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Human-machine teams are deployed in a diverse range of task environments

and paradigms that may have high failure costs (e.g., nuclear power plants).

It is critical that the machine team member can interact with the human

e�ectively without reducing task performance. These interactions may be

used to manage the human’s workload state intelligently, as the overall

workload is related to task performance. Intelligent human-machine teaming

systems rely on a facet of the human’s state to determine how interaction

occurs, but typically only consider the human’s state at the current time

step. Future task performance predictions may be leveraged to determine if

adaptations need to occur in order to prevent future performance degradation.

An individualized task performance prediction algorithm that relies on a

multi-faceted human workload estimate is shown to predict a supervisor’s task

performance accurately. The analysis varies the prediction time frame (from 0

to 300 s) and compares results to a generalized algorithm.

KEYWORDS

task performance prediction, human performance modeling, human-machine

teaming, deep learning, intelligent system

1. Introduction

The NASA control room for the Mars Rover contains a multitude of tasks that must

be completed with high performance (Sim et al., 2008) (e.g., generating plans for the

robot to complete), as errors may cause significant monetary loss or complete mission

failure. Additionally, the human supervisors may experience erratic shift timings,

dynamic workload levels (i.e., underload and overload), and fatigue (Leger et al., 2005),

which has a substantial negative affect on performance (Wickens et al., 2004). Intelligent

human-machine systems seek to optimize human performance in such detrimental

conditions by implementing an adaptation strategy (e.g., task autonomy levels) based

on human state measurements (e.g., workload, fatigue) (Sim et al., 2008; Sheridan, 2011).

Dynamically allocating task load to the human or system based on cognitive

workload is one of the most common adaptation strategies (Kaber and Endsley, 2004;

Schwarz and Fuchs, 2018). However, the overall workload is a multi-dimensional

construct that is composed of auditory, cognitive, physical, speech, and visual resource

channels (McCraken and Aldrich, 1984; Mitchell, 2000). Conflicts can occur between

the workload channels (i.e., between auditory and speech) and reduce task performance.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.973967
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.973967&domain=pdf&date_stamp=2022-09-13
mailto:jrheee@rit.edu
https://doi.org/10.3389/fnbot.2022.973967
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.973967/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Heard et al. 10.3389/fnbot.2022.973967

More intelligent adaptation strategies can be implemented if the

system understands the complete workload state (Heard et al.,

2020). For example, if a human’s speech workload is overloaded,

then an audible alert creates a channel conflict and potentially

reduces performance. A system cognizant of the human’s speech

workload level can postpone the alert or use a visual modality

in order to prevent a workload channel conflict from occurring;

thus, increasing task performance.

Targeting adaptations to the human’s current workload state

is a critical component of intelligent human-machine systems,

but limits the system’s capabilities. There will be a time delay

between when an adaptation occurs and when the adaptation

affects the human, meaning that an overloaded human may be

achieving low task performance before the system’s adaptation

can mitigate the overloaded workload state. Additionally, a

robot or machine’s actions must not inadvertently overload the

human. A system capable of identifying future task performance

decrements or predict an action’s potential task load impact on a

human may be able to implement an adaptation strategy before

an undesired workload state occurs or reason over multiple

decisions in order to chose an action that maximizes future

task performance.

Consider a wildland fire moving quickly toward a village. An

unmanned aerial vehicle (UAS), a remote UAS flight supervisor,

and a team of smokejumpers compose the response team. Two

overloaded smoke-jumpers are fighting hotspots and cannot be

easily replaced. The UAS must determine on which hotspot

to drop suppressant. If the UAS relies on current workload

state information alone, both hotspots have equal probability

of being chosen due to the smokejumper’s equal workload

levels. However, if the UAS can predict each smokejumper’s

future task performance and drop suppressant on the hotspot

corresponding to the worst performance prediction.

The research contribution focuses on a deep-learning

model that predicts future task performance using workload

estimates corresponding to overall workload and its

contributing components (cognitive, physical, visual, auditory,

and speech; McCraken and Aldrich, 1984). These workload

estimates were provided by a previously developed workload

assessment algorithm (Heard and Adams, 2019; Heard et al.,

2019) that relied on physiological signals. Using workload

estimates as inputs to the performance prediction algorithm

created more accurate predictions than when physiological

signals were used as inputs. Additionally, relying on workload

estimates ensures that the performance prediction algorithm is

not constrained to a specific set of physiological signals, which

broaden the domains to which it can be applied. For example,

consider the NASA control room and wildland fire response

scenarios, where electroencephalogram (EEG) data was

collected from the control room domain and electrocardiogram

(ECG) data was collected from the response domain. If

the models rely solely on physiological signals, separate

performance prediction models will need to be designed and

trained for each domain. Requiring different models is due to

the different feature spaces and amount of information in each

physiological signal. However, only a single performance model

architecture may be needed if a workload assessment algorithm

is trained to map the physiological signals to workload estimates

in each domain.

Data from a supervisory-based (Scholtz, 2003) human-

machine teaming evaluation (Heard et al., 2019) was used

to analyze the developed model from two perspectives:

generalized and individualized. The generalized perspective

determines how the developed model performs on a human

for which it was not trained and is subjected to individual

differences. The individualized perspective lessens the impact

of individual differences by updating (training) the generalized

model with participant-specific information. The key research

contributions are as follows:

• A deep-learning based task performance prediction

algorithm that relies on multi-dimensional workload

estimates, rather than solely on physiological signals.

• The algorithm can be generalized across individual users

or tailored to an individual human for greater prediction

accuracy.

• A robust analysis of the algorithm’s ability to predict

performance 300 s into the future.

This manuscript is organized as follows: Section 2 reviews

related work to performance prediction, while Section 3

describes the methodology for the performance prediction

model. The results are presented in Section 4 and discussed in

Section 5. The concluding statements are provided in Section 6.

2. Related work

Estimating an aspect of the human’s state (e.g., workload

or engagement) to facilitate intelligent system interactions

has been a research focus in a wide range of domains

(e.g., adaptive automation, augmented cognition). Adaptive

automation systems allocate system control to the human or

system in order to mitigate undesired workload states (Kaber

and Endsley, 2004; Sheridan, 2011). Similarly, augmented

cognition seeks to change task difficulty dynamically in order

to keep the human engaged with the system (Fuchs and

Schwarz, 2017). Both domains rely on the current human state

to determine how to adapt, but generally do not predict the

adaptation’s impact on task performance. Such a prediction

scheme may allow permit more appropriate adaptations.

The current related research relies on physiological measures

to indirectly infer task performance, due to the metrics’ response

to varying workload conditions (Cain, 2007). Ayaz et al. (2019)

predicted performance using brain-activity measures (i.e.,

electroephenogram and functional near-infrared spectroscopy)
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on a “microscopic” and a “macroscopic” level. The microscopic

level predicted performance at most 4 s into the future, which

may be too short of a time-frame for an adaptation to prevent

a performance decrement from occurring. The macroscopic

level predicted performance days into the future, which does

not provide information for the current task focus. Other

work predicted task performance 15 min into the future using

electroephenogram measures (Stikic et al., 2011); however,

this work predicted performance using a 10-min block or

window. Adaptive systems most likely need a finer granularity

of predictions (i.e., 30 s) in order to be effective.

