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We present a dual-flow network for autonomous driving using an attention

mechanism. The model works as follows: (i) The perception network extracts

red, blue, and green (RGB) images from the video at low speed as input and

performs feature extraction of the images; (ii) The motion network obtains

grayscale images from the video at high speed as the input and completes the

extraction of object motion features; (iii) The perception and motion networks

are fused using an attention mechanism at each feature layer to perform

the waypoint prediction. The model was trained and tested using the CARLA

simulator and enabled autonomous driving in complex urban environments,

achieving a success rate of 74%, especially in the case of multiple dynamic

objects.
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1. Introduction

Autonomous driving, especially in a complex environment, remains a challenging

subject. However, with the evolution of deep networks, breakthroughs have been made

in autonomous driving techniques using images as input (Chen et al., 2015; Dosovitskiy

et al., 2017; Liang et al., 2018; Li et al., 2018; Sauer et al., 2018). These studies have

been broadly based on using images as input, extracting features through deep neural

networks, and then converting feature mapping to the vehicle’s low-level commands.

However, the image is only a spatial representation of the environment I(x, y), so we

lose the temporal dimension of the video, which is also crucial for the understanding

of motion. Therefore, we attempt to add the consideration of temporal dimension and

introduce the method in the domain of video recognition to autonomous driving for

completing the extraction of space–time features of the surrounding environment. This

raises the first question: Are the spatial and temporal characteristics of the video equally

important? Weiss et al. (2002) showed that the human retina had a different sensitivity

to understanding scene and moving objects, where scene understanding needs to be

precise but changes slowly, while the perception ofmotion of corresponding objects is the

opposite. Motivated byWeiss et al. (2002) and Feichtenhofer et al. (2019), we ensure that

the perception network maintaining the high-resolution spatial features of the image,

while the motion network focuses on real time using a more lightweight network. The
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ablation experiments (shown in Table 4) demonstrated that a

ratio of 8:1 between the number of feature channels of the

perception network and the motion network worked best.

The perceptual and motion features of the video are a whole

in themselves, which leads to the second question to be solved:

How can we integrate the perceptual features with the motion

features? The attention mechanism has received more focus in

recent years owing to its success in natural language processing

(NLP), and there have been increased developments in the

image domain as well (Dosovitskiy et al., 2020; Liu et al., 2021).

Inspired by these studies, we ensure that the dual-flow network

performs attention learning in each feature layer (except the

first layer) and that the high-resolution perception network

aligns motion features to more accurately perceive the motion of

objects in a complex environment, such as pedestrian intrusion.

The overall model structure is shown in Figure 1. The

vehicle’s front camera is used as input, and the features are

extracted through a dual-flow network to perform the waypoint

prediction, which is finally mapped to the vehicle’s low-level

commands (steering, throttle, and brake) by proportional–

integral–derivative (PID) controllers. As far as we know, the

attention-based dual-flow network is being used for the first

time in autonomous driving. Our main contributions are as

follows: (1) Proposing the dual-flow network to extract space–

time features from video; (2) Using an attention mechanism

to fuse space–time features in the dual-flow network; and

(3) Conducting experiments to demonstrate the network’s

effectiveness. Using the CARLA (Dosovitskiy et al., 2017)

simulator, we can adapt the model to the complex urban

environment for autonomous driving, with a success rate of 74%.

2. Related work

2.1. Autonomous driving

Prior approaches for autonomous driving with computer

vision are classified into three groups: modular pipelines (MP),

imitation learning (IL) (Hussein et al., 2017), and direct

perception (DP) (Gibson, 2014).

Modular pipelines are the relatively more traditional and

longer studied approach. The task is generally divided into three

sub-modules: a perception module, a planning module, and a

control module. Among them, the perception module is the core

of the whole system and is commonly used for the identification

of lanes, fences, dynamic objects, and other hazards, providing

inputs for subsequent modules. Geiger et al. (2013) investigated

the various sub-tasks. Felzenszwalb et al. (2010) and Lenz

et al. (2011) detected vehicles and lanes, respectively. Lin et al.

(2017) attempted to segment the image. The outputs of the

perceptionmodules of these methods cannot be used directly for

autonomous driving tasks and need to be subsequently mapped.

As MP relies on many intermediate feature representations,

multiple intermediate feature accuracies limit the accuracy

of the entire system, which is more challenging in complex

environments.

