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In recent years, the human-robot interfaces (HRIs) based on surface electromyography

(sEMG) have been widely used in lower-limb exoskeleton robots for movement prediction

during rehabilitation training for patients with hemiplegia. However, accurate and efficient

lower-limb movement prediction for patients with hemiplegia remains a challenge due

to complex movement information and individual differences. Traditional movement

prediction methods usually use hand-crafted features, which are computationally cheap

but can only extract some shallow heuristic information. Deep learning-based methods

have a stronger feature expression ability, but it is easy to fall into the dilemma of local

features, resulting in poor generalization performance of the method. In this article, a

human-exoskeleton interface fusing convolutional neural networks with hand-crafted

features is proposed. On the basis of our previous study, a lower-limb movement

prediction framework (HCSNet) in patients with hemiplegia is constructed by fusing

time and frequency domain hand-crafted features and channel synergy learning-based

features. An sEMG data acquisition experiment is designed to compare and analyze

the effectiveness of HCSNet. Experimental results show that the method can achieve

95.93 and 90.37% prediction accuracy in both within-subject and cross-subject cases,

respectively. Compared with related lower-limb movement prediction methods, the

proposed method has better prediction performance.

Keywords: human-robot interfaces, surface electromyography, lower limb movement prediction, feature fusion,

hemiplegia rehabilitation training

1. INTRODUCTION

With the development of artificial intelligence and robotics, lower-limb exoskeleton robots have
become a hot spot in the field of medical rehabilitation. It has played a significant role in the
rehabilitation training of patients with hemiplegia (Zhuang et al., 2020; Calafiore et al., 2021).
Through rehabilitation training with exoskeleton robots rather than traditional therapists, positive
outcomes have been reported (Krebs et al., 1998; Grimaldi and Manto, 2013; Jarrassé et al.,
2014). The lower limb exoskeleton robot realizes the perception and prediction of the lower limb
movements of patients with hemiplegia through the HRI. It then drives the motor to assist the
patient in completing the movement and achieve the effect of rehabilitation training (Huang et al.,
2015; Calafiore et al., 2021).
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Traditional HRImainly uses physical sensors, such as crutches
and force sensors, to directly predict the lower limb movements
of patients with hemiplegia (Yan et al., 2017; Solanki and Lahiri,
2018; Nozaki and Watanabe, 2019). This kind of HRI is simple
and effective, but it is motion-lag, i.e., patients with hemiplegia
must perform lower limb movements before HRI can perceive
them and perform corresponding movements. In recent years,
with the decoding of biological signals, HRI based on biological
signals (such as electroencephalogram and electromyography)
have been designed, opening up the possibility of realizing more
efficient and accurate lower limb movement prediction (Suplino
et al., 2019; Ortiz et al., 2020).

Human-robot interfaces based on biological signals is mainly
divided into EEG-based HRI and sEMG-based HRI. Compared
with EEG signals, sEMG signals have a higher signal-to-noise
ratio and are less susceptible to interference from environmental
factors. In addition, sEMG signals are usually generated within
30–500 ms before limb movement and are the physiological
signals most relevant to limb movement (Reaz et al., 2006).
Therefore, HRI based on sEMG signals is earlier and more
widely applied to lower-limb exoskeletons. sEMG-based HRI
consists of three main processing stages (Li et al., 2020): data
collection and processing stage, where sEMG data is recorded
and preprocessed; feature extraction stage, where meaningful
information is extracted from the sEMG data; and classification
stage, where a motion intention is interpreted from the data.
Many related studies have shown that feature extraction is crucial
for HRI movement prediction, and it determines the upper limit
of the prediction accuracy (Phinyomark et al., 2012; Samuel et al.,
2018).