Relying on physiological measures or human state

assessments (such as multi-dimensional workload) makes

a performance prediction model susceptible to individual

differences, as physiological signals vary between individuals

(Cain, 2007) and from day to day for the same individual

(Christensen et al., 2012). Predicting task performance from

human state assessments using generalized and individualized

models has yet to be analyzed, but generalized/individualized

human state assessments have been developed. Teo et al.

(2016, 2019) focused on an individualized workload model for

adaptive aiding, by identifying individual specific physiological

markers (e.g., EEG and heart-rate metrics) that are sensitive

to workload variations. These markers were incorporated

in a difference-based workload index algorithm, where

individualized algorithms were produced for each human. This

approach requires knowing the individual human apriori and

it is unclear how the algorithm’s internal model may update

over time in order to accommodate day-to-day individual

differences. A machine-learning based human-state assessment

algorithm may incorporate online learning techniques to help

account for day-to-day variability (Christensen et al., 2012).

Task performance can be directly measured in some

domains (Schreckenghost et al., 2010; McGuire et al., 2019),

such as stationary computer-related tasks. However, task

performance metrics do not provide the necessary insight into

the human’s internal state and may hinder future performance

predictions. For example, a human can be in an overloaded

workload state and achieve high task performance, but the task

performance can decrease at some point in the future (Wickens

et al., 2004). An adaptive system that relies on workload

estimates to infer future performance may detect the overloaded

state and reason that task performance will decrease, which can

trigger an adaptation to mitigate the decrements.

The developed performance prediction model is applicable

across task environments, as the model relies on a multi-

dimensional workload estimate, rather than directly using

physiological signals. A multidimensional workload estimate

is composed of an overall workload continuous value and

continuous values for each workload component (cognitive,

physical, visual, auditory, and speech). The developed model

may be used in a generalized fashion (no apriori human data) or

can be individualized to a human teammate for more accurate

predictions. The presented performance prediction model

differs from the related work as both its generalization and

individualization capabilities are analyzed (instead of just one or

the other), it relies on continuous multi-dimensional workload

estimates (instead of a discrete workload classification), and it is

more accurate than solely using physiological signals.

3. Methodology

A relationship exists between workload and overall task

performance (Wickens et al., 2004); thus, workload information

may be used to predict future performance. This information

was obtained via a workload assessment algorithm (Heard and

Adams, 2019; Heard et al., 2019) that estimated the overall

workload and each workload component (cognitive, physical,

speech, visual, and auditory) every 5 s. This frequency was

chosen in order to balance system adaptation rates and workload

estimation accuracy (Heard et al., 2020). The algorithm relied on

physiological (e.g., heart-rate) data and a 5-layer neural network

structure and has been validated in multiple human-machine

teaming paradigms (Heard et al., 2019).

A performance prediction model was composed of long

short-term memory (LSTM) neural networks (Hochreiter and

Schmidhuber, 1997). LSTM networks use previous time-step

information to predict future time-steps of a sequential data

series. The performance model’s input layer consisted of three

time-steps (15 s), each with 6 neurons (one neuron for overall

workload and each workload component). The input layer was

followed by three LSTM layers each with 64 neurons with a

dropout rate of 0.8. These layers were followed by a fully-

connected layer with 64 neurons and a rectified linear unit

activation function. The last layer was an output regression

layer with a single linearly activated neuron, which predicted

overall performance for n-timesteps (the time horizon) in the

future. The ADAM optimizer (Kingma and Ba, 2015) with a

mean-absolute error (MAE) loss function and a 0.01 initial

learning rate was used to train the model. Various other

architectures and hyper-parameters were tried, but the presented

architecture and respective hyper-parameters correspond to the

least complex model that provided comparable performance.

Statistical machine-learning approaches (such as a support

vector machine) were investigated but did not achieve the

desired prediction performance levels.

The entire algorithmic approach is provided in Algorithm 1.

First, relevant features are extracted from the physiological data

(Line 2) and the features are fed into a workload assessment

algorithm (Line 3) to obtain the multi-dimensional workload

estimate. It is important to note that including the physiological

feature extraction and workload assessment algorithm into

the algorithmic approach is necessary to support replicating

the methodology, but any physiological signals or workload

algorithm may be used. The remaining algorithmic portion
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Input: Physiological Metrics, Prior Workload

Estimates

Output: Performance Prediction Estimate

1 Performance Prediction (physiologicalData,

priorWorkloadEstimates):

2 features = Extract

Features(physiologicalData)

3 currentWorkloadEstimates =

WorkloadAssessmentAlgorithm(features)

4 workloadEstimates =

ReshapeWorkloadEstimates(workloadEstimates,

priorWorkloadEstimates)

5 performancePrediction =

LSTM_Model.predict(workloadEstimates)

6 return performancePrediction

Algorithm 1. Performance prediction algorithm.

is the primary contribution to the performance prediction

literature. The current multi-dimensional workload estimate

(overall workload and its contributing components) is combined

with the prior workload estimates to produce a 1 by 3 (number

of timesteps to use) by 6 (number of workload estimates per

timestamp) matrix as stated in line 4. This reshaped matrix

is fed into a trained LSTM model to predict future task

performance (line 5). Any physiological metric or workload

assessment algorithmmay be used in lines 4 and 5, provided that

the workload assessment algorithm can map the physiological

metrics to a continuous multi-dimensional workload estimate

accurately. Thus, the presented algorithm is not constrained to a

specific physiological data set.

3.1. Experimental design

Performance data collected from a within-subjects

evaluation1 (Heard and Adams, 2019; Heard et al., 2019)

was used to validate the performance prediction model. Each

participant completed 2 days, where the average time between

experiment days was 3.48 days (Std. Dev. = 2.13). Each day

manipulated workload and measured objective workload,

performance, and subjective workload metrics. The first day

required each participant to complete a consent form, a

demographic questionnaire, and 10-min of training using the

NASA MATB-II (Comstock and Arnegard, 1992) prior to

completing three 15-min trials. The NASA MATB-II mimics

a supervisory human-robot team (Scholtz, 2003), where the

human supervises a remotely piloted aircraft. IMPRINT Pro

1 Vanderbilt University IRB Approval Number #181741 and Oregon

State University IRB Approval Number #8678.

(Archer et al., 2005) was used prior to the evaluation to model

the overall workload, its components, and other specifies

associated with each trial. The resulting workload models served

as the “ground-truth” labels to train the workload assessment

algorithm (Heard and Adams, 2019), but were not used for

training the performance prediction model.

Each first day 15-min trial corresponded to either the

underload (UL), normal load (NL), or overload (OL) workload

condition, with trials counterbalanced to negate ordering effects.

