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Although the increase in the use of dynamical modeling in the literature on

cultural evolution makes current models more mathematically sophisticated,

these models have yet to be tested or validated. This paper provides a testable

deep active inference formulation of social behavior and accompanying

simulations of cumulative culture in two steps: First, we cast cultural

transmission as a bi-directional process of communication that induces a

generalized synchrony (operationalized as a particular convergence) between

the belief states of interlocutors. Second, we cast social or cultural exchange

as a process of active inference by equipping agents with the choice of who to

engage in communication with. This induces trade-o�s between confirmation

of current beliefs and exploration of the social environment. We find that

cumulative culture emerges from belief updating (i.e., active inference and

learning) in the form of a joint minimization of uncertainty. The emergent

cultural equilibria are characterized by a segregation into groups, whose belief

systems are actively sustained by selective, uncertainty minimizing, dyadic

exchanges. The nature of these equilibria depends sensitively on the precision

a�orded by various probabilistic mappings in each individual’s generative

model of their encultured niche.

KEYWORDS

active inference, generalized synchrony, communication, social dynamics, cumulative

culture, complex systems

1. Introduction

The study of cultural evolution examines how processes of transmission and selection

at the individual level bring about population level patterns of cultural change. As a

general overarching trend, models of cultural evolution have seen a steady increase

in complexity, resulting from specialized theories from social psychology on the
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interconnected dynamics of culture. For instance, a recentmodel

of cultural systems (Jansson et al., 2021) applied a framework

that implements the structural dependencies between cultural

traits and the emergent ways that these dependencies influence

the acquisition of cultural transmission.

Another step in the direction of increasing the complexity

and systems view of culture has been the investigation of the

relationship between population structure and the capacity for

a culture to accumulate beneficial cultural traits over time

(i.e., cultural accumulation), which has been a particular topic

of interest in the past decade. Although some empirical tests

provide support for the hypothesis that effective population size

constraints cumulative cultural evolution (Derex and Mesoudi,

2020), there is contradictory evidence regarding the relationship

between population size and cultural accumulation (Kempe and

Mesoudi, 2014). Another study theorizing about the foundations

for the uniquely human capacity for cultural accumulation

suggests that this capacity is rooted in a unique foraging

niche which can still be observed in few hunter-gatherer

populations. This niche, encompassing social interactions

such as cooperation with unrelated individuals and social

division of labor, underlies a task specialization which spreads

cultural knowledge across individuals. This task division, a

multilevel social structure which evolved as an adaptation to the

environment, may explain human collective intelligence and its

unique capacity for sophisticated cumulative culture (Migliano

and Vinicius, 2022).

While the increase in the use of dynamical modeling

in the literature on cultural evolution makes current models

more mathematically sophisticated, these models have yet to

be tested or validated (Kashima et al., 2017). Review of the

literature reveals that one line of research that has been

especially fruitful in that it can be validated experimentally

are Bayesian models that create detailed models of cognition

and have had remarkable success in producing predictions

qualitatively in accord with experimental results (Kempe and

Mesoudi, 2014). Currently these models have only been

applied to relatively low level cognitive processes, but the

creation of high level cognitive maps at the individual level

as well as modeling the emergence of cultural change on

the population-wide dynamics represents a promising line of

future work.

The dynamics underlying the evolution of culture consist

of three processes that are typically studied separately: the

introduction of novel beliefs and practices to a culture (i.e.,

innovation), the transmission of established beliefs and practices

within a population (i.e., innovation diffusion), and changes

in their prevalence (Kashima et al., 2019). The term “cultural

transmission” typically denotes the transference and spread

of any particular fashion, ideology, preference, language, or

behavior within a culture (Creanza et al., 2017). A prominent

stream of quantitative models for cultural transmission are

inspired by epidemiology, and convert models used for

predicting the spread of a virus to formalize the spread of an

idea (Bettencourt et al., 2006).

While the comparison of an idea to a (non-mutating)

virus has its benefits from a formal perspective, it implies the

controversial notion that an idea is simply copied during its

transmission through cultural exchange between individuals.

This notion is not only intuitively insufficient for a realistic

characterization of communication dynamics, but also conflicts

with established theoretical models of transmission on these

same grounds.

Current literature in cultural psychology indicates that

rather than being simply duplicated during transmission,

cultural beliefs and practices are modified through the active

interpretation of each individual (Kashima et al., 2019).

Furthermore, psychological research indicates that effective

human communication can be characterized by (usually only

partially) common realities in which conversation partners share

an intersubjective reference frame (Clark and Brennan, 1991;

Echterhoff et al., 2009). Accordingly, conversation partners have

to be understood as active participants that co-create these

partially shared reference frames in a self-organizing fashion

over the course of each interaction. Intersubjective theories of

communication aim to account for those underlying dynamics

that—slightly paradoxically—both enable and (to some extent)

require the co-creation of (partially) shared reference frames

amongst interlocutors. In contrast, traditional formulations have

tended to oversimplify communication in terms of back-and-

forth exchanges based on (largely) fixed symbolic meaning

systems, implicitly presupposing those shared reference frames

in an ad-hocmanner.

The theory of cumulative culture (Stout and Hecht, 2017;

Dunstone and Caldwell, 2018) expands on the notion that

progressive alterations of cultural beliefs and practices are

intrinsic to all cultural exchanges because they are embodied,

expressed, and interpreted differently by each individual

participant of the ensemble (Dean et al., 2014). While efficient

cultural exchanges do tend to be grounded in similar physical

substrates across and within individuals (e.g., facial expressions,

body language, etc.), the high abstraction levels and malleability

of these substrates render cultural dynamics in a different class

than phenomena that are wholly dependent on consistency

across genetic substrates, such as sexual reproduction and

disease spread. Of course, genetics does play a crucial role in the

range of phenomena associated with gene-culture co-evolution,

but that will be explored in future work.

Although there appears to be some degree of consensus on

the intrinsic complexity of culture, it remains an outstanding

challenge to provide convincing quantitative accounts of its

full glory (Buskell et al., 2019). This article aims to act as a

stepping stone toward tackling this challenge of characterizing

cumulative culture by developing a multi-agent model based

on deep active inference account. This work was developed

by reformulating and greatly expanding upon a much shorter

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.944986
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kastel et al. 10.3389/fnbot.2022.944986

conference contribution that was previously published by the

two lead authors (Kastel and Hesp, 2021) and publicly available

as an open-source preprint. The three Figures that were adapted

or reprinted from that conference paper have been highlighted

(Figures 2, 8, 9). Textual overlap has been minimized and

reprinted Figures have been highlighted where relevant.

2. Methods

An emerging conclusion from the literature is that the term

“transmission” for describing the spread of cultural information

seems impoverished, as it leaves out the retention of cultural

information. As implied by active inference—and theoretical

models of communication—the acquisition of cultural beliefs

is as fundamental to the understanding of cultural information

spread as their transmission. For this reason, we will henceforth

be referring to what is known in the literature on cultural

transmission as communication, or more technically: the local

dynamics of cumulative culture. Although we will use the

term “communication” and “transmission” interchangeably in

this paper, It is important to note that communication does

not always imply cultural transmission. Cultural transmission,

also known as cultural learning, refers to the learning of

social behaviors that occurs in every new generation in a

particular society (Nicol, 1995). Since cultural transmission

only occurs when social behaviors or beliefs are learned,

communication only truly implies transmission when what

is being communicated has been picked up and solidified

in the receiver’s cognitive model. We assume this kind of

communication in our simulations, which is why under our

account communication does imply transmission.