Traditional sEMG-based HRI usually extracts hand-crafted
features and then uses machine learning methods to build
mappings of hand-crafted features and different lower limb
movements (Jose et al., 2017; Motoche and Benalcázar, 2018;
Narayan et al., 2018; Khiabani and Ahmadi, 2021; Zhou et al.,
2021). The interface is computationally cheap and can achieve
a relatively good lower-limb movements prediction performance
in most cases. Since the hand-crafted features only contain
some superficial heuristic information, the sEMG signals of
different patients with hemiplegia during lower-limb movements
vary greatly. Therefore, it is difficult and time-consuming to
achieve efficient and accurate lower-limb movement prediction
for different patients with hemiplegia. Deep learning has largely
alleviated the need for manual feature extraction, achieving
state-of-the-art performance in fields such as computer vision
(Hinton et al., 2012). In fact, deep convolutional neural networks
(CNNs) can automatically extract appropriate features from
the data. Some researchers have designed deep learning-based
HRIs, which can achieve higher lower limbmovement prediction
performance than hand-crafted features (Atzori et al., 2016;
Hartwell et al., 2018; Duan et al., 2019; Burns et al., 2020).
However, due to the large amount of data required by deep
learning, when predicting small datasets (such as the lower
extremity motion dataset for a single hemiplegic patient),
the lower-limb movement prediction method based on deep
learning often suffers from overfitting. This results in poor

movement prediction performance and low generalization ability
of the model.

Aiming at the above problems, this article proposes a human-
exoskeleton interface for lower limb movement prediction in
patients with hemiplegia. Building on our previous study (Shi
et al., 2021), this interface builds a lower-limb movement
prediction framework (HCSNet) which can extract the time and
frequency domain hand-crafted features and channel synergy
learning-based features. By introducing a channel attention
mechanism to deeply fuse handcrafted features and learning-
based features, efficient and accurate lower-limb movement
prediction is achieved. The main contributions of this article are
shown as follows:

• An sEMG-based HRI fusing convolutional neural networks
with hand-crafted features is proposed for lower limb
movement prediction of patients with hemiplegia. It uses
the sEMG signals of the unaffected lower limbs of patients
with hemiplegia to predict lower-limb movements and
combines the time-frequency domain hand-crafted features
and the channel synergy learning-based features extracted
by MCSNet, which improves the accuracy of lower limb
movement prediction.

• An sEMG data acquisition experiment is designed to verify
the proposed lower-limb movement prediction framework

(HCSNet). In the two cases of within-subject and cross-
subject, the lower limb movement prediction performance of

HCSNet is compared with four traditional machine learning-

based movement prediction models and three deep learning-

based movement prediction models.

2. RELATED STUDY

Human-robot interfaces is widely used in lower-limb exoskeleton

robots for movement prediction of hemiplegia patients during

rehabilitation training. It can be divided into physical signal-

based HRI and sEMG-based HRI.

2.1. Physical Signal-Based HRI Related
Study
Physical signals used for HRI generally include crutches button
command, inertial measurement units (IMU) or pressure signals.
Yan et al. developed a cane-type walking-aid robot and proposed
a fusion prediction method based on the cane-type walking-
aid robot for the coordinated movement of upper and lower
limbs. The results show that the method is effective in reality
(Yan et al., 2017). Nozaki et al. developed a method to estimate
the stride length of patients during walking by using IMU
attached to the feet and used an artificial neural network to
automatically detect the movement state of a hemiplegic gait.
The results proved that the artificial neural network with a
feature extraction layer can effectively detect the movement state
of hemiplegic subjects (Nozaki and Watanabe, 2019). Solanki
et al. designed a pair of shoes containing a force sensing resistor
(FSR) and a wireless data acquisition unit. Real-time FSR data
was transmitted to the console for analysis through wireless
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mode, realizing the measurement and prediction of patient step
characteristics (Solanki and Lahiri, 2018).