Imitation learning is a bionic approach also called behavioral

cloning, which maps the raw sensor inputs directly to the

vehicle’s low-level control commands, and is an end-to-end

learning approach. Our model also belongs to this category.

First, Pomerleau (1988) and Muller et al. (2005) used the

camera as the main input and used a neural network to predict

the related actions. Codevilla et al. (2018) used high-level

navigation commands to eliminate ambiguity at intersections

for autonomous driving, opening up a new stage of navigation.

Li et al. (2018) enabled better generalization of the model by

adding branches that assist in predicting image depth and image

segmentation. Codevilla et al. (2019) added speed prediction

while exploring some limitations of autonomous driving. Chen

et al. (2020) proposed a dual-network structure of “teacher”

and “student” using the knowledge distillation method and

optimized the “student” network through the “teacher” network,

achieving good results. A multimodal fusion study by Xiao et al.

(2020) was attempted and demonstrated that early feature fusion

helped in feature learning. Research related to our work (Prakash

et al., 2021) incorporated both image and light-detection-and-

ranging (LiDAR)modalities with an attentionmechanism, while

our model focuses on the mining of video space–time features.

Both the modality and the network architecture are different.

Direct perception is an intermediate form of MP and IL,

which decompose the autonomous driving task into several

key metrics, enhancing interpretation without relying on an

intermediate representation of the environment. Chen et al.

(2015) attempted to map the camera input to 13 metrics related

to the final decision. Sauer et al. (2018) mapped images directly

to six sub-tasks emergency stop, red light, speed marker, vehicle

distance, steering angle, and lane departure, and those metrics

were converted to throttle and brake commands by rules. The

DP approach requires a manual setting of prediction sub-tasks,

which is difficult to accomplish in complex environments.

2.2. Space–time features

In the image domain, convolutional neural networks (CNN)

have dominated, including AlextNet (Krizhevsky et al., 2012),

VGG (Simonyan and Zisserman, 2014b), ResNet (Szegedy et al.,

2017), and ConvNeXt (Liu et al., 2022), and have now become

the base networks for extracting image features.

Recently, there have also been some major developments

in the video domain. The network of two-dimensional

architectures includes the following: DeepVideo (Karpathy et al.,

2014), TwoStreamNet (Simonyan and Zisserman, 2014a) and

TSN (Wang et al., 2016), and a series of studies. The network

of three-dimensional architectures includes the following: C3D

(Tran et al., 2015), I3D (Carreira and Zisserman, 2017), and
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FIGURE 1

Overview of the structure, including the video from the camera, vehicle speed, and high-level navigation commands as input, using a dual-flow

network to extract features and output the prediction of waypoints, which are converted to the vehicle’s low-level commands through the

proportional-integral-derivative (PID) controller.

a series of studies. Transformer network architecture contains

TimesTransformer (Bertasius et al., 2021) and ViT (Girdhar

et al., 2019).

In the temporal dimension of video, the optical flow defines

the movement of objects in an image, specifically the amount

of movement of pixels representing the same object in one

frame of a video image to the next frame. The most classical

traditional optical flow algorithm is that proposed by Lucas

and Kanade (1981), which has been widely used given its

luminance invariance assumption and neighborhood optical

flow similarity assumption, and has been integrated into the

OpenCV library. Considering the computational inefficiency of

traditional optical flow algorithms, in recent years, people have

tried to estimate the optical flow using deep neural networks

(DNNs), represented by algorithms such as FlowNet2 (Ilg et al.,

2017). In the field of autonomous driving, optical flow also has

a wide range of applications. Gern et al. (2002) used optical

flow to do lane recognition under adverse weather conditions.

In Lieb et al. (2005), the optical flow was used within a road-

following algorithm that allows for identifying the road. In

Okafuji et al. (2015), steering learning was performed in in-

car driving. Camus (1995) performed obstacle avoidance using

optical flow. In Capito et al. (2020), the visual potential field

was calculated using optical flow vectors for obstacle avoidance.

Optical flow distillation paradigms have also recently emerged

for application in the field of autonomous driving (Rashed et al.,

2019). However, instead of using optical flow as input, our

motion network tries to have the network automatically learn

motion-related features and then fuse them with the individual

feature layers of the perceptual network features. The network

features we learn are more related to autopilot-related motion

features and are not different from the optical flow feature as

a whole (e.g., large changes in building illumination are not

relevant for autopilot features).