Conversely, cultural transmission can occur without

communicating information through language. It has been

suggested that humans learn the social behaviors of their

culture through immersive participation in cultural practices

that selectively shape attention and behavior. This is a form of

implicit learning, where agents infer other agents’ expectations

about the world and how to behave in a social context. It

is even argued that implicit learning of information about

other people’s expectations constitutes the primary domain

of statistical regularities that humans leverage to predict

and organize behavior (Veissière et al., 2020). Although

cultural transmission does not necessarily require verbal

communication, we assume this kind of communication in

our simulations.

2.1. Simulating the local dynamics of
communication

In our model, cultural transmission is cast as the

mutual attunement of actively inferring agents to each other’s

internal belief states. This builds on a recent formalization of

communication as active inference (Friston and Frith, 2015)

which resolves the problem of hermeneutics, (i.e., provides a

model for the way in which people are able to understand

each other precisely, despite lacking direct access to each other’s

internal representations of meaning) by appealing to the notion

of generalized synchrony as signaling the emergence of a shared

narrative to which both interlocutors refer. From the perspective

of active inference, agents of a socio-cultural system infer the

belief states of those in their environment and update their

own representations accordingly. An emergent property of this

bi-directional inference—and implicit belief updating—is the

synchronization of belief states among the cultural ensemble

(Palacios et al., 2019).

In nature, generalized synchrony emerges from a specific

coupling between the internal states of dissipative chaotic

systems (Pikovsky et al., 2003). As a fundamental concept in

complex systems theory closely related to stochastic resonance

(Nicolis and Nicolis, 2012), it is typical of complex nonlinear

dynamics that afford the coexistence of chaotic and ordered

subsystems (also called chimera patterns; see, e.g., Zakharova,

2020; Haugland, 2021). In active inference, the coupling of

agents’ internal states is made possible through communication,

as it allows interlocutors to mutually influence each other

and enter into a bidirectional action-perception cycle that

can be described as coupled dynamical systems (Friston and

Frith, 2015; Constant et al., 2018). When active inference

agents engage in the coupled dynamics of communication,

generalized synchrony between their internal states emerges

from their mutual efforts to minimize uncertainty—as scored

mathematically with (variational) free energy. Put simply,

generalized synchrony ensures the greatest mutual predictability

error resolves the greatest amount of collective uncertainty.

Our model of communication builds on the notion of

generalized synchrony to suggest that the emergence of

synchrony from the coupled communication of active inference

agents may be operationalized as a particular convergence

between their respective generative models. That is, when

we simulate the belief-updating dynamics of communicating

agents, the cultural reproduction of a particular idea takes

the form of a learnable convergence between their respective

belief states (expressed as generative models) and distinct

representations combine into one synchronized, shared model

of the world.

Formally, our model defines perceptual inference in terms of

a coupling parameter linking the internal states of interlocutors

through dialogue (Figure 1). Also understood as sensitivity to

model evidence (A1), perceptual inference is a direct and explicit

form of coupling that occurs over the span of a single dialogue

such that it is hypothesized to modulate agents’ convergence of

internal belief states during communication.

While throughout the narrative of this paper we have

characterized the alternative “idea” as having actual content, we
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have intentionally left it unspecified such that it could also be

taken to simply refer to a blanket disagreement with the ideas

or practices representing the “status quo.” In that sense, it is

consistent with simulation work on social dynamics suggesting

that cultural extremism can arise without the formulation of

alternatives (e.g., see Kashima et al., 2021).

2.2. Simulating the global dynamics of
cumulative culture

Cultural beliefs and practices spread within a society

through communication, a process which we have referred to

as the local dynamics of cumulative culture. This description is

appropriate because the accumulated outcomes of each (local)

dyadic interaction collectively determine the degree to which an

idea is prevalent in a culture. Moving from local communication

dynamics to the prevalence of a communicable idea—in a

cumulative culture—is what we will refer to as the global

dynamics of cumulative culture.

In our simulations of a cumulative culture, 50 active

inference agents simultaneously engage in local dyadic

communication as illustrated. Forty-nine of our 50 agents were

initialized as adhering to a similar idea, which could be regarded

as the status quo (indicated with the color red later on), while

the initial strength of their adherence to this consensus varied

across individuals because we generated the parameters of

their generative models from various probability distributions

to characterize variability in the population (described in the

Appendix). The same holds for other modulators of cognitive,

affective, and behavioral variability, such as (1) expectations

about each other’s expressions, (2) habit formation, and (3)

emotional valence states (all described below). Jointly, the

emergent effects of these individual differences gave rise to

factions that vary in their adherence to the current consensus,

in a way reminiscent of political diversity in real-life cultural

environments: strict conservatives, centrists, and skeptics (see

also Figure 6 below). In order to illustrate this spectrum, we

introduced one agent (labeled “rogue agent” in Figure 6) whose

idea strongly contradicted the consensus and who was fully

resistant to the consensus idea. When we introduced this agent

adhering to a divergent idea to the population, it propagated

via pseudo-random engagements of agents in dialogue. In this

simulated world of actively inferring agents, their individual

mental (generative) models were slightly modified with every

interlocutor they encounter, as their distinct representations

converged to a shared narrative (Friston and Frith, 2015;

Constant et al., 2019). The attunement of interlocutors to

each other’s generative models on the (local) microscale thus

translated over time and with multiple encounters into collective

free energy minimization on the (global) macroscale.

3. A generative model of
communication

For a formal (variational free energy) proof of principle,

we offer an active inference account of cultural dynamics.

A foundational step in this endeavor is the formulation of

generative models underlying the decision making of agents that

can be deployed in simulations.

Active inference assumes that the brain-body systemmimics

a Bayesian inference machine by embodying a model of itself

acting in the world and using local observations to secure

evidence for that model. This model is “generative” in that it

generates predictions of what observational data should look

like, given that the model is correct. Predictions are compared

with actual observations and any discrepancies (known as

“prediction errors”) are used to update the generative model

(Smith et al., 2019). This (Bayesian belief) updating can be at

a fast timescale corresponding to inference about the hidden

causes of observations—or at a slow timescale corresponding

to learning the parameters of the generative model, which

best explain the inferred causes. For an elaboration on the

mathematical foundations of active inference, the reader is

referred to Friston K. et al. (2017).

In our simulations, agents attempt to convince each other

of a cultural belief under generative models that operate with

local information only. We formulate these generative models

as a partially observed Markov decision process (MDP), where

beliefs take the form of discrete probability distributions (for

technical details on MDPs in active inference, see Hesp et al.,

2019). To simulate active inference under these models, one

specifies variables—such as hidden states (x, s), observable

outcomes (o) and one-step action policies (u)—alongside

parameters specifying the probabilistic relationships between the

variables in question.

Agents’ recollection of a visit is thus an expression of

humans’ innate ability to infer each other’s expectations, which

makes human cognition, sociality, and culture possible at all

(Veissière et al., 2020). This rests on the idea that humans, having

evolved to rely on elaborate and highly coordinated action, have

expectations regarding other agents’ sharing aspects of their

own generative model, and thereby believing that other agents

have those expectations as well. These carefully and implicitly

coordinated and co-constructed expectations allow agents from

a particular culture to learn what to expect from each other

and leverage those expectations to act accordingly in their

environment. In our model these expectations are manifested

as agents’ information and preference-seeking, which are biased

toward the selection of similar interlocutors to engage with,

in conversation.