A 5-min break occurred after the training session and between

each first day trial in order to allow the participant’s physiological

signals to return to their resting state levels (Reimer et al.,

2009). The second day emulated real-world conditions in

which workload transitioned between levels (e.g., UL to OL

to NL). Each participant completed one 35-min trial, which

contained seven consecutive 5-min workload conditions. The

three workload condition orderings were as follows:

• O1: UL-NL-OL-UL-OL-NL-UL

• O2: NL-OL-UL-OL-NL-UL-NL

• O3: OL-UL-OL-NL-UL-NL-OL

The orderings were chosen, such that each workload

condition transition occurred once. The second day workload

conditions were not randomized, given the focus on workload

transitions, rather than the conditions themselves. Additionally,

the 5-min time-frame per condition reflects the time that

physiological signals need to identify a workload transition

(Reimer et al., 2009). Multiple works have investigated

physiological responses to various workload states (Castor, 2003;

Cain, 2007; Heard, 2019). For example, there is typically an

increase in heart-rate when transitioning from a lower workload

state to a higher workload state. Vice-versa, heart-rate decreases

when transitioning to a lower workload state.

The evaluation’s task environment consisted of the

NASA MATB-II, which simulated a human supervising

a remotely-piloted aircraft. The simulation, depicted in

Figure 1, incorporated four concurrent tasks: tracking, system

management, resource management, and communication

monitoring. Each task elicits different demand levels

(e.g., cognitive, visual, physical), which was captured in

the IMPRINT Pro software (Heard, 2019). Participants

also have differing skill levels, where some tasks may be

easier than others (e.g., the tracking task may be easier

for someone with prior flight simulator experience).

This varying skill level will impact overall performance;

therefore, individual-specific performance prediction models

are needed.

Participants were to maintain a blue circle within the

center of the crosshairs using a joystick for the tracking task,

see the top, center of Figure 1. This task operated in two

modes (automatic and manual) that were used for manipulating

workload. The automatic mode required no participant input
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FIGURE 1

The NASA MATB-II task environment.

and was used for the entire duration of the underload condition.

The manual mode required the participant’s full control and

was used throughout the overload condition. The modes

switched approximately every 2.5 min during the normal

workload condition, as determined by the IMPRINT Pro

workload modeling.

The system monitoring tasks’ two colored buttons and four

gauges are depicted in the upper left of Figure 1. This task

requires identifying when a button or a gauge was out of range

and resetting it by selecting the element. The green button

(F5) was out of range when it turned off (gray), while the

red button (F6) was out of range when turned on (red). A

randomly moving indicator (up and down) typically remained

in the middle of each gauge. If the indicator was too high or

too low, the gauge was to be clicked on in order to reset it. The

underload condition had one out of range instance per minute,

overload had twenty instances per minute, and normal load had

five instances per minute.

Six fuel tanks (A-F) and eight fuel pumps (1-8) were

monitored for the resource management task, depicted in the

bottom center of Figure 1. The fuel levels of Tanks A and B were

to be maintained between 2,000 and 3,000 units by turning fuel

pumps on or off, where the arrow depicted fuel direction. Fuel

Tanks C and D had finite fuel levels, while Tanks E and F had an

infinite fuel supply. Workload was manipulated by the number

of failed pumps, indicated by the pump turning red and zero

fuel flowing. Zero pumps failed during the underload condition,

while two or more pumps failed during the overload condition.

The normal load condition switched from zero pumps failing to

one or two pumps failing every minute.

The communications task required listening to air-traffic

control requests for radio changes. A request may be “NASA

504, please change your COM 1 radio to frequency 127.550.”

The original MATB-II communications task required no speech;

thus, a required verbal response was added. A response

may be “This is NASA 504 tuning my COM 1 radio to

frequency 127.550.” Participants were to change the specified

radio to the specified frequency by selecting the desired radio

and using the arrows to change the radio’s frequency, as

depicted in the lower left of Figure 1. Communications not

directed to the participant, as indicated by the call sign,

were to be ignored. The underload condition contained two
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or fewer requests, the overload contained eight or more,

and the normal load contained from two to eight requests

per minute.

3.2. NASA MATB-II overall task
performance

The performance prediction model requires overall

task performance data in order to be validated, but no

current method exists to combine each NASA MATB-II task

performance measure into an overall measure. The individual

performance measures were mapped to a value from 0 to

1, where 1 represents optimal performance. The tracking

task performance measure (i.e., root-mean squared error

between the crosshairs’ center and the object) was normalized

based on participant data. The system monitoring task and

communications task performances were measured using two

metrics: reaction time and success rate. Reaction time represents

the time a participant took to correct an out-of-range light or

gauge, while success rate represents the number of out-of-range

instances corrected divided by the total number of instances.

Reaction time was normalized to the range 0–1, while success

rate was already within range (0–1). A value of 1 was assigned

if the resource management task’s fuel levels were within 2,000

and 3,000 units, while the tank levels were normalized (0–1)

outside of that range. The overall performance measure was

the uniform average of all active tasks’ performance measures,

which assume that the tasks’ trade offs will be equivalent in

terms of performance. For example, if the tracking and system

monitoring tasks were the only active tasks, then the overall

performance was the average of those tasks’ measures.

Relying on normalizing the performance metrics and

using an uniform average calculation may not be the

optimal solution to generating an overall performance

score. Normalizing performance data does not penalize time

dependent performance measures. For example, the fuel tank

levels rise at a constant rate; thus, fuel levels much smaller than

2,000 units were penalized more than fuel levels close to 2,000

units. Developing appropriate time penalizations is not trivial

and is tangential to the developed model’s performance. Using a

uniform average to calculate overall task performance does not

account for task priority levels, but the participants were not

given task prioritizations; thus, the use of a uniform average.

3.3. Participants

The thirty participants (18 female and 12 male) had a mean

age of 25.70 [Standard Deviation (St. Dev.) = 8.65], with an age

range from 18 to 62. Caffeine usage and an individual’s fitness

may impact the physiological metrics’ response to workload.

Seventeen participants did not drink any caffeine the day of the

experiment, while six drank ≤ 16 oz and seven drank ≥ 16 oz.

Participants indicated that they exercised a mean of 3.86 (St.

Dev. = 1.59) times per week. Video game experience was also

collected, where 25 participants played video games for three or

fewer hours per week.

The participants slept an average of 6.58 (St. Dev. = 1.57) h

the night before the first day of the experiment and an average of

6.78 (St. Dev.= 1.85) h two nights prior. The participants’ stress

levels, rated on a Likert scale (1-little to 9-extreme), were rated

as 2.90 (St. Dev. = 1.76), while fatigue levels were rated as 2.83

(St. Dev.= 1.32) on the same scale.

3.4. Metrics

Objective and subjective workload measures were collected

throughout the evaluation. The BioPac BioHarnessTM 3 portable

measurement device was attached to a flexible strap that fastens

around the participants’ ribs against the skin, much like an

athletic heart rate monitor. This device captured the heart rate,

heart-rate variability, respiration rate, skin temperature, body

activity, and posture objective workload metrics. The other

objective workload metrics, such as noise level and speech rate,

were collected using a REED R8080 decibel meter and a Shure

PGX1 microphone head set, respectively.

The subjective workload measures consisted of verbal in situ

workload ratings (Harriott et al., 2013) and theNASA-TLX (Hart

and Staveland, 1988). The verbal ratings were administered

every four and a half min, while the NASA-TLX was completed

after each trial.

3.5. Validation methodology and
hypotheses

The remainder of this paper validates the performance

predictionmodels’ ability to accurately predict and track the task

performance trends within and across workload conditions from

two perspectives: generalized and individualized. The generalized

perspective determined how the prediction model performs on

an unseen human (i.e., generalizes across a population), by

using a leave-one-participant-out cross-validation scheme. The

generalized model was trained on 29 participants’ performance

data from both evaluation days and tested on the corresponding

second day data of the remaining (left-out) participant. This

scheme was repeated 30 times, once for each participant.