Our dual-flow network is motivated by a two-stream net and

slow-fast net, but has a different input and network architecture

from either of them. Our inputs contain RGB images and

continuous video frames (grayscale maps), while the feature

network uses a modified ResNet network to maintain high

resolution and guarantee feature extraction of environmental

details and motion.

2.3. Attention mechanisms

An attention (Vaswani et al., 2017) mechanism can learn the

attention of features dynamically based on different predicted

targets. The earlier applications of attention mechanisms were

mainly in the fields of NLP, but recently they have evolved

significantly in both image and video domains, from the

early squeezeNet (Iandola et al., 2016) and non-local (Wang

et al., 2018) to transformer. An attention mechanism is

distinctly different in the three domains of NLP, computer

vision, and image recognition. The first two are closely

related to the temporal dimension, while the input of the

third one is a static picture without a clear sequence.

Our model uses the attention mechanism in the field of

computer vision to accomplish the fusion of dual-flow network

features.

3. Method

The overall system is an end-to-end learning framework,

as shown in Figure 2. The RGB images sampled at low sample

rates are used as input to the perception network, and the

grayscale images at high sample rates are used as input to

the motion network. The dual-flow network extracts features

and fuses them through an attention mechanism to output

features, concatenates the speed features, and then completes the

selection of the corresponding branches according to the high-

level navigation commands to output the waypoints. Finally,

the waypoints are mapped to the low-level vehicle commands

by the PID controllers. The details are described in later

sections.
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FIGURE 2

Flow chart of the overall system. The process has three steps: (1) Using the vehicle’s front camera and speed as inputs, the low-sampling RGB

image is used as input to the perception network, and the high-sampling grayscale images are used as input to the motion network; (2) The

dual-flow network overlapping the high-level navigation commands performs the prediction of waypoints; and (3) The final output of the

vehicle’s low-level control commands is produced through the PID controllers.

3.1. Problem setting

Autonomous driving can be seen as a bionic learning or

behavior cloning process. The process is seen as a supervised

learning problem, where the behavior of an expert is imitated

through a deep network. First, the data of the expert-driven

vehicle are collected in the environment to form the training

data setD = {(Oi,Wi)}
N
i=1, whereOi denotes the ith observation

of the vehicle to the environment, and Wi denotes the ith

ground-truth waypoint. The goal is to fit a function F with θ

parameters through a neural network such that the output of

F is as similar as possible to that of W. The DNN represents

the mapping function Fθ . The learning procedure aims to

continuously optimize θ so that the loss value is minimized.

Minimizeθ
∑

i

L(F(Oi; θ),Wi) (1)

where Wi is the ith ground-truth waypoint, F is the waypoint

prediction network with the θ parameter, and Oi denotes the

ith observation of the vehicle to the environment. L is the loss

function for the prediction of waypoints and the ground-truth

waypoints.

Each episode has an end position, marked as Dg , while

Dg determines the high-level navigation commands at the

intersection Dg = {Ci, . . . ,Cm} where Ci denotes the ith high-

level navigation command in one episode at the intersection,

which eliminates the ambiguity of the intersection and has been

demonstrated in Codevilla et al. (2018) and subsequent studies

to be important. Thus, we also use Ci as a part of the training

sample. The final input is represented as Oi = {(I,C,V)}i,

where I denotes the image input, C ∈ {Left,Right, Straight}

denotes the high-level navigation commands, and V denotes the

vehicle speed. The final optimization function is derived from

Formula 1.

θ∗ = argminθ

∑

i

L(F((I,C,V)i; θ),Wi) (2)

where F is the waypoint prediction network with θ parameter,

and I,C,V are the inputs. I represents the image from the

camera, C represents the high-level navigation commands, and

V is the vehicle speed. Wi is the ith ground-truth waypoint. θ∗

represents the final neural network parameters to be learned.