MDPs allow for the construction of a deep hierarchical

model comprising nested levels of complexity. Below we will
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FIGURE 1

Communication Coupling Parameters. Our model defines two groups of parameters that couple the internal states of agents: Learning and

inference. Perceptual learning (A2) is the learning of associations between emotional valence and belief states that guide the long term actions

of our agents who hold and express beliefs. This learning happens at slow time scales, accumulating across multiple interactions and used to

modify models over extended periods of exchange. Perceptual Inference (A1)—namely, sensitivity to model evidence—operates on fast time

scales and is direct and explicit to agents during dialogue. Importantly, we hypothesized that without precise evidence accumulation, agents

would be insensitive to evidence regarding the belief state of the other, and their internal states would not converge.

describe those levels and detail the cognitive processes that take

place within each one (Figure 2).

For our simulations, six kinds of matrices were

parameterized (A, B, C, E, C, and G) using two kinds of

concentration parameters (α,ε) for Dirichlet distributions, and

temperature and rate parameters for precision terms (indicated

with γ ; see Figure 3 and Appendix A9).

3.1. Perceptual inference

The first level of this generative model captures how

agents process belief claims they are introduced to through

conversation with other agents. The perception of another’s

beliefs requires prior beliefs (represented as likelihood mapping

A1) about how hidden states (s1) generate sensory outcomes (o).

Specifically, our agents form expectations about the likelihood

of encountering expressions of particular ideas, given their

beliefs about the degree of consensus in the agent’s social

circles and their past experiences with individual agents.

Parameterizing this (likelihood) mapping in terms of precision

can be understood as parameterizing each agents’ sensitivity

to the claims of others. High precision here corresponds with

high sensitivity to claims. The likelihood precisions for each

agent were generated from a continuous gamma distribution,

which was skewed in favor of high sensitivity to evidence at the

population level (see Figure 2: Perception).

3.1.1. Perceptual inference as a coupling
parameter

The sensitivity to another agent’s claims (A1), represents

the explicit coupling between interlocutors, in terms of how

much belief updating one agent can induce in another agent.

It is a key element in our simulations (Figure 1). We call

this parameter explicit because it modulates the direct (i.e.,

explicitly articulated) and immediate (i.e., occurs over the

course of a single interaction with an agent) influence of

agents’ claims on the beliefs of others (Friston and Frith,

2015). In other words, sensitivity to claims—encoded by the

likelihood precision—couples the belief states of interlocutors

via their claims or utterances to each other (Figure 8). Crucially,

belief updating depends not only on their adherence to

each other’s claims but also a certain (varying) degree of

commitment to their own beliefs. The balance is determined

by each agents’ sensitivity to sensory evidence; i.e., the claims

of interlocutors.

Technically, we can describe belief updating in terms of the

generative model in Figure 3 as follows:

• Initial higher-level core support for the idea at the

beginning of the simulation (T = 1):

P(x
(2)
core,T=1) = Cat(D(2)) (1)
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FIGURE 2

A generative model of communication. This Figure was reprinted from an open-source preprint of a conference paper, with permission of the

authors (Figure 1 of Kastel and Hesp, 2021). Variables are depicted as circles, parameters as squares and concentration parameters as dark blue

circles. Visualized on a horizontal line from left to right, states evolve in time. Visualized on a vertical line from bottom to top, parameters

underwrite a hierarchical structure that corresponds to levels of cognitive processing. Parameters are listed on the left of the generative model

and variables are on the right.

• Evolving higher-level beliefs after each meeting (T > 1),

introducing volatility over time:

P(x
(2)
core,T |x

(2)
core,T−1) = Cat(B(2)) (2)

• Initializing lower-level beliefs about the claims of others,

based on higher-level (cross-meeting) beliefs:

P(x
(1)
idea

) = Cat(x
(2)
core,T) (3)

• Updating beliefs about the other agent’s belief based on

their claims (Appendix A7), within the current meeting:

Q(x
(2)
idea

) = Q(x
(1)
idea

) = Cat(oexpr) (4)

• Updating of core belief based on claims of self and another

agent after each meeting (detailed descriptions of the

computations involved in this belief updating can be found

in the Appendix):

Q(x
(2)
core) = σ (ln x

(2)
core + γ

(2)
A,self

ln oexpr,self

+γ
(2)
A,other

ln oexpr,other) (5)

3.2. Anticipation

At the first level, our generative model specifies the agents’

beliefs about how hidden states (detailed in Appendix A2) evolve

over time. The precision of state transition probabilities in

B1 (Figure 3C) specifies the volatility of an agent’s meeting

location (s2) and beliefs in particular claims (s1) [B1]. For

each agent, this precision parameter is sampled from a gamma

distribution, determining the a priori probability of changing

state, relative to maintaining a current state. Note that belief

states themselves are defined on the continuous range (0, 1)

(i.e., as a probability distribution on a binary state), such that

repeated state transitions tends to result in a continuous decay

of confidence over time, in the absence of new evidence (where

the rate of decay is inversely proportional to the precision of B1)

(see Figure 2: Anticipation).

3.3. Action

After inferring and anticipating hidden states, our agents

conduct deliberate actions to minimize expected free energy (the

generative model for action is detailed in Appendixes A4, A5).

At each time point, a policy (u) is chosen out of a set of

possible action sequences. In our simulations, two types of

actions are allowed: selecting an agent to meet at each given

time point (u2) and selecting a specific claim to express in

conversation (u1). The first allowable action covers 50 possible

outcomes (one for each agent in the simulation) while the
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FIGURE 3

Generative model parameters. (A) The A1 matrix specifies an agents’ perception of an interlocutors’ expressed beliefs. The precision of this

likelihood mapping determines the agent’s sensitivity to these expressions. (B) The A2 matrix represents what the agent has learned about the

mapping between her high and low level beliefs. (C) The B matrix, or state transition probabilities, represent what the agent has learned about

how hidden states evolve over time. The precision of B matrices can be understood as encoding the volatility of belief states. (D) The E1 matrix is

one of two habitual contributions to action selection. It covers two possible outcomes for expressing beliefs. This contribution is specified on a

continuous range between (0,1), where the extremes correspond to either complete confidence in denying or supporting the claim. (E) The E2

matrix is the second habitual component for action, and it holds 50 possible outcomes for meeting selection (i.e., the probability for meeting

each agent in the population). (F) The expected free energy of allowable policies (i.e., choices or actions) is indicated with G, which entails two

components: 1. expected risk (the KL-divergence from the C matrix and biasing toward confirming one’s preferred ideas) and expected

ambiguity, which biases toward meeting new agents with unknown beliefs. Note: The purpose of this Figure is to draw the attention of the

reader to the general form of the matrices shared across the simulated agents. The tables are left empty because, for any individual agent in the

simulated population, each of these objects contains specific numbers, which are initially generated procedurally from various probability

distributions (described in the text) and change throughout the simulation as the agents interact in their shared environment. Specific numbers

could at best describe only one particular agent at a given instance of time (which does not represent the entire population). Furthermore, the

probability distributions used to generate initial values do not reflect the additional steps required such as, e.g., the renormalization procedures

involved in applying a softmax operator. Finally, it would also occlude the fact that certain entries (e.g., the expected free energy) will vary over

time during a simulation.

second corresponds to denying or supporting the claim. In

order to simulate variability in an agents’ confidence in a belief

claim, the claim is generated for each conversation from a beta

distribution that is parameterized by the speaker’s (phenotype-

congruent) action model. Each policy under the G matrix

(Figure 3F) specifies a particular combination of actions, and

the policy that minimizes expected free energy is chosen (see

Figure 2: Action).