Physical signal-based HRI is simple and effective, but it
is motion-lag. In addition, with the increase of interactive
instructions, the interaction complexity of the physical signal-
based HRI will greatly increase, bringing a tremendous
cognitive load to patients with hemiplegia. With the continuous
development of biological neural engineering and brain science,
HRI represented by electromyography and other biological
signals gradually appear in people’s vision and are applied in
lower-limb exoskeleton robots to predict patients’ movements.

2.2. sEMG-Based HRI Related Study
As the biological signal most relevant to exercise, sEMG has been
applied to HRI for a long time, and the research on sEMG-based
HRI is particularly rich.

A complete sEMG-based HRI process includes data
acquisition and processing, feature extraction, and feature
classification. Traditional prediction methods usually use hand-
crafted features and then use machine learning methods to
construct mappings between features and movements. Motoche
et al. proposed a classification model based on sEMG. The
preprocessed signal values and the results of a set of functions
were selected as the extracted features, and the features were
classified by an artificial neural network (ANN). The accuracy of
the classification model reached 90.7% (Motoche and Benalcázar,
2018). Jose et al. (2017) extracted the time domain sEMG features
of the subjects’ forearm movement and classified the features
using a multi-layer perception network, with a classification
accuracy of 91.6%. In the literature (Zhou et al., 2021), the
machine learning method was applied to the recognition of
shoulder movements, and the support vector machine (SVM)
method with a sliding time window of 270ms was used, and the
classification accuracy was more than 90% (Hinton et al., 2012).
Narayan et al. (2018) extracted the features of the sEMG signal
by first-order differential and classified the features by a medium
tree classifier, which improved the classification accuracy by 6%
compared with other features.

Recent research has explored the application of deep learning
in HRI. Burns et al. proposes a classification method combining
discrete wavelet transform and enhanced probabilistic neural
network (EPNN). Compared with SVM, k-Nearest Neighbor
(KNN), and probabilistic neural network, it is proved that the
performance of the proposed method is better than that of
machine learning algorithm alone (Burns et al., 2020). Atzori
et al. (2016) applied convolutional neural network to sEMG
data classification, and the proposed framework classification
accuracy was higher than the average accuracy obtained by
classical methods, with the highest accuracy reaching 87.8%.
In the literature (Hartwell et al., 2018), a compact deep neural
network architecture is used, which still achieves a classification
accuracy of 84.2% even though the parameter values of other
networks are several orders of magnitude less. Duan et al. (2019)
applied multi-channel convolutional neural network to sEMG
dataset for gesture recognition, and the recognition accuracy
was 90%.

Most of the previous study has focused on utilizing sEMG
signals from the bilateral limbs of hemiplegic patients. For
patients with hemiplegia, the sEMG signal of the affected
limb is weak, and the problems of muscle associated reactions
and abnormal discharge are prone to occur (Lindsay et al.,
2019). Furthermore, most of the previous studies use deep
convolutional networks to extract the learning-based features
from data, ignoring the heuristic information contained in
hand-crafted features.

2.3. Application of HRI on Exoskeleton
The exoskeleton is a typical scenario of HRI applications. The
application of HRI in exoskeletons can be divided intomovement
prediction (Kyeong et al., 2019; Read et al., 2020) and state
detection (Bae et al., 2019). Movement prediction refers to
predicting the limbmovement of the exoskeleton wearer. Kyeong
et al. (2019) designed a hybrid HRI based on sEMG and foot
pressure signals to predict the wearer’s gait cycle. Literature
(Read et al., 2020) applied HRI based on the wearer’s IMU
signals and crutches pressure measurement signals to the Ekso
exoskeleton. It helps the Ekso exoskeleton predict the wearer’s
standing and walking movements. State detection is to observe
the physiological state of the exoskeleton wearer during using
the exoskeleton. Bae et al. (2019) designed an HRI to help
observe whether the wearer experiences spasms when using
the exoskeleton.