Higher predictive power may be achieved using data from a

specific individual; thus, the individualized perspective updated

the previously trained generalized model (i.e., 29 participants

data) by training the model with the remaining participant’s

data (workload estimates) from the first evaluation day and the

first half of the second day. The individualized model was tested

on the remaining second day’s data. This validation scheme
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simulates a potential real-world application, where a generalized

performance prediction model is developed for all of the human

supervisors. This generalized model can later be tailored to an

individual during training (the evaluation’s first day) and from

day-to-day use (the evaluation’s second day). The generalized

and individualizedmodel both use multi-dimensional workload

estimates (overall workload and each workload component) as

inputs. No individual demographic data were used.

Both models were compared to a respective physiological-

signal only model, which used the same features that the

workload assessment algorithm relied on and the same LSTM

model architecture. This comparison is to demonstrate that

relying on workload estimates can provide more accurate

performance predictions than relying solely on physiological-

based features. The training and validation scheme for analyzing

the physiological-based model was the same as the workload

estimate-based model.

Several hypotheses were developed. Hypothesis H1

predicted that the MAE between the actual and the

predicted performance values will be less than 0.1 for the

generalized model. This value was the difference between

the measured average participant overall performance values

from each evaluation workload condition: UL 0.91 (St.

Dev. = 0.17), NL 0.82 (St. Dev. = 0.18), and OL 0.72 (St.

Dev. = 0.13). Pearson’s Correlation Coefficient was used to

analyze the prediction model’s ability to track performance

trends, both within and across workload conditions.

Hypothesis H2 predicted that the generalized models’

predictions will correlate positively and significantly with the

measured values.

The individualized performance prediction models’

estimates were expected to track the performance trends

better than the corresponding generalized models; therefore,

hypothesis H3 predicted that the individualized performance

prediction model’s MAE values will be less than the

corresponding generalized model. Similarly, hypothesis

H4 predicted that the individualized model’s Pearson

correlation coefficients will be larger than the generalized

model’s coefficients.

The predictive power of both the generalized and

individualized performance prediction models was evaluated

by developing seven prediction variants for each model. These

prediction variants predicted the task performance at various

time horizons (future timesteps in seconds): 0 s (i.e., current

performance), 5, 15, 30, 60, 120, and 300 s. These time horizons

were chosen in order to capture the expected trade-off between

time horizon and accuracy. It was expected that predicting

performance past 300 s into the future will be an inadequate

time-frame for system adaptations, due to the stationary

nature of time-series signals. The predictive power of both the

generalized and individualized performance prediction models

was expected to decrease with the increase in the time horizon.

HypothesisH5 predicted that the MAE values will increase, and

the correlation coefficients will decrease with the increase in the

time horizon.

Lastly, it is expected that using workload estimates, rather

than physiological-based features, will result in more accurate

predictions. Specifically, hypothesis H6 predicts that MAE’s

will be lower and the correlation coefficients will be higher

using workload estimates as inputs, than using physiological-

based features.

4. Results

The following results correspond to the two performance

prediction models: generalized and individualized. The

generalized model’s results pertain to the described leave-

one participant out cross validation scheme, which was

used to determine the impact of individual differences.

The individualized model’s results lessen the impact of

individual differences, by training the generalized model with

individual-specific data.

4.1. Generalized performance prediction
model

Seven prediction model variants were developed for the

generalized performance prediction model: GM0, GM5, GM15,

GM30, GM60, GM120, and GM300. The GM0 model variant

predicted a participant’s current task performance, while the

GM5, GM15, GM30, GM60, GM120, and GM300 variants

predicted the task performance for 5, 15, 30, 60, 120, and 300 s,

respectively, into the future.

Mean absolute errormeasures the absolute error between the

generalized model’s predicted values and the actual (measured)

participant performance values. The MAE for each of the

evaluation’s second day’s workload orderings (i.e., O1, O2,

and O3) are provided in Table 1 by workload conditions. The

All column presents the aggregate MAE (the error across the

workload conditions). Overall, the worst MAE was 0.162 (Order

1 NL), which means that the corresponding model prediction is

within 0.162 of the actual participant performance (ranged [0,

1]). For example, if a predicted performance value was 0.8, the

actual performance value is within the range 0.64–0.96. Likewise,

the best MAE was 0.064 (Order 3 UL), which changes the actual

performance range to 0.73–0.87, given a predicted value of 0.8.

Each model variant’s MAE in the UL and OL conditions for

O2 and O3 were below 0.10, indicating a 0.2 range around a

predicted value (e.g., 0.7–0.9 for a predicted value of 0.8). The

general model variants had more difficulty with Order O1 and

predicting performance during the normal load condition (MAE

above 0.1). This result indicates that ordering effects occurred.

Additionally, the higher error for the normal load condition is
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TABLE 1 The predicted performance mean absolute error (MAE) for

each generalized model variant by workload condition and ordering.

Ordering Model UL NL OL All

O1 : UL-NL-OL-UL-OL-NL-UL GM0 0.117 0.158 0.111 0.131

GM5 0.117 0.162 0.110 0.133

GM15 0.120 0.162 0.116 0.136

GM30 0.126 0.161 0.117 0.137

GM60 0.132 0.163 0.119 0.141

GM120 0.142 0.162 0.130 0.147

GM300 0.153 0.159 0.126 0.147

O2 : NL-OL-UL-OL-NL-UL-NL GM0 0.099 0.134 0.077 0.107

GM5 0.100 0.134 0.081 0.109

GM15 0.102 0.135 0.082 0.110

GM30 0.099 0.134 0.091 0.111

GM60 0.094 0.138 0.101 0.113

GM120 0.090 0.142 0.125 0.120

GM300 0.094 0.145 0.125 0.119

O3 : OL-UL-OL-NL-UL-NL-OL GM0 0.064 0.115 0.100 0.094

GM5 0.065 0.114 0.099 0.094

GM15 0.069 0.116 0.101 0.097

GM30 0.073 0.115 0.106 0.099

GM60 0.066 0.114 0.114 0.099

GM120 0.072 0.115 0.128 0.105

GM300 0.071 0.115 0.108 0.098

The lowest values for each workload condition are in bold.

attributed to the large range of workload values compared to the

underload and overload conditions.

The models’ ability to track performance trends, both within

and across workload conditions was analyzed using Pearson’s

correlations, where a larger positive coefficient represents better

tracking. The correlation coefficients are presented in Table 2.

Almost all of the correlations across the workload conditions

were positive and significant; however, these correlation

coefficients were all≤ 0.5 (moderate positive relationship, rather

than a strong positive relationship). The GM0, GM5, GM15,

and GM30 prediction models’ estimates were more positively

correlated with the actual performance values than those with

longer time horizons.

Examining the average change in MAE and the correlation

coefficient as the time horizon increases permits determining

at what time horizon the algorithmic performance degrades.

The MAEs typically increased on average 0.002 as the time

horizons increased, which indicates a minimal change in error

when predicting further into the future. This minimal change

was unexpected, as it was expected to have more inaccurate

predictions further into the future. However, the correlation

coefficients decreased on average by 0.03 with an increase

in the time horizon, where this large change was expected.