3.3.1. Habitual belief expression and meeting
selection

At the low level of cognitive control, each agent starts with

a baseline prior expectation concerning the probability of a

particular policy being selected (action prior probabilities [E1

and E2], Figures 3D,E). This parameter can be understood as

modeling a habitual cognitive process, where an agent’s current

one-step policy (u) is biased toward previously selected actions
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(u1, u2). In our simulations, agents observe and track previous

actions via the accumulation of a concentration parameter (ε),

thus enabling continued updates to action priors, which can

either strengthen or weaken previous habits (details for habit

learning of belief expression and meeting selection are provided

in Appendix A8).

3.3.2. Voluntary belief expression

At the high level of cognitive control, agents incorporate

a series of processes underlying the selection of a particular

claim for expression (u2). In addition to habitual factor (E),

this selection involves several considerations. First, an agent

considers their core belief state (x), and the way this state a priori

maps on to one of two discrete emotional valence states (s2)

via a likelihood mapping [A2] (Figure 3B). Emotional Valence

(EV) is defined as the extent to which an emotion is positive

or negative (Russell and Barrett, 1999), such that agents’ core

beliefs are a priori associated with either positive emotional

valence or negative emotional valence (with some probability).

As a minimal form of vicarious learning, the initial mapping is

further updated based on associations agents observe between

their interlocutors’ expressed claims and EV-value (details of the

generative process underlying belief expression and emotional

valence are provided in Appendix A6). The initial mapping

therefore involves minimal precision for the expected EV for the

alternative belief since agents are first introduced to this belief

(and associated EV) during the simulations. For this reason, the

initial likelihood mapping between states is updated throughout

our simulation via a crucial concentration parameter (α) which

will be elaborated on under level 4.

The inferred EV state is then used to generate an action

precision (γ ) such that positive EV generates high confidence in

action selection (u1) and negative EV generates low confidence.

Higher confidence values produce higher precision on the

expected free energy (G) for one’s belief claim expressed in the

current conversation.

EV states are generated from core belief states, using a

(learnable) likelihood mapping:

P
(

x
(1)
sat |x

(2)
core

)

= Cat
(

A
(2)
sat

)

(6)

Confidence of belief expression is generated using a Gamma

distribution, where the rate parameter βexpr is the Bayesian

model average of β(+,−) values associated with high and

low satisfaction:

P
(

γexpr
)

≈ Ŵ

(

1, βexpr

)

(7)

βexpr = β(+,−) · x
(1)
sat (8)

where β(+,−) = [0.25; 2.0]

The expression of beliefs is guided by current core beliefs

(scaled with satisfaction-dependent γexpr) and by habitual belief

expression Eexpr (scaled with a fixed parameter γE,expr):

P
(

uexpr|γexpr
)

= σ

(

−γexpr ln x
(2)
core + γE,exprEexpr

)

(9)

The intrinsically stochastic and itinerant nature of the

generative process of communication is modeled by using a

two-dimensional Dirichlet distribution to generate observed

expressions on the range (0,1), where each agent’s belief

expression prior P
(

uexpr|γexpr
)

is used to specify their

concentration parameters (multiplied by 12 to reduce variance):

oexpr = Dir(12uexpr) (10)

3.3.3. Voluntary meeting selection

While the choice of interlocutor is predetermined in a

dyad, our multi-agent simulations required a specification of

the process behind agents’ selection of a conversational partner

(s3) at each of the (hundred) time points. Building on previous

work on active inference navigation and planning (Kaplan and

Friston, 2018), meeting selection in our model is represented

as a preferred location on a grid, where each cell on the grid

represents an agent to meet (Figure 4).

Importantly, agents differ in their action model of which

agent to visit at each time point. Their individual choices

are guided by expected free energy G (Figure 3F) which

entails maximizing the expected utility of an action (known as

pragmatic value) as well asmaximizing the expected information

gain (known as epistemic value). These two values constrain

each other such that maximizing both simultaneously is partially

(but not entirely) paradoxical (as illustrated in Figure 4).

These constraints may also be understood as formalizing

the exploration-exploitation trade-off, where epistemic value

(exploration) refers to the benefit of searching to get a better

estimation of promising areas that offer pragmatic value

(exploitation) (Friston and Frith, 2015).

Mathematically, action selection was formalized as follows:

P
(

uvisit|γG,visit
)

= σ
(

−γG,visitGvisit + γE,visitEvisit
)

(11)

Here, Gvisit represents the expected free energy:

Gvisit = oexpr,visit · (ln oexpr,visit − Cidea)+H · xidea,visit (12)

An agent traveling to visit:

x
(1)
idea,visit

= B
(1)
visitx

(1)
idea,home

(13)

Expectations about the support for an idea expressed by each

potential agent one could visit:

oexpr,idea = A
(1)
idea

x
(1)
idea,visit

(14)
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FIGURE 4

A simplified example of exploitation- and exploration-driven strategies for meeting selection. This Figure illustrates the behavioral di�erences

between the extreme cases of being fully driven by exploitation (Left) or exploration (Right). Each cell on the grid corresponds to a potential

interlocutor for these agents, who make decisions in three consecutive time steps (t = 1, 2, 3) and have previously engaged with three other

interlocutors (marked with blue rectangles), where we use the shorthand klC to indicate the pragmatic component of the expected free energy

Gpragmatic,visit = oexpr,visit · (ln oexpr,visit − Cidea), which corresponds to the KL divergence between expectations about the interlocutor at that

location (as informed by previous visits) and the preferred ideas of our agents, such that lower values correspond to a better match. Cells that

are visited during t = 1, 2, 3 are filled with granite. The exploitation-driven agent (Left) simply revisits three times a known interlocutor with the

lowest KLC. In contrast, the exploration-driven agent (Right) prefers novel visits and switches to an unknown agent every time step. In the

simulations presented later, agents will dynamically balance these two strategies as their preferences themselves evolve over time.

Individual preferences about the support for the idea:

Cidea = ln
(

A
(2)
C x

(2)
core

)

(15)

Finally, expectations about a potential reduction in

ambiguity about the support for an idea by a particular agent

reflects one’s recollection about their most recent visit to this

other agent. Hj = 0 if an agent can remember a recent visit (i.e.,

there is no ambiguity left to reduce), and 0.1 otherwise.

Crucially, both types of (information and goal seeking)

preferences are absorbed into expected free energy. Pragmatic

value translates into a bias toward meeting agents with

similar beliefs at a given time point. This bias reflects the

widely observed phenomenon in psychology research that

people’s choices tend to be biased toward confirming their

current beliefs (Nickerson, 1998). Confirmation bias, or a

state-dependent preference (C) for meeting “belief compatible”

agents, biases action selection through the risk component of

expected free energy (G) (Figure 3F). Under active inference, a

preference for meeting agents with similar beliefs increases the

propensity for generalized synchronization, which underwrites

the emergence of (expected free energy reducing) shared

expectations (Hesp et al., 2019).

In contrast, emphasizing epistemic value translates into a

bias toward meeting agents whose beliefs are unknown at a

given time point. This bias reflects the extent to which agents

are driven by the minimization of the ambiguity component

of expected free energy (G; Figure 3F) about the beliefs of

other agents. Novelty seeking, or a proclivity for encountering

novel agents with unknown beliefs is a strategy for maximizing

information gain. Also understood as intrinsically motivated

curiosity behavior (Friston K. J. et al., 2017), maximization

of epistemic value helps individuals to better predict the

consequences of their actions (e.g., when they decide which

agent to meet) as they reduce uncertainty about hidden states

of their environment, whether real or imagined (e.g., in this case

it refers to the ideas supported by other agents).

