and test accuracy. (B) Subject average confusion matrix of 60 compound motions.
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TABLE 7 The test accuracy for separate motions of strength levels,

gestures, and wrist angles with quadratic SVM combining seven

features.

Subject Test accuracy (%)

Strength Gesture Angle Strength+Gesture

S1 98.54 98.71 98.08 97.63

S2 98.25 99.04 99.13 97.54

S3 98.71 97.00 95.83 96.92

S4 100.00 100.00 99.96 100.00

S5 100.00 99.92 99.17 99.92

S6 100.00 100.00 99.96 100.00

S7 99.96 99.79 99.96 99.79

S8 99.54 99.96 99.25 99.50

S9 98.58 98.38 98.13 97.79

S10 99.96 99.75 99.96 99.71

S11 98.79 99.58 99.33 98.75

S12 99.83 99.96 99.79 99.83

AVE 99.347 99.340 99.045 98.948

Std 0.674 0.880 1.159 1.109

In comparing deep learning methods and machine learning

classifiers, facing the same ultimate goal as flexible control,

besides the accuracy, the training time, the prediction speed, and

the dependence on computing hardware, all matter. Combined

with manual feature engineering, most classifiers in Table 5

showed appreciating results with small variance among subjects.

While among the three structures in the deep learning method,

only CNN + LSTM steadily converged (Figure 6). This result

indicates that the information contained in the short-windowed

original sEMG is sparse and chaotic. The capability of simply

designed CNN or LSTM in auto feature extraction is limited in

this multi-classification with only small samples. This affirms the

value of traditional manual feature engineering in small-sample

multiclass sEMG decoding.

With the help of this manual feature engineering, the

training process of machine learning classifiers was speedy. For

most classifiers, without the acceleration of GPU, the training

process can still be kept for approximately 5 mins. Conversely,

the shorter time for deep learning is consistent with the longer

time in machine learning.

As for stability, since the SVM has a high generalization,

although the accuracy decreases with the training proportion,

the overall performance was still acceptable. For the balance

among 60 modes, considering the individual differences, the

standard deviation varied from 0.32% (S4, S6) to 14.74% (S3).

Two subjects showed excellent decoding performance, with the

standard variance close to 0.00%.

In conclusion, with the addition of feature extraction,

the machine learning approaches in this very small sample

multiclass sEMG compound motion decoding stand out

for their excellent accuracy, fast training procedure, low

computation cost, and stability.

The limitation and future work

Experiment protocol

In the materials, limited by the size of the electrode patches

adopted in this study, targeted placement was adopted instead of

equally spaced. However, several studies have reported that the

equally spaced placement achieved better performance for the

machine learning method. In future research, tinier patches will

be used to compare the performance under different electrode

placements. Meanwhile, it has been noticed that the motions

executed in sequence might increase the inter-class difference

and decrease the intra-class difference. This may lead to a

seemingly appropriate decoding performance. In future work,

we are considering further reducing the data collection work of

each motion and improving the data collection scheme to be

decentralized and disordered.

Decoding performance

In the subsequent research work, feature engineering

with the quadratic SVM resulted in regretful test accuracies

for the contralateral decoding and cross-subjects. This

demonstrated that manual feature engineering has distinct

personal characteristics and that transferring the trained

network to other people or extra objects is difficult. However,

for deep learning, several papers reported the transfer

learning ability in cross-subject sEMG decoding. In 2021,

Chen constructed a CNN-based general gesture EMG feature

extraction network of 30 hand gestures, then transferred it into

the decoding of extra gestures, which improved the recognition

accuracy by 10 and 38% (Chen et al., 2021). Jiang proposed

a correlation-based data weighting method that achieved a

low root mean square error in cross-subject evaluation with

significant performance improvement (Hautier et al., 2000).

Based on CNN, Yu proposed a transfer learning strategy for

instantaneous gesture recognition that improved the average

accuracy of new subjects and new gesture recognition by 18.7

and 8.74% (Yu et al., 2021). In 2017, Cote-Allard used the CNN-

based transfer learning techniques to leverage inter-user data

from the first dataset and alleviate the data generation burden

imposed on a single individual (Cote-Allard et al., 2017). The

above research makes us believe that, with the help of transfer

learning, deep learning is more suitable for cross-subject and

cross-object research. However, manual feature engineering and

machine learning still have a place in subject-specific decoding

with small samples and large categories. Further, the paper

lacks online validation on amputees as an initial work. When

verifying the feasibility of compound motion decoding under a

150ms window length, some degradation of decoding accuracy
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may occur when applied to online decoding. Meanwhile,

the study on decoding methods, the study of blind-grasp,

and the research on improving stability and reducing noise

interference are equally important for amputees’ successful

online task operation.

Improvements in compounded motions

As for the selection of compound motions, considering

the repeatability and controllability during the experiment,

loads with counterweights are used to activate the strength

levels. However, such specified strength levels can hardly be

reproduced in the realistic online control of the myoelectric

hand for the disabled. Since the separability of three levels of

strengths in 60 compound motions has been demonstrated,

future research will emphasize the practicality by replacing

strength levels with three different loads (stuck to the hand) with

one’s maximum strength, medium strength, and weak strength,

thereby realizing the switch of control purposes during the

online control of the myoelectric hand. Meanwhile, with the

more complex design of the myoelectric hand’s control purpose,

the number of strength levels would be increased according

to the demand of the control purposes. Next, on the premise

of stability, more gestures would be included to enlarge the

instruction sets. The four gestures now selected in this work

were all functional gestures, and none of themwas sign language.

In the following research, according to the proposed control

logic, besides the functional gestures, more sign languages are

planned to be added to enrich the communicational usage of

the myoelectric hand. Moreover, based on this work, transfer

learning is planned to be studied next for the adaptation of more

users and more complex and personalized decoding sets.

Conclusion

Considering the control purpose switching (such as grip

vs. crush), the distinction between power grasp and precision

grasp, and the manipulation of the wrist joint in the control

of the myoelectric hand, this work puts forward the need

for compound motion decoding. With 150ms sEMG from

eight muscles, decoding 60 upper limb compound motions

achieved an average accuracy of 98.42 ± 1.71%. These

60 motions were the product of four gestures, five wrist

angles, and three strength levels. Among all 60 motions,

48 showed a test accuracy greater than 95%, and one part

was equal to 100%. In comparing decoding performance,

several deep learning methods and machine learning classifiers

were adopted, with the contrast among structures, label

encoding ways, and algorithms. The feature engineering

(MAV+RMS+VAR+ARC+WL+ZC+SSC) combined with the

SVM (quadratic kernel) stood out for its high accuracy, short

training process, less computation cost, and well stability (p <

0.05). The comparison results highlighted the value of manual

feature engineering and machine learning classifiers in relatively

small sample multiclass sEMG decoding. As a prerequisite work

for myoelectric control, this study provides a flexible solution

for the subsequent involvement of blind grasping and control

purposes, aiming to provide a more stable, diversified, and

convenient operation for the myoelectric hand.
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