Overall, the average error for longer time horizons changes

TABLE 2 The Pearson’s correlations between the predicted

performance and actual performance for each generalized model by

workload condition and each workload ordering.

Ordering Model UL NL OL All

O1 : UL-NL-OL-UL-OL-NL-UL GM0 0.333** 0.071* -0.004 0.211**

GM5 0.325** -0.019 0.066 0.188**

GM15 0.255** -0.057 -0.123** 0.138**

GM30 0.226** 0.007 -0.059 0.142**

GM60 0.179** 0.038 0.060 0.136**

GM120 -0.096** -0.058 -0.078 -0.049*

GM300 0.038 -0.097** -0.122** -0.036

O2 : NL-OL-UL-OL-NL-UL-NL GM0 0.186** 0.096** 0.582** 0.291**

GM5 0.195** 0.184** 0.560** 0.306**

GM15 0.174** 0.167** 0.445** 0.302**

GM30 0.242** 0.184** 0.230** 0.300**

GM60 0.315** 0.147** 0.290** 0.300**

GM120 0.262** 0.161** 0.207** 0.259**

GM300 0.205** 0.214** -0.065* 0.213**

O3 : OL-UL-OL-NL-UL-NL-OL GM0 0.359** 0.116** 0.523** 0.485**

GM5 0.333** 0.145** 0.504** 0.486**

GM15 0.237** 0.094** 0.472** 0.458**

GM30 0.192** 0.112** 0.388** 0.440**

GM60 0.188** 0.188** 0.212** 0.388**

GM120 0.109** 0.196** 0.271** 0.295**

GM300 0.277** 0.053 0.348** 0.266**

*Indicates p ≤ 0.05 and **indicates p ≤ 0.01. The highest values for each workload

condition are in bold.

minimally, but the model variants are unable to track the overall

performance trends.

The GM30 and GM120 predicted and actual performance

values for O2 were plotted in Figure 2 since they are the most

likely to be used in an intelligent human-machine system and

O2 contains the most instances of the NL condition (the highest

variance in performance, as stated in Section 3.5). GM60 may

also be used in an intelligent human-machine system; however,

the model’s estimates are similar to GM30 and incorporating the

estimates in the plot makes the figure too cluttered. Figure 2A

plots the average O2 participant performance at each timestep.

The two generalized model variants overestimated the actual

average participant performance, but tracked the high-level

trends (i.e., performance decreasing/increasing across workload

conditions). Low-level trends (i.e., within a workload condition)

were not tracked well by either prediction model, as evident

during the first NL condition (0–300 s).

The generalizedmodel’s accuracy for two participants, whose

performance models’ MAE were the lowest (Pbest) and highest

(Pworst), are presented in Figures 2B,C. The GM30 and GM120

model variants failed to track small fluctuations in the actual

individual participants’ performance values, as seen during
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FIGURE 2

(A) The generalized model’s predictions vs. the averaged actual participant performance values. (B) The generalized model predictions vs. the

true performance values of participant Pbest. (C) The generalized model predictions vs. the true performance values of participant Pworst. The

GM30 and GM120 prediction model variant’s predicted values plotted against the true performance values for workload ordering O2. The y-axis

scale ranges from 0.5 to 1.0 for (A,B), while it ranges from 0.0 to 1.0 for (C). UL/NL/OL in each plot represents the workload condition.
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the first OL condition (300–600 s). The GM30 model variant

tracked a large increase/decrease in the actual performance

values with an approximate time delay of 10–20 s, as depicted

during the workload transition at 600 s in Figure 2B. The

GM120 model’s response was either flat or noisy and did not

correlate well with the actual individual participant performance

values. Additionally, there is little variance between Pbest ’s

(Figure 2B) and Pworst ’s (Figure 2C) model estimates, indicating

the generalized model fits the average participant performance,

but does not capture individual participant trends well.

4.2. Individualized performance
prediction model

Similar to the generalized prediction methodology, the

predictive power of the individualized performance prediction

model was evaluated by developing the seven prediction model

variants: IM0, IM5, IM15, IM30, IM60, IM120, and IM300.

The MAE for each individualized model variant by workload

ordering and workload condition are provided in Table 3,

where bold values represent an increase in accuracy over

the corresponding GM model. Results for O2’s OL condition

cannot be presented for the IM300 variant, because that

TABLE 3 The predicted performance MAE for each individualized

model by workload condition and workload ordering.

Ordering Model UL NL OL All

O1 : UL-NL-OL-UL-OL-NL-UL IM0 0.110 0.136 0.052 0.106

IM5 0.119 0.145 0.054 0.112

IM15 0.118 0.135 0.052 0.108

IM30 0.122 0.139 0.057 0.112

IM60 0.129 0.140 0.063 0.116

IM120 0.126 0.139 0.080 0.118

IM300 0.147 0.126 0.075 0.117

O2 : NL-OL-UL-OL-NL-UL-NL IM0 0.086 0.117 0.063 0.093

IM5 0.089 0.117 0.062 0.094

IM15 0.090 0.114 0.055 0.091

IM30 0.088 0.115 0.059 0.093

IM60 0.079 0.115 0.055 0.089

IM120 0.088 0.116 0.057 0.095

IM300 0.085 0.107 N/A 0.097

O3 : OL-UL-OL-NL-UL-NL-OL IM0 0.068 0.092 0.068 0.082

IM5 0.071 0.092 0.070 0.084

IM15 0.071 0.096 0.064 0.085

IM30 0.078 0.095 0.062 0.086

IM60 0.070 0.090 0.071 0.082

IM120 0.080 0.087 0.070 0.083

IM300 0.079 0.090 0.069 0.084

The boldMAEs are lower than the corresponding GMmodel’s MAEs.

condition only occurs at the beginning of the second half of

the evaluation’s second day. Thus, predicting the performance

300 s into the future caused the IM300 model variant to avoid

the OL condition. Overall, there are no clear trends in the

table. However, the IM model variants on average had an

0.02 decrease in MAE from the corresponding GM MAEs

(Table 1), demonstrating that individual specific information

improved model performance. There was an average increase

in MAE of 0.005 for O3’s UL condition. This marginal increase

was unexpected but does not substantially affect the overall

prediction results.

The individualized models’ correlations with the actual

performance values are presented in Table 4. Most of the

correlations were positive and significant for each workload

condition and ordering. Similar to the MAE results, the

correlations were on average 0.36 higher than the corresponding

generalized model’s correlations, except for O3’s UL condition.

The individualized models’ correlations were the highest during

the OL condition for all three workload orderings.

Similar to the GM model results, there was a negligible

change in MAE as the time horizon increased and very low

overall variance (0.0006) across the values. An average decrease

TABLE 4 The Pearson’s correlations between the predicted

performance and actual performance for each individualized model

variant by workload condition and ordering.