Because of our method of procedural generation of various

(hyper)parameters from various probability distributions

(described in more detail in the Appendix), a continuous

spectrum of cognitive, behavioral, and affective tendencies

emerged in our simulations due to the large variety of

possible combinations. In principle one could obtain any

range of behaviors from this method of procedural generation

based on a set of probability distributions for all these

hyperparameters, which could hence be fitted to population

data. A full-blown analysis of all the emergent variability

in the simulated populations is beyond the scope of the

current paper.

For the sake of our demonstration, a clear distinction

between agents with high and low confirmation bias was

introduced in our simulations by drawing individualized
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FIGURE 5

Two sets of expectation values of the Dirichlet distributions used to generate top-down likelihood mappings A(2)
C , from core beliefs about ideas

X(2) to preferences concerning expressed ideas Cidea, representing the two distinct populations for which parameters were initialized with

di�erent degrees of confirmation bias. Weak confirmation bias (Left) corresponded to mild preferences for observed expressions to confirm

core beliefs, while strong confirmation bias (Right) corresponded to a strong preference for observed expressions to confirm core beliefs

(essentially a one-to-one mapping).

hyperparameters from two distinct sets of Dirichlet distributions

(illustrated in Figure 5; described in the Appendix) to obtain

each agent’s likelihood mapping from higher-level core beliefs

to lower-level preferences concerning observed expressions. The

resulting distinct populations could have emerged from, e.g.,

cultural segregation where different cultural subgroups have

developed different priorities in guiding social interactions—

in this case guided more or less strongly by confirmation of

core beliefs.

Novelty-seeking tendencies were not explicitly coded and

simply emerged from the parameters that regulate the relative

impact of epistemic vs. pragmatic value in the expected free

energy, although it should be clear that high confirmation bias

tends to suppress novelty-seeking. In Figure 6, the distinction

between “strict conservatives,” “centrists,” and “skeptics” was

used to qualitatively describe the emergent continuous spectrum

purely for communicative purposes and should not be taken as

a definite discretization.

3.4. Perceptual learning

On this level of belief updating, agents learn contingencies;

for example, how core belief states (specified in Appendix A1)

change over time (B2) (Figure 3C). This is the highest level

of cognitive processing, where agents learn (as detailed in

Appendix A3). By talking with other synthetic agents and

inferring their emotional and belief states, our agents learn

associations between EV and beliefs via a high level likelihood

mapping (A2), (updated via concentration parameter α). The

updating of the likelihood mapping between beliefs and claims,

is detailed in Appendix A7. This kind of learning is important

because it provides our agents with certainty, regarding the

emotional value they can expect from holding the alternative

belief to the status quo, which has low precision at the beginning

of the simulation (before the population is introduced to an

agent proclaiming this belief).

3.4.1. Perceptual learning as a coupling
parameter

The learning of associations between belief and emotional

valence states may be understood as a form of implicit coupling

between agents (Figure 1), in that it represents an indirect and

secondary influence of one agent’s internal state on another.

That is, sensitivity to each others’ mental states is made possible

only through inferences about the others’ emotional state (in

the absence of any overt or observable evidence for that

emotional state).

In contrast to perceptual inference, learning occurs at slow

time scales as mutual minimization of prediction error brings

about a convergence in the parameters of hierarchical models
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that generate mutually sympathetic (or possibly empathetic)

predictions. Parameter learning accumulates across multiple

interactions, modifying generative models over a long period

of time as opposed to being immediately expressed in agents’

behavior. This is why perceptual learning does not bring about

an immediate convergence or synchrony between interlocutors’

internal states, but is only expressed in agents’ adapted behavior

over time.

Individuals vary in the degree to which they are sensitive

to the information gained by learning associations between

belief states and their potential emotional outcomes. This

variation is represented in each agent’s categorical probability

distribution A2 that is updated throughout the simulation via

a concentration parameter (α) as they accumulate information

with every agent they meet. Updates to the A2-concentration

parameters model the way in which agents’ associations between

belief and emotional states are based on implicit observations of

others’ emotional states.

The prior for this likelihood mapping is specified in terms of

a Dirichlet distribution:

P
(

A
(2)
sat

)

= Dir
(

α
(2)
sat

)

(16)

The associated approximate posterior accumulates the

precision-weighted counts of correspondences between

observed expressions and satisfaction levels:

Q
(

A
(2)
sat

)

= Dir
(

α
(2)
sat + γ

(2)
A oexpr ln x

(1)
sat

)

(17)

3.5. Simulated process summary for
multi-agent social dynamics

For additional clarity, we provide a verbal and graphical

summary of multi-agent social dynamics in our simulations.

The “community square” (depicted in Figure 6) contained 50

social agents with deep generative models (identical structure +

individualized parameters), simulating how they mingled (step

1) and conversed daily (step 2) about two mutually exclusive

ideas (“red” and “blue”), as illustrated in Figure 7.

3.5.1. Simulated dynamics within days

Within each day, every agent engages in steps 1 and 2,

generating:

• Expected support for idea (from self and others)

• Expected claim expressions (from self and others)

• Current claim preferences

• Current valence state

• Current action model precision

• Memory of most recent visit of other agents

• Current selection of an agent to visit

FIGURE 6

A depiction of the community square with its initial opinion

distribution: One idea (red) was supported by almost all agents,

with some variation due to individualized model parameters,

roughly dividing into “strict conservatives,” “centrists,” and a few

“skeptics.” At first, the alternative idea (blue) is supported by only

one, stubborn agent (“rogue”).

• Expressed opinions (when visiting and when visited)

• Expressed affective cues (when visiting and when visited)

3.5.2. Simulated dynamics across days

Across days, every agent maintains (implicit) beliefs about

the following:

• Support for idea from self and others

• Habits of expressed support (self)

• Recency of visits to and from others

• Visitation habits of self (dirichlet counts)

• Affect-idea associations (dirichlet counts)

4. Results

Active inference allows us to formulate a normative and

explainable account of cultural information spread through

communication by casting cultural transmission as a bi-

directional communicative process that entails a particular

convergence between distinct conveyors and conveners of

cultural information. We provide a proof of concept for this

formalization of communication dynamics by simulating a

dialogue between active inference agents holding distinct beliefs

and trying to convince each other of their own beliefs.

Modeling the global dynamics of a cumulative culture (i.e.,

the accumulation of cultural information over a manifold of

transmissions), was modeled such that—at each time point all
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FIGURE 7

A diagram illustrating the steps of the generative model. (Left) Lower level Step 1: Interlocutor selection. Each day, each agent selects one

interaction partner (selecting themselves means staying home). Agents cannot see each other’s “opinion” before conversing. Meeting selection

was conditioned on: (1) Habitual visitation drives, depending on past actions. (2) Deliberate drives, conditioned on: (2a) Expected (mis)match

between expressed opinions (pragmatic value) and (2a) expected reduction in uncertainty about opinions of other agents, depending on one’s

memory of recent visits (epistemic value). (Right) Lower level Step 2: Conversation with a selected agent. Each meeting consisted in exchanges

of expressed support for an idea [in the range (0,1)] and a�ective cues [negative-positive, in the range (0,1)]. Expressed support was conditioned

on: (1) Expression habits formed during past conversations, (2) one’s current support for the idea. Expressed a�ective cues were conditioned on

one’s current valence state. A�ect played a role during Steps 1 and 2: Relative reliance on habitual tendencies vs. deliberation (expected free

energy G) was regulated via action model precision. The latter was conditioned on one’s current valence state, which was conditioned on one’s

current support of an idea, depending on previously learned associations between expressed ideas and concurrent a�ective cues (from oneself

and others).