The network outputs the predicted waypoints which are

then translated by the PID controller into the low-level control

commands for steering, throttling, and braking, expressed as

follows:

Ui = PID(F(Oi; θ
∗)) (3)

where F presents the network with θ parameters and predicts

the waypoints using O as inputs. Oi is the ith observation of the

environment, specifically containing the camera, vehicle speed,

and high-level navigation commands. PID is the PID controller

function, which does the mapping of waypoints to low-level

commands. Our model uses two PID controllers: lateral PID

and longitudinal PID. Ui is the ith specific control command to

manipulate the vehicle, Ui ∈ {Steer,Throttle,Brake}.

3.2. Perception and plan module

The perception and plan module used by the model

specifically refer to the dual-flow network, as shown in Figure 3.

T denotes the sampling rate of images per second, and α

represents the ratio of the image sampling rate of the perception
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FIGURE 3

Architecture of dual-flow network. The first row is the perception network using an RGB image as input, the second row is the motion network

using a sequence gray image as input, and the third row presents the input of the velocity. T denotes the sampling rate of images per second,

and α denotes the ratio of the image sampling rate of the perception network and motion network.

network and motion network. The dual-flow network is the core

and innovative point that does the mapping from the original

image and dashboardmetrics to the waypoints. The design of the

dual-flow network is inspired by the study of retinal neural cells

(Weiss et al., 2002). Specifically, both the perception network

and motion network use the video captured by the camera

as input; however, the sampling rate is different. Finally, the

features are fused using the attention mechanism.

3.2.1. Input and output

The input is divided into images, speed, and high-level

navigation commands. The dual-flow network is fed with the

video captured by the vehicle’s front camera, but at different

sampling rates. The perception network takes as the input an

RGB image with the T sampling rate, labeled as Irgb : = T,

and the motion network takes as the input a gray image with

the αT sampling rate, denoted as Igray. The ratio of input is

represented as

Irgb = αIgray (4)

where α represents the ratio of the image sampling rate of the

perception network and motion network; in our model, T =

3,α = 8, that is, there are three images per second for the

perception network input, corresponding to 8 × 3 images for

the motion network. The speed input is based on the vehicle

dashboard speed and is normalized by V =
Vcurrent
Vmax

, where

Vcurrent represents the current speed of the vehicle, and Vmax

is the maximum speed limited by the model. When the value of

V = 0, it means stationary, and when the value is 1, it means

the maximum speed. The high-level navigation command is

denoted by the symbol Ci ∈ {Left,Right, Straight}.

The output represents the predicted waypoints. These

waypoints are used as inputs to the PID controller and are

converted to the vehicle’s low-level control commands.

3.2.2. Network architecture

The dual-flow network is not limited to a specific backbone

network architecture to be used. Considering the ease of

deployment and the broadness, we adopt the RestNet-34

backbone network and make important improvements to it, as

shown in the following Table 1.

The perception network’s strip from stage 3 in the residual

module is set to 1, so the resolution is not reduced, and

the final output is a Po = (50 × 22 × 512) feature

vector. Intuitively, high-resolution features help recognize image

details.

The motion network considers the motion of the object

as a whole and does not require pixel-level differentiation.

Compared with the perception network, the motion network

has a number of channels that is reduced by a factor of 8,

and the resolution is reduced by a factor of 32, resulting

in a final output Mo = (12 × 5 × 32). The motion

network helps to provide sensitivity to motion and improves

the detection speed, in agreement with Weiss et al. (2002)’s

conclusion.

Attention (Vaswani et al., 2017) is the key to fusing the

dual-flow network features. Attention completes the learning

of different feature weights, which simply means that higher

weights are given to the important features. Suppose we have the

two features F1 ∈ Rn×d and F2 ∈ Rm×d, where n,m, and d

represents a different number of dimensions. F1 and F2 perform

attention such that both vectors have the same dimension d.

For instance, Q is the vector corresponding to F1, and K and V

are the vectors corresponding to F2. We calculate the attention
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TABLE 1 Details of the structure of the dual-flow network framework.