Ordering Model UL NL OL All

O1 : UL-NL-OL-UL-OL-NL-UL IM0 0.751** 0.731** 0.926** 0.689**

IM5 0.822** 0.701** 0.907** 0.656**

IM15 0.712** 0.753** 0.877** 0.693**

IM30 0.743** 0.763** 0.842** 0.689**

IM60 0.677** 0.712** 0.817** 0.672*

IM120 0.598** 0.744** 0.761** 0.681**

IM300 0.576** 0.727** 0.699** 0.683**

O2 : NL-OL-UL-OL-NL-UL-NL IM0 0.414** 0.722** 0.828** 0.662**

IM5 0.387** 0.734** 0.831** 0.648**

IM15 0.396** 0.730** 0.851** 0.654**

IM30 0.424** 0.708** 0.845** 0.653**

IM60 0.468** 0.728** 0.846** 0.684**

IM120 0.429** 0.751** 0.832** 0.680**

IM300 0.464** 0.738** N/A 0.627**

O3 : OL-UL-OL-NL-UL-NL-OL IM0 0.318** 0.506** 0.879** 0.557**

IM5 0.228** 0.545** 0.872** 0.564**

IM15 0.207** 0.477** 0.843** 0.527**

IM30 0.009 0.485** 0.796** 0.510**

IM60 0.082 0.524** 0.647** 0.495**

IM120 0.146** 0.576** 0.739** 0.478**

IM300 0.348** 0.723** 0.819** 0.590**

*Indicates p ≤ 0.05 and **indicates p ≤ 0.01. The bold correlations are higher than the

corresponding GMmodels’ correlations.
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of 0.004 in the correlation coefficients existed, which is much

lower than the 0.03 decrease for the GM model variants. This

result indicates that individual models are better able to track

performance trends, than the corresponding GM models, as the

time horizon increases.

The IM30, and IM120 performance values and the actual

performance values for the O2 workload ordering were plotted

in Figure 3, while the IM model estimates vs. the average

participant performance values were plotted in Figure 3A. The

performance predictions and the actual participant performance

for both individualized model variants were within 0.1 of

each other. The IM30 model predictions tracked the workload

transitions better than the IM120 model predictions. The

two model variants had difficulty tracking quick transitions,

which can be seen during the first NL condition (0–300 s)

in Figure 3A. The individualized models tracked the actual

performance values during workload condition transitioning

(i.e., at 1,200, 1,500, and 1,800 s) better than the generalized

models (Figure 2A).

The IM30 and IM120model predictions for participants Pbest
and Pworst are depicted in Figures 3B,C, respectively. The IM30

and IM120 model variants’ predictions tended to underestimate

Pbest ’s actual performance (Figure 3B), which may be attributed

to the bias present in the individualized models caused by

retraining the generalized model. The individualized model

variants’ predictions for Participant for Participant Pworst ’s

had difficulty capturing the large variance in the actual

performance values, which can be seen between 1,200 s and

1,500 s in Figure 3C. The two individualized model variants’

predictions were closer to the actual performance values than

the corresponding generalizedmodel variants (Figure 2).

4.3. Comparison to physiological-based
model

The developed performance prediction model relies on

multi-dimensional workload estimates in order to create a

more flexible approach to performance prediction. However,

there may be some utility in relying solely on physiological

signals. Thus, an analysis was performed to determine accuracy

differences between the developed workload estimate-based

model and a physiological-based model.

This comparison analysis only considers accuracy on the

entire testing set, rather than individual workload conditions

and orderings. Table 5 presents the overallMAEs and correlation

coefficients by model and input type. Overall, the workload

estimate-based model results in lower MAEs than the respective

physiological-based model. However, the difference in MAE

diminishes as the time-horizon expands, which indicates there

may be a point of diminishing returns when using workload

estimates as inputs instead of physiological signals. Although,

relying on workload estimates results in higher correlation

coefficients. Thus, the workload estimate-based model performs

better overall than using physiological signals solely in the

general case.

Both input types increased in accuracy (lower MAE, higher

correlation) when using individual-specific data compared to

their respective generalized models. A similar trend to the

generalized models, when comparing the input types, is seen

in the individual model results. The workload estimate-based

model consistently outperforms the physiological based-model

in terms of MAE and correlation coefficients. Additionally,

there are no models for which the physiological based-model

outperforms the workload estimate-based model. Thus, using

workload estimates for performance prediction is better than

using physiological signals for all of the analyzed time horizons

when training on participant-specific data.

5. Discussion

Predicting future task performance accurately is a

difficult and complex problem, but the two developed

performance prediction models are a necessary step toward

realizing intelligent machine systems that prevent future

task performance decrements. It was predicted that the

MAE values between the actual and generalized prediction

model’s performance values will be within 0.1, hypothesis

H1. This hypothesis was partially supported for workload

orderings O2 and O3, but was not supported for O1. The

generalized performance prediction model performs the

best with O3, and the worst for O1, with O2 having an

intermediate performance. The discrepancy in performance

can be attributed to (1) workload transitions, (2) the number

of each workload condition present in the workload ordering,

and (3) overall task performance calculation for the NASA

MATB-II. O1 had three underload workload conditions, where

the resource management task was the primary contributor to

the overall performance. If a participant experiences workload

transitioning from overload to underload and the fuel tank

levels were not maintained during the overload condition,

the participant’s overall performance drops quickly. If the

participant pumps fuel at the fastest rate possible, there will

still be a time delay until overall performance is optimal. This

confound may attribute to lower prediction accuracy.

The ability to track performance trends will allow a system to

trigger an adaptation to prevent a performance decrement. The

second hypothesis (H2) evaluated the generalized performance

prediction model’s ability to track performance trends and

was partially supported, due to the negative correlations for

O1. There may be ordering confounds that hinder prediction

accuracy or individual specific data is needed.

The individualized performance model results were better

than the generalized models, as predicted by HypothesesH3 and
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FIGURE 3

(A) The individualized model predictions vs. the averaged participants’ true performance values. (B) The individualized model predictions vs. the

true performance values of participant Pbest. (C) The individualized model predictions vs. the true performance values of participant Pworst. The

IM30 and IM120 prediction model variant’s predictions plotted against the true performance values for workload ordering O2. The y-axis scale

ranges from 0.5 to 1.0 for (A,B), while for (C), it ranges from 0.0 to 1.0. UL/NL/OL in the plots represent the workload condition.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2022.973967
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Heard et al. 10.3389/fnbot.2022.973967

TABLE 5 Accuracy comparison between a workload estimate-based

and physiological signal-based performance prediction models.

Model Input type MAE Correlation

GM0 Workload 0.111 0.329*

Physiological 0.124 0.169*

GM5 Workload 0.112 0.326*

Physiological 0.126 0.173*

GM15 Workload 0.114 0.299*

Physiological 0.123 0.138*

GM30 Workload 0.116 0.294*

Physiological 0.118 0.224*

GM60 Workload 0.117 0.274*

Physiological 0.123 0.097*

GM120 Workload 0.124 0.168*

Physiological 0.128 0.011

GM300 Workload 0.121 0.636*

Physiological 0.128 -0.057*

IM0 Workload 0.093 0.622*

Physiological 0.102 0.483*

IM5 Workload 0.096 0.624*

Physiological 0.101 0.524*

IM15 Workload 0.094 0.617*

Physiological 0.101 0.566*

IM30 Workload 0.097 0.617*

Physiological 0.103 0.554*

IM60 Workload 0.095 0.274*

Physiological 0.106 0.535*

IM120 Workload 0.098 0.613*

Physiological 0.107 0.534

IM300 Workload 0.099 0.633*

Physiological 0.109 0.556*

*indicates that the p-value is ≤ 0.