50 agents engaged in dialogue at least once (by selecting a

conversation partner).

4.1. Local dynamics of coupled
communication

4.1.1. The emergence of generalized synchrony
from coupled communication

In nature, generalized synchrony emerges from sparse

coupling between the internal states of dissipative chaotic

systems (Pikovsky et al., 2003). In our model, generalized

synchrony within a social system is operationalized as

a convergence between belief states held by interlocutors

(Figure 1). In other words, generalized synchrony between

mutually inferring agents is understood as signaling a form

of cultural reproduction of beliefs, namely, a mechanism by

which previously distinct internal states merge and combine into

one. This convergence is made possible through a particular

coupling between the internal states of cultural entities, under

which generalized synchrony is an emergent phenomenon.

We hypothesized that without active perception and mutual

model updating, belief convergence would be precluded, since

interlocutors’ inner states would be inaccessible to each other.

That is, agents’ ability to actively infer hidden states in the

world and update their own model according to the sensory

evidence they receive is the foundation for achieving generalized

synchrony in a social system.

Our results indicate that agents’ ability to listen and attune

to the claims of their partner is indeed limited to the extent

that they are sensitive to sensory evidence from their encultured

environment (Figure 8).

To understand the implications of these findings, it is

important to shed light on the way they tie in to previous

work on active inference communication. In Friston and

Frith (2015) provided evidence for the notion that generalized

synchrony becomes altogether unattainable when agents do

not possess sufficiently similar generative models. Our results

go beyond this and provide evidence for the idea that

only when generalized synchrony is attainable (i.e., when

interlocutors possess sufficiently similar generative models),

communication underlies a convergence between agents’ belief

states. Our simulations should therefore be understood as taking
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FIGURE 8

Sensitivity to observable evidence modulates the level of social coupling between agents in dialogue. This Figure and its legend were adapted

from an open-source preprint of a conference paper, with permission of the authors (Figure 2 of Kastel and Hesp, 2021). In our simulations,

communicated cultural information takes the form of an internal belief state held by agents with a certain probability described under the A1

matrix (Figure 3A). While this internal state is defined as a binary variable, an agent’s beliefs are given by a categorical probability distribution that

can take on any real number in the range (0,1). This figure shows the belief states (vertical axes) of two agents (represented in blue and pink) as

they engage in dialogue across 18 time steps (horizontal axis). When the likelihood precision is low for both agents (Left) their internal states are

very weakly coupled, such that each agent sticks to their own belief and does not attune to the claims of the other. In contrast, when both

agents have high precisions (Right) their engagement in mutual attunement is facilitated and their beliefs converge onto one shared belief,

which is then installed in both of their generative models as a shared narrative.

generalized synchrony for granted while providing evidence for

the premise that the level to which agents’ beliefs converge (i.e.,

the level of synchrony between their internal states) is modulated

by their sensitivity to model evidence (A1).

4.2. Global dynamics of cumulative
culture

Our simulations of a cumulative culture should be

understood as modeling the dynamics of a culture that is the

sum (or accumulation) of modifications to cultural beliefs and

practices over time (Figure 9). While the local dyadic dynamics

simulated in the previous section illustrate convergence to

shared belief states held by individual agents, our global

simulations leverage this synchronization to evince emergent

dynamics within the population. We now review the key

(predicted and) emergent phenomena we observed under this

model of cumulative culture:

4.2.1. The introduction and spread of a novel
belief induces segregation within a population

When a divergent (non status quo) belief state propagates

within our synthetic population, it brings about segregation

into sub-groups. Qualitatively, this is represented as a visible

separation between two groups of agents: those that hold a belief

that approximates the status quo (presented in red), and those

that approximate the alternative, divergent belief (presented

in blue).

In active inference, this communicative isolation (where

agents gradually form groups of individuals they would prefer

to converse with) can be explained by the attunement of

interlocutor’s generative models on the microscale, which

translates over time—and with multiple encounters—into

collective free energy minimization on the macroscale. On the

microscale, local efforts to minimize free energy are expressed

as agents’ disinclination for meeting interlocutors that hold

intractably divergent beliefs. On the macroscale, these local

efforts translate into a global collective behavior of self organized

separation between incongruent groups of agents, such that

communicative isolation best ensures both local and collective

free energy minimization. In other words, when an intractable

divergent belief propagates within a homogenous population,

communicative isolation between incongruent groups emerges

as a strategy to minimize expected free energy, while the same

strategy homogenizes the belief states of agents within congruent

groups. It is interesting to reflect on the observation that the

size of the two groups was roughly equivalent; a phenomena that

characterizes many instances of cultural convergence (Myerson

and Weber, 1993); e.g., the voting in the UK for Brexit.

4.2.2. Local psychological biases modulate
population level segregation

The above simulations also show how differences in

parameters that determine levels of confirmation bias
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FIGURE 9

The emergence of cumulative culture. This Figure and its caption were adapted from an open-source preprint of a conference paper, with

permission of the authors (Figure 3 of Kastel and Hesp, 2021). These plots depict the evolution of population-averaged support (black line) with

regards to the idea that represents the initial status quo (top indicates 100% support, bottom indicates 0% support) over time (horizontal axes)

along with individual core beliefs (shown in the underlying scatter plot, explained below) in three simulations, for which only the relative size of

the subgroup with high confirmation bias was modulated [(A): 5%, (B): 15%; (C): 85%]. The underlying scatter plots indicate the core beliefs of

individual agents by means of their vertical location as well, with a color scale for additional clarity (red indicating maximal support for the status

quo, blue maximal support for the novel idea). (A) Simulation of a Cumulative Culture: In this reference simulation, half of all agents are

parameterized with high confirmation bias. When a divergent belief state (blue) is introduced to the status quo population (red) at the first time

step, it spreads through it via agents in dialogue that cumulatively change the belief structure within the population. Notably, the introduction of

a divergent belief seems to split the population into two subgroups: those supporting the new idea, and those adhering to the previous status

quo. This e�ect is modulated by agents’ individual strategies for choosing which interlocutors to engage with (s3). (B) High levels of novelty

seeking in the population: When only 15% of agents are parameterized with high confirmation bias, the population exhibits high levels of novelty

seeking and ends up being divided in favor of the divergent belief state, with more agents eventually holding this belief than the status quo. (C)

High levels of confirmation bias in the population. When 85% of agents are parameterized with high confirmation bias, the population is divided

in favor of the status quo belief, with more agents holding to this belief than the new and divergent belief.

(manipulated directly through A
(2)
C ; see Figure 5) and novelty

seeking (emerging from G) affect the segregation within the

population into groups of agents holding either congruent

beliefs or the alternative belief. When confirmation bias is

relatively low (Figure 9B), the population evolves such that the

majority of agents end up subscribing to the alternative belief.

However, when confirmation bias is relatively high (Figure 9C),

the majority of agents remains convinced of the previous

status quo.

These results indicate that confirmation bias suppresses

tendencies of the population as a whole toward the adoption

of an idea that diverges from the status quo. When the

confirmation-driven fraction of the population is relatively low

(15%), we naturally observe more novelty-seeking behaviors,

indicating agents are more “open-minded” and willing to

meet with agents of unknown beliefs. They are intrinsically

encouraged by their own curiosity to expose themselves to

novel expressions. Once such agents become convinced by such

interactions, they can start to popularize it for the rest of

the population. If the population is, however, made up of a

majority of agents driven by confirmation bias, they do not

engage as much with the alternative belief and popularization

is precluded.