This article is mainly to design an HRI based on sEMG
and apply it to a lower-limb exoskeleton robot for movement
prediction of patients with hemiplegia during rehabilitation
training. It is not the same as HRI based on hand-crafted features
and learning-based features. Based on our previous study (Shi
et al., 2021), we construct a lower limb movement prediction
framework (HCSNet) that fuses hand-crafted features and
deep neural networks. The synergy features of different sEMG
channels are extracted using MCSNet, which are subsequently
combined with hand-crafted features such as time and frequency
domains. Through the heuristic information of hand-crafted
features and the abstract and personalized information of
learning-based features, the accuracy of HCSNet’s lower-limb
movement prediction for patients with hemiplegia is improved.

3. METHODS

This section mainly introduces the proposed lower-limb
movement prediction model. Section 3.1 describes the overall
architecture and methodology details of the HCSNet model.
In Section 3.2, We introduce several commonly used lower-
limb movement prediction models to compare and analyze the
effectiveness of the proposed HCSNet.

3.1. Description of the HCSNet Model
3.1.1. Overview of the HCSNet Model
Figure 1 depicts the overall framework of HCSNet. It can be
clearly seen that HCSNet is divided into three parts. The first
part is data input, inputting the divided lower-limb sEMG signals.
The second part is feature extraction, which uses traditional
methods and our previous study MCSNet (Shi et al., 2021)
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FIGURE 1 | The overall architecture of the HCSNet model. HCSNet is divided into three parts. The first part is data input, and the second part is feature extraction,

which uses traditional methods and our previous work MCSNet to extract hand-crafted features and learning-based features respectively, and then uses the attention

mechanism to fuse the hand-crafted and learning-based features. The third part is movement prediction/classification.

to extract hand-crafted features and learning-based features
respectively, and then uses the attention mechanism to fuse
the hand-crafted and learning-based features. The third part is
movement prediction/classification, which classifies the fusion
features extracted in the second part. The sEMG signal has C
channels and T time sample points, which means that XsEMG ∈

ℜC×T .

3.1.2. Hand-Crafted Feature Extraction
For the input sEMG signal XsEMG, we extract hand-crafted
features from two dimensions, time domain and frequency
domain, so as to obtain the heuristic information contained in
the signal. Referring to the research conclusions of time domain
and frequency domain features in the literature (Phinyomark
et al., 2012), we finally selected 7 time-domain features and 3
frequency-domain features. The selected time domain features
are Mean Absolute Value (MAV), Simple Square Integral (SSI),
Waveform Lengths (WL), Root Mean Squared (RMS), Zero
Crossings (ZC), Slope Sign Changes (SSC), and 6-order Auto-
Regressive coefficient (6-AR). The selected frequency domain
features are Mean Power (MNP), Peak Frequency (PKF), and
Median Frequency (MDF). The extracted time-domain features
and frequency-domain features are expressed as Ftd ∈ ℜ1×7∗C

and Ffd ∈ ℜ1×3∗C.

3.1.3. Learning-Based Feature Extraction
For learning-based features, this article adopts the previous work
MCSNet to extract. MCSNet is a deep learning-based lower limb
movements prediction model, which contains three modules
in total. The first module is an LSTM layer, which is used to
extract the temporal features of the sEMG signal channel by
channel. The second module is a two-layer CNN network. It
extracts the temporal-frequency features of different channels of

the sEMG signal. The third module of MCSNet is a Depthwise
CNN layer, which is used to combine and optimize the temporal-
frequency features between different channels. Namely, it is used
to extract the synergy features between the sEMG signal channels.
The learning-based feature Flearning extracted by MCSNet can be
expressed as:

Flearning = MCSNet(XsEMG), (1)

3.1.4. Feature Fusion Based on Channel Attention

Mechanism
After acquiring hand-crafted features and learning-based
features, we introduce a channel attention module for fusion
between different features. The hand-crafted features contain
heuristic information in the time and frequency domains of
sEMG signals, and the learning-based features contain the
synergy information between different sEMG feature channels.
The channel attention module can learn the weights of different
features to fuse different feature information, improving the
model’s performance for lower limb movement prediction. The
operation of the channel attention module can be described as:

Ffusion = [Ftd, Ffd, Flearning],

Wchannel(Ffusion) = σ (MLP(AvgPool(Ffusion))

+MLP(MaxPool(Ffusion))),

F = Wchannel(Ffusion)⊗ Ffusion,

(2)

Among them, Ffusion is the combined feature of hand-crafted
features and learning-based features, σ is a non-linear function,
Wchannel is the weight of different feature channels, and F is the
final fusion feature,⊗ represents matrix multiplication.

After obtaining the fused features, we flatten the features and
then feed them into a linear layer and softmax layer, and finally
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get the predicted lower limbmovements. This series of operations
can be expressed as:

Labelpredicted = Softmax(linear(F)). (3)

3.2. Comparison With Other Movement
Prediction Approaches
We compare HCSNet with four classic lower limb movement
prediction methods based on hand-crafted features and machine
learning and three state-of-the-art deep learning-based lower
limb movement prediction methods. By analyzing different
methods in both within-subject and cross-subject situations, the
effectiveness of HCSNet is verified.

For traditional lower limb motion prediction methods based
on hand-crafted features and machine learning, we use the
same hand-crafted features as HCSNet to ensure the objectivity
of the analysis results. In terms of classification algorithms,
after investigating several pieces of literature, we finally
selected four classification algorithms: Linear Discriminant
Analysis (LDA), Radial Basis Function-Based Support Vector
Machine (RBFSVM), K-Nearest Neighbors (KNN), and Random

Forest (RF).
Among the deep learning algorithms, we compare HCSNet

with three state-of-the-art lower limb movement prediction

algorithms: MCSNet, GoogleNet, and ResNet. MCSNet is our

previous study (Shi et al., 2021), which extracts synergy features

between different sEMG signal channels by fusing LSTM and
attention mechanisms. GoogleNet (Szegedy et al., 2015) and

ResNet (Li et al., 2018) are two very popular deep learning
algorithms in the field of computer vision. They can extract

deeper features through some special structures. This article uses

GoogleNet V2 and ResNet16.

4. EXPERIMENTS AND RESULTS

In this part, an sEMG signal acquisition experiment is designed

to verify the effectiveness of the method proposed in this

article. Section 4.1 describes the sEMG acquisition experimental
paradigm and data preprocessing method. Section 4.2 gives
the implementation details of model training. In Section 4.3,
We compare the movement prediction performance between
HCSNet and other movement prediction models in the case of
within-subject and cross-subject.

4.1. sEMG Data Acquisition Experiment
A total of 10 healthy subjects were invited to participate in the
experiment. Each subject randomly completed three movements
of standing, sitting, and walking after hearing the instructions.
During this period, the sEMG signals were collected from 10
muscles of the subject’s lower-limbs.

1. Participants: The 10 subjects (7 men, 3 women) had an
average age of 24 years, a height between 162 and 181 cm,
and a weight between 45 and 80 kg. All subjects were in
good mental and physical condition, and the lower limbs
were not injured before the experiment. Each subject could
independently complete the three lower limb movements of

standing, sitting, and walking. Before the experiment, each
subject was informed of the experimental content and signed
an informed consent form. This experiment was approved by
the Ethics Committee of Tianjin Medical University.

2. Procedures: Before the experiment, record the relevant
physical parameters of the subjects and inform the subjects
of the experimental content. Demonstrate the sEMG
experimental acquisition paradigm (as shown in Figure 2)
to the subjects until the subjects are familiar with the
experimental paradigm and perform the corresponding
actions within the specified time. Then paste sEMG
acquisition electrodes on the 10 muscles of the subject’s
left and right lower limbs, including the rectus femoris,
vastus lateralis, tibialis anterior, biceps femoris, and lateral
gastrocnemius of every leg, as shown in Figure 3). During
the experiment, the subjects stand in front of the screen and
relaxed naturally, and then followed the sEMG acquisition
paradigm to complete the corresponding movement,
as follows:

• 0–3 s: A video is played on the computer screen, reminding
the subject of the upcoming lower limb movement.