H4; except for O3’s underload condition. The two hypotheses

were partially supported, which is attributed to an ordering

effect. There was little difference between the generalized and

individualized models’ MAEs for O3’s underload condition;

indicating that the models achieved similar accuracy. However,

the generalized model tracked workload variations better, which

indicates workload ordering had a negative effect on the

individualized model. Overall, the individualized performance

prediction model is better for intelligent human-machine

system designers.

Hypothesis H5 predicted that the MAE values increase

and the correlation coefficients decrease as the performance

values are projected further into the future for both prediction

models. This hypothesis was partially supported, as the average

MAE difference between time horizons was marginal. However,

there was a noticeable decrease in correlation coefficients.

This result suggests that the developed models were able to

maintain accuracy when predicting performance further into the

future, but had more difficulty capturing the exact performance

changes. Additionally, the IM models were more robust to

increases in the time-horizon than the GMmodels, whichmeans

that intelligent human-machine systems can adapt to longer

time-horizons when using an IM vs. a GM. It is expected

that there is a limit to a model’s predictive capabilities. For

example, predicting task performance for an hour into the future

will be inaccurate, but triggering an adaptation to prevent a

potential performance decrement from occurring in an hour

will likely be ineffective. Intelligent human-machine system

designers will need to determine what timeframe is appropriate

to prevent performance decrements from occurring due to

system adaptations.

The remaining hypothesis (H6) stated that using workload

estimates, rather than physiological-based features as inputs,

will increase algorithm accuracy, due to the reduced input

complexity. This hypothesis was fully supported for both the

generalized and individualized models, which indicates that

performance prediction models need to rely on workload

estimates, rather than physiological signals only. This result is

attributed to the workload assessment algorithm encoding more

relevant information pertaining to task performance than the

physiological signals, similar to feature reduction techniques

used in machine-learning (e.g., principal component analysis).

Every human has a unique way of performing tasks

that directly affects the overall task performance. Modeling

individual human differences is challenging, but critical for

mission success in intelligent human-machine teaming systems.

Learning effects may also take place as a person becomes familiar

with a new task or system. For example, participants tended

to perform better on evaluation day 2 than they did on day

1 (Heard, 2019), due to learning effects. These effects have

no impact on the generalized model, as it has no a priori

information specific to a participant. It is unlikely that learning

effects negatively impacted the individualized model results, due

to including the first half of the participant’s day 2 data when

training. Future work will analyze learning effects that occurred

in the evaluation and relate those to the predictive power of the

individualized models.

The primary utility of the individualized model may

be accounted for skill levels (e.g., novices, experts). All

participants that completed the evaluation had no prior

experience with the NASA MATB-II and were considered

novices. This means certain patterns may have occurred in

the data that the prediction models captured. Expert users

will likely have less variance in their overall performance

scores, which may make predicting future task performance

easier for a generalized model. Having two separate general

models (one for novices and one for experts) may lead

to more accurate task performance predictions; however,

such a split requires some a priori information about

the human.
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The individual performance prediction model can be

improved through online learning, where the model is

retrained/updated after every n minutes of interacting with an

individual user using newly collected data. This approach biases

the model toward the user and will lessen the model’s population

generalizability. Future work will compare the capabilities of the

performance prediction model trained online with participant-

specific data against the currently developed models.

The developed performance prediction model relied

on the last three workload estimates to predict a single

overall task performance value. More accurate predicted

performance may be achieved by using additional workload

estimates from the past. There may be a trade-off when

using additional workload estimates, as incorporating

outdated information may actually decrease accuracy.

Future work will vary the number of past workload

estimates in order to analyze the developed model’s

capabilities further.

Predicting overall task performance allowed for a single

value prediction, which can be used to determine if an

adaptation is needed. However, calculating overall task

performance can be confounded by a wide-range of factors

(i.e., multiple concurrent tasks, time delays). Higher accuracy

may be achieved by predicting individual task performance

values, rather than an aggregate value. The primary limitation

to such an approach is the need for recognizing the human’s

current and future task focuses. For example, an adaptive NASA

MATB-II system will need to predict which four tasks will be

active in the next 3 min. A mission plan may provide some

information (i.e., an automation hand-over is scheduled to

occur), but spontaneous tasks (i.e., communications requests)

will be difficult to predict. Future work will investigate

predicting individual task performance values with a short-

time horizon (i.e., 15 s), as an intelligent system may use

this predicted information (e.g., reaction times) in a task

scheduling paradigm.

6. Conclusion

Predicting future task performance accurately may

allow machines to adapt their interactions with humans

intelligently in order to prevent task performance decrements

from occurring. Multi-dimensional workload estimates

were used to create a generalized and an individualized

performance prediction model to predict future performance

across various time horizons. Both the generalized and

individualized models were validated using data collected

from the NASA MATB-II; a supervisory-based human-

machine system. The results show that the individualized

models were more accurate, but a generalized model

may be viable in domains where individual-specific data

is unavailable. The presented performance prediction

models are a necessary step to realizing a human-

machine teaming system that adapts autonomy levels and

system interactions using generalized or individualized

human-state information.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed

and approved by the Vanderbilt University Institutional

Review Board and the Oregon State University Institutional

Review Board. The patients/participants provided their written

informed consent to participate in this study.

Author contributions

All authors listed have made a substantial, direct,

and intellectual contribution to the work and approved it

for publication.

Funding

This work was supported by NASA Cooperative Agreement

Number NNX16AB24A and by a Department of Defense

Contract Number W81XWH-17-C-0252 from the CDMRP

Defense Medical Research and Development Program.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2022.973967
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Heard et al. 10.3389/fnbot.2022.973967

References

Archer, S., Gosakan, M., Shorter, P., and Lockett, J. (2005). New capabilities
of the Armys maintenance manpower modeling tool. J. Int. Test Eval. Assoc. 26,
19–26.

Ayaz, H., Curtin, A., Mark, J., Kraft, A., and Ziegler, M. (2019). “Predicting
future performance based on current brain activity: an fNIRS and EEG study,” in
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) (Bari:
IEEE), 3925–3930. doi: 10.1109/SMC.2019.8914412

Cain, B. (2007). A Review of Mental Workoad Literature. Defence Research and
Development Toronto.

Castor, M. (2003). GARTEUR Handbook of Mental Workload Measurement.
GARTEUR technical publications. Group for Aeronautical Research and
Technology in Europe.

Christensen, J. C., Estepp, J. R., Wilson, G. F., and Russell, C. A. (2012). The
effects of day-to-day variability of physiological data on operator functional state
classification. Neuroimage 59, 57–63. doi: 10.1016/j.neuroimage.2011.07.091

Comstock, J. R., and Arnegard, R. J. (1992). The Multi-Attribute Task Battery for
Operator Workload and Strategic Behavior Research. Technical Report NASA Tech.
Memorandum 104174, NASA Langley Research Center.