These results are reminiscent of the widely used “adopter

categories” theory, a theoretical framework outlined by Everett

Rogers in his book “Diffusion of Innovations” which defines

five groups in terms of their relative precession in adopting an

innovation (Rogers et al., 2014). According to this framework,

the first two groups to adopt an innovation are innovators and

early adopters, which make up 2.5 and 13.5% of the population,

respectively (Sahin, 2006). Our results appear to be consonant

with the finding that relatively small numbers of early adopters

and innovators play a significant role in the propagation of

an innovation to other segments of the population (Dedehayir

et al., 2017). One explanation for this phenomenon is that

innovators and early adopters communicate innovations and

their relative advantages to other segments of the population,

thereby popularizing them.
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5. Discussion

In this paper, we provide an active inference framework

for the emergence of a cumulative culture from joint

communication dynamics. The principal achievement of this

framework is that it offers an overarching, quantitative and

multiscale account against which multiple hypotheses from

different domains of the social sciences may be universally

tested. This accomplishment has the potentiality to bring

the replication crisis faced by the psychological and social

sciences in the past decade, a step closer to a resolution. A

formal, standardized model of cultural evolution can evoke such

an outcome as personal intuitions and culturally biased folk

theories that currently make results difficult or impossible to

reproduce, will become anchored to an objective and universally

agreed upon verifiable account.

Notably, our framework offers a multiscale approach to the

understanding of cultural evolution processes, as expressed in at

least three ways. Firstly, it refers to the intrinsically hierarchical

nature of the generative models themselves characterizing

affective, cognitive, and behavioral dynamics (described at

length in the text and summarized in Figure 2). Secondly,

we combined this with the hierarchical nature of the dyadic

interaction process (described at length in the text and

summarized in Figure 7). Thirdly, these dyadic interactions

were contextualized by a multi-agent setting for which

parametrizations themselves were generated procedurally from

population-level distributions of hyperparameters (described

at length in the text and Appendix, illustrated in Figure 6)

and including two subgroups (described in Figure 5). Our

simulations depict cultural dynamics that arise from one another

to form nested levels of hierarchical organization, quintessential

to complex dynamical systems. This novel way of modeling

cultural dynamics across layers of organization accord nicely

with new approaches to artificial intelligence that originate

from the notion that intelligence emerges as much from

cells and societies as it does from individuals. The emerging

field of biologically inspired artificial intelligence involves

computational approaches that model biological systems on

various layers of organization. Such artificial intelligence systems

include: cellular systems; neural systems; immune systems; bio-

mimetic, epi-genetic and evolutionary robots as well as collective

systems. In this section we will discuss the specific implications

of our multilevel cultural simulations on the field of biologically

inspired artificial intelligence.

5.1. Communication models for
biologically inspired artificial intelligence

Traditionally, AI has been concerned with representing

the behaviors and architectures of human cognition. The

preoccupation with human intelligence stems from the widely

accepted notion that despite being neither the strongest nor the

fastest species on earth, humans occupy a distinctly dominant

position. Intellectual in nature, this dominance has previously

been attributed to our culture, morality and language. However,

in most of these social-cultural capacities, great apes share

striking similarities with humans, yet still do not show human

level intelligence, which leaves social scientists wondering about

the underlying roots and causes of human intelligence. Recent

studies show that despite their striking similarity to humans

in most social-cultural domains, great apes are not cognitively

equipped for the kinds of social coordination with others

that is evident in humans (Krupenye et al., 2016; Tomasello,

2018). These findings suggest that humans might owe their

remarkable intelligence to their unique ability to coordinate their

behavior through joint communication and other (non verbal)

cultural exchanges.

The idea that humans’ cognitive skills are the result of shared

intentionality, coordination, communication and social learning

is known as the ontogenetic adaptation hypothesis (Tomasello,

2020). This theory stipulates that animals use social learning

to gather information from their conspecifics about challenges

in their environment while avoiding some of the energetic and

time costs associated with a-social, trial and error learning

(Clark and Dumas, 2016). According to this, social interactions-

and specifically, communication and coordination- are a crucial

component of human intelligence.

This makes a strong case for the use of communication

models as inspiration for the development of socially intelligent

artificial agents. Indeed, equipping artificial agents with the

ability to accurately coordinate and communicate with other

agents in their environment may well be a crucial missing piece

in the modeling of advanced- human level- cognitive abilities.

By modeling the underlying dynamics of social communication

and coordination as we have in this paper, we bring to

light an otherwise unexplored topic, which may be one of

the most promising directions for achieving human level

machine intelligence.

5.2. Cumulative culture models for
biologically inspired artificial intelligence

The social sciences are on the verge of a revolution,

where researchers begin to have a more complex understanding

of the ways in which cultural practices and social choices

interplay with, and shape human experiences. Specifically, it

is becoming clear that individual intelligence is not what

makes us- above other species- uniquely intelligent. Rather,

the last decade has brought with it the notion that the

cumulative nature of human culture is responsible for our

exceptional cognitive capabilities and intelligence as a species.
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This capacity to acquire- across generations- highly evolved

and complex social systems such as language, cities and

technologies, are said to have sharpened humans’ cognitive

capacities and survival strategies in a way that no other

species has ever had the privilege to experience (Henrich,

2015).

Other related theories suggest that individuals are not “the

brains” behind a creative idea, but that innovation is in fact

a product of a collective cultural brain (Muthukrishna and

Henrich, 2016). According to this, The ideas of individuals

do not stand in competition or comparison with other agents

in the population, but are better understood as a nexus for

previously isolated ideas within it. This collective approach to

cultural innovation is supported by empirical findings showing

that innovation rates are higher in cultures with high sociality

(i.e., large and highly interconnected populations that offer

exposure to more ideas), transmission fidelity (i.e., better

learning between agents) and transmission variance (i.e., a

willingness to somewhat deviate from the accepted learned

norms) (Muthukrishna and Henrich, 2016).

Although the capacity for cumulative culture (i.e., the

capacity to acquire complex social systems through learning that

accumulates across generations) in animals remains contentious

(Dean et al., 2014), their expression of collective intelligent

systems in swarms (Chakraborty and Kar, 2017), ant-colonies

(Blum, 2005), flocks of birds (Boucherie et al., 2019), schools of

fish (Boucherie et al., 2019) and other social systems, is evident

in nature and has become an integral part in the field of artificial

intelligence as more andmore high complexity problems require

bio-inspired solutions that are achievable within a reasonable

period of time.

To the extent that the cumulative and collective nature of

culture provides an accurate account of intelligence, as theories

suggest, investigating the underlying mechanisms of intelligence

may be informed by the investigation of complex social-cultural

systems. In this case, providing a quantitative and measurable

account of the way a “collective brain” emerges from simple,

local rules of operation (namely, joint communication), as we

have illustrated in this paper, becomes invaluable in the pursuit

of machine intelligence.

5.3. Embodied active inference for
biologically inspired artificial intelligence

Embodied cognition is the theory that many elements of

cognition are shaped by elements of the entire body of the

organism. While emphasizing the circular causality between the

environment and the individual, social embodiment suggests

that embodiment in social beings plays a significant role and

improves upon social interactions. Justifications for social

embodiment are that different body states (such as postures

and facial expressions) enhance the communicative skills

of embodied agents and consequently, play a central role

in social information processing such that interactions

between embodied agents and humans are facilitated

(Bolotta and Dumas, 2021).