Stage Perception net Motion net Output size H ×W × C

Input - - PNet : 400× 176× 3,MNet : 400× 176× 8

Conv1 7× 7, 64, s = 2 7× 7, 64, s = 2 PNet : 200× 88× 64,MNet : 200× 88× 64

Pool1 3× 3,maxpool, s = 2 3× 3,maxpool, s = 2 PNet : 100× 44× 64,MNet : 100× 44× 64

Stage2







3× 3, 64

3× 3, 64






× 3







3× 3, 8

3× 3, 8






× 3 PNet : 100× 44× 64,MNet : 100× 44× 8

Stage3







3× 3, 128

3× 3, 128






× 4, s=1







3× 3, 16

3× 3, 16






× 4 PNet : 50× 22× 128,MNet : 50× 22× 16

Stage4







3× 3, 256

3× 3, 256






× 6, s=1







3× 3, 32

3× 3, 32






× 6 PNet : 50× 22× 256,MNet : 25× 11× 32

Stage5







3× 3, 512

3× 3, 512






× 3, s=1







3× 3, 64

3× 3, 64






× 3 PNet : 50× 22× 512,MNet : 12× 5× 64

Deconv - 3× 3, s = 4, p = 1, outpadding = 5, c = 512 PNet : 50× 22× 512,MNet : 50× 22× 512

Avg+ sum 1× 1 1× 1 1× 1× 512

The bold digit indicates network improvement points, where red and green values correspond to the number of channel and the stripe size, respectively. The perception network maintains

the resolution from stage 3. The motion network reduces residual channels to one-eighth of their original size.

formula for F1 attention to F2 as follows:

Attention(Q,K,V) = Softmax(
QKT

√

dk
)V (5)

where Q → F1 ∈ Rn×d, K,V → F2 ∈ Rm×d. Finally,

the learned attention values are transformed by multilayer

perceptron (MLP) and added to F1 to obtain the final feature

output:

F1′ = MLP(Attention)+ F1 (6)

where F1
′
is the new feature after the attention calculation.

To better learn more features, our model also employs

a multi-head attention mechanism. Multi-head attention is

expressed as

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (7)

where

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ). (8)

We perform feature fusion in stages 3–5 using the multi-

head mechanism, where Layer = 4,H = 4, and Dtoken = 512

correspond to the number of attention layers, the number of

attention heads, and the dimensionality of features, respectively.

Note that the outputs of the perception network and motion

network have different feature dimensions. To unify the feature

dimensions, we adjust the features of the motion network by

1× 1 convolution after doing the attention calculation, and then

we adjust the original number of channels. Let us take stage 3

of feature fusion as an example. The progress is expressed as

the formula MF
′
= Conv(Attention(Conv(MF, 512), PF), 16),

where PF,MF, andMF′ represent the feature of the perception

network, the feature of the motion network, and the new

feature after doing attention calculation, respectively. The

attention calculation of the motion network also adds the

position of coding information, which is crucial for motion

detection because different sequences of pictures represent

different movements.

Finally, the features Mo of the motion network perform

the deconvolution operation M
′

o= DeConv(Mo), which is then

summed with the output Po of the perception network,

outputting a 512-dimensional vector of the dual-flow network

Neto = Flatten(AvgPool(M
′

o) + AvgPool(Po)). Also referring to

Codevilla et al. (2019), we map the velocity of the vehicle by the

MLP into a 512-dimensional vector and add it to the outputNeto

of the network. Then, the output vector dimension remains the

same, at 512 dimensions.

Waypoint regression uses the feature vectorNeto of the dual-

flow network as input to perform the prediction of waypoints

and velocities by an MLP containing two hidden cells <

512, 64 >, labeled asHead. As the navigation command C forms

three mutually exclusive values, it also forms three mutually

exclusive branches Head ∈ {Left,Right, Straight}.

3.2.3. Loss function

The model uses the L1 loss function MAE to regress speed

and waypoints. Wi and W∗
i denote the ground-truth waypoint

and the predicted waypoint, respectively. Vi and V∗
i denote the

ground-truth speed and the predicted speed, respectively. The

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.978225
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yang et al. 10.3389/fnbot.2022.978225

loss function is denoted as

L =
∑

i=1

λ|W∗
i −Wi| + (1− λ)|V∗

i − Vi| (9)

where λ denotes the balance coefficient of velocity and

waypoints, and we choose λ = 0.8, which increases the focus

on forecasting waypoints.

3.3. PID controller

The proportional-integral-derivative controller fulfills the

mapping of waypoints to the low-level controller of the vehicle.

We use a longitudinal controller and a lateral controller, where

the longitudinal controller outputs the throttle command, and

the lateral controller completes the steering command.

The longitudinal controller fits the gap between the average

speed of the waypoint and the current speed of the vehicle.