Fuchs, S., and Schwarz, J. (2017). “Towards a dynamic selection and
configuration of adaptation strategies in augmented cognition,” in International
Conference on Augmented Cognition (Vancouver, BC: Springer), 101–115.
doi: 10.1007/978-3-319-58625-0_7

Harriott, C. E., Zhang, T., and Adams, J. A. (2013). Assessing physical workload
for human-robot peer-based teams. Int. J. Hum. Comput. Stud. 71, 821–837.
doi: 10.1016/j.ijhcs.2013.04.005

Hart, S. G., and Staveland, L. E. (1988). Development of NASA-TLX (task load
index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183.
doi: 10.1016/S0166-4115(08)62386-9

Heard, J., and Adams, J. A. (2019). Multi-dimensional human workload
assessment for supervisory human-machine teams. J. Cogn. Eng. Decis. Mak. 13,
146–170. doi: 10.1177/1555343419847906

Heard, J., Fortune, J., and Adams, J. A. (2020). “SAHRTA: a supervisory-based
adaptive human-robot teaming architecture,” in IEEE Conference on Cognitive
and Computational Aspects of Situation Management (Vancouver, BC: IEEE).
doi: 10.1109/CogSIMA49017.2020.9215996

Heard, J., Heald, R., Harriott, C. E., and Adams, J. A. (2019). A diagnostic
human workload assessment algorithm for collaborative and supervisory human-
robot teams. ACM Trans. Hum. Robot Interact. 8, 1–30. doi: 10.1145/33
14387

Heard, J. R. (2019). An adaptive supervisory-based human-robot teaming
architecture (Ph.D. thesis). Vanderbilt University, Nashville, TN, United States.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Kaber, D. B., and Endsley, M. R. (2004). The effects of level of automation
and adaptive automation on human performance, situation awareness and
workload in a dynamic control task. Theoret. Issues Ergon. Sci. 5, 113–153.
doi: 10.1080/1463922021000054335

Kingma, D., and Ba, J. (2015). “ADAM: a method for stochastic optimization,”
in International Conference on Learning Representations (San Diego, CA), 8–13.

Leger, P. C., Trebi-Ollennu, A., Wright, J. R., Maxwell, S. A., Bonitz, R. G.,
Biesiadecki, J. J., et al. (2005). “Mars exploration rover surface operations: driving
spirit at gusev crater,” in IEEE International Conference on Systems, Man and
Cybernetics (Waikola, HI: IEEE), 1815–1822. doi: 10.1109/ICSMC.2005.1571411

McCraken, J., and Aldrich, T. (1984). Implications of Operator Workload and
SystemAutomation Goals. Technical Report ASI-479-024-84B, U.S. Army Research
Institution.

McGuire, S., Furlong, P. M., Fong, T., Heckman, C., Szafir, D., Julier, S.
J., et al. (2019). Everybody needs somebody sometimes: validation of adaptive
recovery in robotic space operations. IEEE Robot. Automat. Lett. 4, 1216–1223.
doi: 10.1109/LRA.2019.2894381

Mitchell, D. (2000). Mental Workload and ARL Workload Modeling Tools.
Technical Report ARL-TNL-161, Army Research Lab Aberden Proving Ground
MD. doi: 10.21236/ADA377300

Reimer, B., Mehler, B., Coughlin, J., Godfrey, K., and Tan, C. (2009). “An on-
road assessment of the impact of cognitive workload on physiological arousal
in young adult drivers,” in Proceedings of the 1st International Conference
on Automotive User Interfaces and Interactive Vehicular Applications (Essen),
115–118. doi: 10.1145/1620509.1620531

Scholtz, J. (2003). “Theory and evaluation of human robot interactions,” in
Proceedings of the 36th Annual Hawaii International Conference on System Sciences
(Big Island, HI), 10–16. doi: 10.1109/HICSS.2003.1174284

Schreckenghost, D., Milam, T., and Fong, T. (2010). Measuring performance in
real time during remote human-robot operations with adjustable autonomy. IEEE
Intell. Syst. 25, 36–44. doi: 10.1109/MIS.2010.126

Schwarz, J., and Fuchs, S. (2018). “Validating a ‘real-time assessment
of multidimensional user state’ (RASMUS) for adaptive human-computer
interaction,” in 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC) (Miyazaki: IEEE), 704–709. doi: 10.1109/SMC.2018.00128

Sheridan, T. B. (2011). Adaptive automation, level of automation,
allocation authority, supervisory control, and adaptive control: distinctions
and modes of adaptation. IEEE Trans. Syst. Man Cybernet. 41, 662–667.
doi: 10.1109/TSMCA.2010.2093888

Sim, L., Cummings, M., and Smith, C. (2008). Past, present and future
implications of human supervisory control in space missions. Acta Astronaut. 62,
648–655. doi: 10.1016/j.actaastro.2008.01.029

Stikic, M., Johnson, R. R., Levendowski, D. J., Popovic, D. P., Olmstead,
R. E., and Berka, C. (2011). EEG-derived estimators of present and future
cognitive performance. Front. Hum. Neurosci. 5, 70. doi: 10.3389/fnhum.2011.
00070

Teo, G., Matthews, G., Reinerman-Jones, L., and Barber, D. (2019). Adaptive
aiding with an individualized workload model based on psychophysiological
measures. Hum. Intell. Syst. Integr. 2, 1–15. doi: 10.1007/s42454-019-00005-8

Teo, G., Reinerman-Jones, L., Matthews, G., Barber, D., Harris, J., and
Hudson, I. (2016). “Augmenting robot behaviors using physiological measures of
workload state,” in International Conference on Augmented Cognition (Toronto,
ON: Springer), 404–415. doi: 10.1007/978-3-319-39955-3_38

Wickens, C. D., Lee, J. D., Liu, Y., and Becker, S. E. G. (2004). An Introduction to
Human Factors Engineering, 2nd Edn (Upper Saddle River, NJ: Pearson Education,
Inc).

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2022.973967
https://doi.org/10.1109/SMC.2019.8914412
https://doi.org/10.1016/j.neuroimage.2011.07.091
https://doi.org/10.1007/978-3-319-58625-0_7
https://doi.org/10.1016/j.ijhcs.2013.04.005
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1177/1555343419847906
https://doi.org/10.1109/CogSIMA49017.2020.9215996
https://doi.org/10.1145/3314387
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1109/ICSMC.2005.1571411
https://doi.org/10.1109/LRA.2019.2894381
https://doi.org/10.21236/ADA377300
https://doi.org/10.1145/1620509.1620531
https://doi.org/10.1109/HICSS.2003.1174284
https://doi.org/10.1109/MIS.2010.126
https://doi.org/10.1109/SMC.2018.00128
https://doi.org/10.1109/TSMCA.2010.2093888
https://doi.org/10.1016/j.actaastro.2008.01.029
https://doi.org/10.3389/fnhum.2011.00070
https://doi.org/10.1007/s42454-019-00005-8
https://doi.org/10.1007/978-3-319-39955-3_38
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Predicting task performance for intelligent human-machine interactions
	1. Introduction
	2. Related work
	3. Methodology
	3.1. Experimental design
	3.2. NASA MATB-II overall task performance
	3.3. Participants
	3.4. Metrics
	3.5. Validation methodology and hypotheses

	4. Results
	4.1. Generalized performance prediction model
	4.2. Individualized performance prediction model
	4.3. Comparison to physiological-based model

	5. Discussion
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