A natural speculation may be that robots have better skills of

communication and inter-robot social inference and expression

than digital avatars, since they can use their bodies for behavioral

expression and coordination with other robots. However, we

argue that despite lacking a physical body, active inference

avatars are embodied in that the computational formalism that is

applied to them (namely, active inference) implies embodiment.

Technically, what this means is that active inference agents in

our simulations adhere to three formal conditions for having

embodied cognition:

1. They have a perceptual system which allows them to gather

culturally relevant information from their surroundings.

This is evident in the first layer (“perception”) of the

hierarchical structure of the generative model of the agents

(Figure 2).

2. They have a motor system that allows them to communicate

their internal states to their social environment. This is

evident in the third layer (“action”) of the hierarchical

structure of the generative model of the agents

(Figure 2).

3. They are situated in their environment such that they are

able to manipulate their dynamic surroundings through

their actions. This is evident in agents’ ability to listen

and attune to each others’ belief expression in a way

that allows for a coupling of their internal states and

the emergence of generalized synchrony between them

(Figure 8).

The fact that agents under the active inference formulation

conform to these three conditions is non trivial, and it points

to the fact that these agents could not be simply replaced by

any hypothetical- non embodied- simulated intelligent being.

In other words, our simulations would not make sense unless

applied to a population that adheres to the certain criteria

aforementioned. We could only apply our simulations to

agents that adhere to all these conditions (i.e., have embodied

cognition), or our simulations simply would not work. In this

sense, our agents may not be physically embodied robots, but

we argue that- by definition- as active inference agents capable

of perceptions and actions in a situated environment, they are

software embodied agents. Had we put this software into social

robots that had the hardware equivalent of “ears” and “mouths,”

we would be able to produce embodied robots in a way that

would improve their social interactions. Crucially, we argue here

that embodiment must be present in both the software and the

hardware for social interactions of agents to be enhanced by it,

and that the active inference formalism implies embodiment for

the former.
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5.4. Limitations and future research

Although this paper provides important insights into the

underlying dynamics of social-cultural systems, it entails certain

limitations that will now be outlined and may be addressed in

future research.

First, our communication simulations assume that social

exchange is limited to a dyad, when in fact generalized

synchrony in nature may occur between multiple coupled

systems. Our formulations of the exchange of social information

as communication therefore represent only a specific case

of generalized synchrony that might highlight a much more

encompassing phenomenon. As an example, through social

media, cultural information can reach large populations at a

given time point. The idea that generalized synchrony between

inferring agents may go beyond the emergent behavior of

two communicators and exist between ensembles of coupled

self organizing systems has also been considered in the active

inference literature (Palacios et al., 2019).

Second, while we provide a formulation of the way

modifications to cultural information occur during

communication (i.e., the transmission of social information)

and we have simulated the emergence of cumulative culture

from these dynamics (i.e., the prevalence of social information),

we have not provided an account of the way novel social

information is introduced into a population to begin with. We

have assumed that belief states are gradually modified with every

cultural exchange, such that the outcome of this exchange may

be considered novel by virtue of it being a unique recombination

of existing beliefs and practices. Future research may focus on

asking important questions like: Why are we inclined to say

that innovation is a unique event that does not occur with every

cultural transmission? More importantly, how can we define

and even model the difference between a slight modification to

a cultural trait and innovation?

The importance of identifying exactly what constitutes

innovation and how to model its emergence is critical for

an accurate understanding of socio-cultural dynamics because

it would bring the circular dynamics of a complex culture

to a required close (Figure 10). Under such an account,

not only would cumulative culture naturally emerge from a

complex network of agents engaged in joint communication

(as shown in this proposal), but innovation would emerge

from cumulative culture and underlie communication in a

repeating, recursive loop that is the hallmark of complex

dynamical systems.

In the simulation environment presented here, efficient

communication could be considered, to some extent, as

reflecting local communicative needs and these needs are

grounded in properties of this socio-cultural environment.

However, the environment itself does not impose any of

the practical constraints known to drive real-life human

behaviors (e.g., need for food, warmth, hygiene). Previously,

FIGURE 10

The circular dynamics of cultural evolution.

researchers have argued that practical benefits in adapting to the

environment tend to accelerate the repetition and widespread

adoption of cultural practices (Kashima et al., 2019). In future

work, the authors aim to expand on these notions by enriching

the simulated environment with actual practical constraints.

In the current work, emotional valence was tied to action

confidence in a top-down manner (it affected action-model

precision for both meeting selection and expression) but not

in a bottom-up manner (e.g., based on action outcomes).

For the sake of simplicity, influences on emotional valence

were purely associative (i.e., based on emotional expressions

of conversation partners). Therefore, one natural and valuable

extension of these simulations in future work would be to

fully incorporate the recursive and principled formulation of

emotional valence that has been derived from deep active

inference (Hesp et al., 2021), which naturally tracks changes

in subjective fitness. This recurrent formulation, in particular

when combined with imagination-induced affect (see Hesp

et al., 2020), will specifically benefit from the grounding of

these simulated cultural exchanges in a more elaborate virtual

environment combined with agents that have actual bodily and

social needs such that subjective fitness estimates (based on

action-model precision) come to confer some practical relevance

(as described in the preceding paragraph).

Finally, another limitation of our simulations is that the

agents’ freedom for choosing the interlocutors they want to

engage with, might bias cultural transmission in a way that

does not apply to some forms of social interaction. Specifically,

meeting selection, or the freedom to voluntarily select the

transmitting interlocutor, does not extend to social interactions

in which agents do not have a choice in determining the source

of their cultural learning. For example, during development,

children are constantly exposed to individuals, social situations,

cultural practices, and conversations that they do not voluntarily

select. In this case, it is the Parents’ culturally dominant

behaviors that play a central role in the development of children’s

internalization of cultural beliefs, rather than the voluntary

actions of their children (Fernald and Morikawa, 1993; Senzaki

et al., 2016).
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6. Conclusion

In this paper, we employed a Bayesian framework—known

as active inference—to formally account for the dynamics

underlying (local) communication and (global) cumulative

culture dynamics, thus contributing to the ever-growing body

of research on multi-agent Bayesian models (e.g., Gunji et al.,

2018) and collective active inference (e.g., Friedman et al.,

2021; Heins et al., 2022) Under our account, the social

“transmission” of cultural information has been cast as a

fundamentally bidirectional process of communication, which

has been shown in the previous active inference literature

to induce a generalized synchrony between the internal

(belief) states of agents holding sufficiently similar generative

models. Building on this work, we operationalized generalized

synchrony as a particular convergence between the internal

states of interlocutors, and show that it depends sensitively

on the precision of observation or likelihood mappings in

a generative model of communicative exchange. When we

simulate a population of agents that simultaneously engage in

communication over time, cumulative culture emerges as the

collective behavior brought about by local belief updating (active

inference and learning in a dyadic setting). Our simulations

show that when a divergent belief is introduced to the status quo,

it spreads within the population and brings about a collective

behavior characterized by a certain degree of segregation

between different belief groups. The level to which the status

quo population defects to the divergent belief is mediated by

local psychological biases for confirmation bias (as directly

manipulated) and novelty seeking (as emergent from procedural

generation of parameters). These cultural (c.f., voting) equilibria

are minimizers of collective or joint free energy that emerge

from the imperative to minimize uncertainty and surprise in

dyadic exchanges.
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