The waypoints predicted by the model are denoted as W∗ =

{W∗
1 ,W

∗
2 , . . . ,W

∗
k
}, and the average speed of the waypoint is

V∗
t =

1

K

K
∑

k=1

‖W∗
i −W∗

i−1‖

δt
(10)

where δt represents the time interval between waypoints, and

W0 = 0. The goal of the controller is to minimize the difference

between the vehicle’s current speed with V∗
t . When the value of

the subtraction of the two is negative or the speed is less than the

threshold value ǫ, it means braking. In our model, K = 4 and

ǫ = 20km/h.

The lateral controller fits the angle of the waypoint to the

angle of the vehicle, as shown in Figure 4. We first fit an arc to

four waypoints and steer toward a red point P∗ on the arc. The

goal of the lateral controller is to minimize the angle of the head

of the vehicle to P∗. The final result is

A∗ = tan−1
Py

Px
(11)

where A∗ is the target steering angle.

4. Experiments

This chapter details the establishment of the experiments,

the comparison of the results, and the related ablation

experiments.

4.1. Experiment settings

4.1.1. Data collection

Data collection was done in eight cities through the CARLA

simulator, version 0.9.12, via autopilot mode. City [1− 4, 6− 8]

FIGURE 4

Lateral PID controller. The red waypoint is obtained by fitting a

curve with four blue predicted waypoints. A∗ is the target

steering angle.

was used for training, and city 5 was used for testing. For each

city, 10 h of data collection were obtained, with 100 random

pedestrians and 70 vehicles. Each episode consisted of start and

end coordinates (GPS), and a vehicle at the destination of the

limited time without collision means tasks success; otherwise,

it means failure. However, if the vehicle infringes on the traffic

light rules and does not cause a collision, it also means success.

During the data collection, we also added steering noise to

enhance the generalization of the data. The collected data

contained the RGB video data of 20 HZ from the camera

on the front of the vehicle and sensor data including speed,

high-level navigation commands, waypoints, vehicle position,

head angle, throttle, brake, and acceleration. We removed

the effect of weather conditions and used only clear noon

weather, considering that the goal of the experiment was to test

the performance of the vehicle in complex environments and

dynamic objects. The evaluation of the model was performed in

city 5 with a set of 10 sub-tasks. Each task contained a starting

point, a destination point, high-level navigation commands for

the task, a travel length of 1,000–2,000 m, and the yielding of

100 pedestrians and 70 vehicles at predefined locations. The

evaluation metrics included route completion (RC), count of

collisions (Collision), and time-outs.

4.1.2. Data augmentation

Previous studies Laskey et al. (2017) and Codevilla et al.

(2019) have shown that data augmentation is crucial for IL.

Therefore, data augmentation was applied to our model at the
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time of data collection and model training, respectively. During

data collection, we injected noise (steer, throttle, and brake) and

then returned to normal through the vehicle via autopilot. For

model training, we cropped the input images with the vehicle as

the bottom center, then performed a uniform rotation angle of

[−10, 10], and finally performed a random uniform pixel shift

[−5, 5] pixels. We also used conventional image enhancement

techniques, including Gaussian blur, Gaussian noise, salt-and-

pepper noise, and region dropout.

4.1.3. Model comparison

Only models that use images as input were selected for

comparison. The CILRS (Codevilla et al., 2019) model uses

images from the face-on camera as input, and the ResNet34

backbone network is used for feature extraction, which predicts

the vehicle’s low-level commands. For comparison with our

model, the prediction head of the CILRS model was replaced,

labeled as CILRS-W, which can also be seen as using only our

perception network for prediction. LBC (Chen et al., 2020) takes

images as input and uses a knowledge distillation approach to

optimize the “student” network from the “teacher” network. In

the latest version, an image heat map is applied to improve its

performance. GRIAD (Chekroun et al., 2021) is a video-based

autonomous driving algorithm that uses deep reinforcement

learning. TCP (Wu et al., 2022) explores the combination of

trajectory planning and direct control and ranks second in the

CARLA Autonomous Driving Leaderboard. We reproduced it

according to the latest code.

4.1.4. Training details

Themodel uses four multi-head attention and four attention

heads for each feature layer, and the input of each attention is

the same as that of the perception network feature dimension.

Note that the initial value of the input channel of the motion

network is equal to the average value of the AlexNet channels.

All network models use image enhancement techniques. The

ResNet networks were all initialized using AlexNet (Krizhevsky

et al., 2012) weights, with an initial learning rate of 0.0001 using

the Adamoptimizer, andwe divided the learning rate by 10when

we found that the network error was not decreasing. Finally,

we trained the models with 4 RTX 3090 GPUs for 10 h and a

batch size of 12 because of the high resolution of the image of

400× 176 pixels.

4.2. Comparison with model results and
analysis

The training and testing results of the model are shown

in Table 2. First, our model has the highest success rate.

The test task contains numerous pedestrians and vehicles,

so LBC cannot detect dynamic objects effectively with the

lowest success rate. CILRS-W uses the prediction of waypoints

and speed, which improves the model’s performance, but it

performs poorly in long-distance tasks and when facing the

sudden intrusion of dense pedestrian and vehicle traffic. Our

model can be seen as integrating the advantages of both the

CILRS-W model and the motion prediction network. In the

test, the success rate improved by 5%, and the collision rate

decreased by 5% compared to CILRS-W. GRID achieves a

success rate comparable to that of our model, which uses a

deep reinforcement learning approach, while our model uses a

supervised learning approach, and the two types of approaches

are not directly comparable. TCP is a powerful model that works

best by combining the use of trajectory planning and direct

control. However, our model explores the extraction of space–

time features, and the focus of our study is different from that

of the TCP model. Second, the model of migration is better.

Compared with CILRS-W, the transfer of the success rate is

improved by 2%, and the collision rate is reduced by 3% (19 and

17% for CILRS-W and 17 and 14% for our model). Finally, our

model is relatively cautious compared to CILRS-W. The LBC

network does not predict vehicle speed, so the time-out is high

relative to the task, and the model has a greater tendency to

predict speed to 0. CILRS-W uses speed prediction as an aid

to reduce time-out cases. However, our model can be seen as

CILRS-W overlapping with the motion network branch so that

the model is relatively cautious, and the time-out situation is 1%

higher compared to CILRS-W.

We further analyzed the collisions in the test, as shown in

Figure 5. The LBC model is the least effective. Compared to the

CILRS-W model, our model decreases the pedestrian collision

rate, the vehicle collision rate, and the traffic light collision

by 3, 1, and 1%, respectively. This is because the perception

network maintains high-resolution features that help in the

recognition of pedestrians, vehicles, and traffic lights; moreover,

the motion network estimates the motions of pedestrians and

vehicles, which complement each other.

4.3. Ablation studies

The core designs are mainly for dual-flow networks and

features fusion using an attention mechanism. The driving

performance of the dual-flow network is demonstrated in

Table 2. To further verify the validity of the model components,

we conducted a series of ablation experiments.

4.3.1. Is the attention mechanism valid?

The attention mechanism of the network was removed,

and the features of the two networks were summed backward

and fused, labeled as ours (w/o A). The results are shown in

Table 2. The (w/o A) model decreased the success rate by 3%
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TABLE 2 Model performance comparisons.

Method Train Test

- RC↑ Col ↓ Time-out↓ RC↑ Col ↓ Time-out↓

LBC 56 36 8 37 63 16

CILRS-W 88 9 3 69 26 5

Ours(w/o A) 90 7 3 71 25 4

Ours 91 7 2 74 21 5

GRIAD - - - 75 20 5

TCP 95 3 2 78 18 4

The table reports the percentage of each metric, and the arrow indicates the direction of the metric better. RC denotes the success rate, and IC is the number of collisions. Our model is

safer and has a higher completion rate, although the time-out metric is slightly higher.

FIGURE 5

Collision chart. The graph shows the percentage of collisions of each model with pedestrians, vehicles, tra�c lights, and others. Our models as

shown in yellow have the lowest collision rate.

TABLE 3 Attention layer test.

Attention layer Train RC Test RC

1 87 72

4∗ 90 75

6 91 75

8 94 73

Train RC and test RC denote the percentage of completed routes on the training and test

sets, respectively. Considering the real-time and completion rate, we used four attention

layers, marked by ∗ .

and increased the collision rate by 4% compared to our model,

proving the effectiveness of the attention mechanism. However,

too high a level of feature fusion is not beneficial to the alignment

of network features.

TABLE 4 Impact of sampling rate on the dual-flow network.

α Train RC Test RC

2 86 70

8∗ 90 73

16 83 69

α refers to the ratio of the sampling rates of perception network and motion network

inputs. Train RC and Test RC denote the percentage of completed routes on the training

and test sets, respectively. α marked by * is equal to 8, which is the best result and the final

choice for our model.

4.3.2. Are multiple attention layers needed?

Themodel used the same number of attention layers for each

layer of features, initialized each time using Alex weights, trained

for 24 h on the training data set, and then validated on the test

set. The results are shown in Table 3. It can be seen that the
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FIGURE 6

Visual attention. The first row is the original image. The second row is the attention image. The dual-flow network focuses on areas near

vehicles, pedestrians, and tra�c lights.

TABLE 5 Run time.

Method Late fusion (LF) Geometric fusion (GF) TransFuser (TF) Dual-flow (Ours)

MS/Frame 23.5 43.5 27.6 35.3

We obtained the time taken by each model to process a single frame using the total time taken by the model to finish a route divided by the total number of frames. Our model takes 35.3

ms per frame and is relatively time-consuming.

training error of the model tends to decrease as the number of

layers increases, and the reason for this trend is related to the

increase in the parameters of the model, resulting in a better

fit to the training dataset. In the test dataset, the performance

of the other models is comparable, except for the first model,

whose performance is considered poor. However, the poor

migration effect of the model using eight attention layers may

be related to the overfitting of the data. In terms of the overall

consideration, using four attention layers is the best choice. Note

that using a different number of layers for each layer produces

better results.

4.3.3. Is the ratio of the image sampling rate,
marked as α of the dual-flow network,
reasonable?

For the purpose of verifying the effect of α (in Equation

4), we used the model with four attention layers for scratch

training, and the results are shown in Table 4. α takes too

small a value, the motion network cannot learn the motion

features, and the whole model degenerates into the CILR-W

model. Moreover, α takes too large a value, resulting in too

long a period, which is not conducive to the alignment of

dual-flow network features and reduces the performance of

the model.

4.3.4. Attention visualizations

The attention mechanism of the network was visualized, as

shown in Figure 6. The network has a high weight for moving

pedestrians, cars, and signals, which provides help for dynamic

object detection in complex environments.

4.4. Run time

We measured the running time of our model on a single

RTX 3090 GPU by averaging over all time steps of the evaluation

route, as shown in Table 5. Some of data in Table 5 are quoted

from work (Chitta et al., 2022). Our model takes 35.3 ms

per frame, an increase of 11.8 ms and 7.7 ms compared to

LF(23.5 ms) and TF(27.6 ms), respectively. Mining the temporal

features of the video naturally consumes more time, following

our estimation.
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4.5. Limitations

First, our best model can learn by imitating the driving

habits of an expert at the same level as the expert, which is

the ceiling of the model. The expert data bring bias in the data

distribution, which is a drawback of our model. Second, the real-

time performance of our model needs to be further optimized, as

analyzed in other work Section 4.4.

5. Conclusion

Motivated by the asymmetry of spatial and temporal

sensitivity in the studies of the retinal cell, we proposed

a dual-flow network to learn the space–time features of

videos for autonomous driving. In the model, the perception

network uses a modified ResNet34 backbone to maintain high

image resolution and achieve a refined understanding of the

environment, while the motion network uses a reduced channel

ResNet34 backbone (the channels are reduced to 1
8 ), which

improves the computational speed and completes the learning of

motion information. Finally, the feature layers of two networks

are fused using an attention mechanism. Through experiments,

we demonstrated that the network structure we designed aided

in the detection of dynamic objects in complex environments,

achieving a completion rate of 74%.

In the future, we will try to use deep reinforcement

learning to relieve the distribution mismatch caused by IL

and to increase the adaptability to unknown scenarios. Also,

the real-time performance of our model needs to be further

optimized. Inspired by recent research (Shang et al., 2022; Yuan

et al., 2022a,b), autonomous driving perception algorithms can

also be used to extract low-dimensional information relevant

to decision-making from high-dimensional information. The

application of multi-sensor data, especially video data (high

latitude data) and LiDAR point cloud data (sparse data),

is a new direction worthy of research. Hopefully, our

research will promote the use of space–time features in

autonomous driving.
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