• 3–4 s: The computer remains blank. At 4 s, the computer
will make a “beep”, and a “+” symbol will appear on
the screen, reminding the subject to start performing the
corresponding lower limb movement.

• 4–7 s: The subject performs the corresponding lower
extremitymovements and records the sEMG signals of their
lower limbs synchronously.

• 7–12 s: The “©” pattern appears on the screen, reminding
the subject that the single-movement data collection
experiment is over. The subjects rest and return to the
position and posture at the beginning of this experiment,
waiting for the next experiment.

There are three groups in the whole experiment, and each
group includes 10 standing, sitting, and walking movements.
The standing andwalkingmovements will randomly appear in
the first 20 movements, and the last 10 movements are sitting
movements (because the subjects are required to remain
standing before the standing and sitting movements). During
the whole experiment, myoMUSCLE (an sEMG acquisition
device, Scottsdale, American) is used to record the subjects’
lower-limb sEMG signals.

3. Data Processing: myoMUSCLE (1,500 Hz) collects the lower
limb sEMG signal data of each lower limb movement of
the subject throughout the whole process. After obtaining
the sEMG data, a 50 Hz notch filter is used to remove the
power frequency interference of the current, and a 10–450 Hz
bandpass filter is used to retain the effective information of
the sEMG signal. Since the main purpose of this paper is to
design an sEMG-based HRI for lower limb motion prediction,
we only select the first second sEMG data of the subject’s lower
limb movement for model training. Considering that the
sEMG signal of the affected side of patients with hemiplegia
cannot be used, only the sEMG signal of the unaffected lower
limb can be collected for movement prediction, so this article
only uses the sEMG signal of one side limbs (left side) of all
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FIGURE 2 | Schematic diagram of sEMG data acquisition experiment. The upper part is the preparation posture of the lower limb movements. The lower part is the

experimental acquisition paradigm.

FIGURE 3 | The lower limb muscle used in the sEMG data acquisition experiment.

subjects. That is, the number of sEMG channels C to be input
is 5. In addition, the sliding window size and moving step
size of the sEMG signal data will affect the feature extraction
and the prediction performance of the model. In order to
obtain the optimal sliding window size and moving step size
parameters, we designed a parameter comparison experiment.
For details, refer to Section 4.3.1.

4.2. Implementation Details
After preprocessing the sEMG data, for the traditional hand-
crafted feature-based lower limb movement prediction model,
use the relevant formula to calculate the features mentioned in
Section 3.1.2, and then input the features into the Classification
Learner Toolbox to train the prediction model. For the problem
of imbalance in the number of samples between movements, we
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FIGURE 4 | The accuracy of the lower limb movement prediction method when the sliding window parameter has changed. The abscissa represents the number of

time samples contained in different sliding windows. The lines of different colors represent different moving step sizes (e.g., 25% means that the moving step size is

25% of the sliding window size).

apply a movement class-weight to the loss function. The class-
weight we apply is the inverse of the proportion in the training
data, with the majority movement class set to 1.

HCSNet and the deep learning-based lower limb movement
prediction models are implemented using the PyTorch library
(Paszke et al., 2017). Exponential linear units (ELU) (Clevert
et al., 2015) are used to introduce the non-linearity of each
convolutional layer. To train ours and other deep learning-
based models, we use the Adam optimizer to optimize the
model’s parameters, with the default setting described in Kingma
and Ba (2014) to minimize the categorical cross-entropy loss
function. We run 1,000 training iterations (epochs) and perform
validation stopping, saving the model weights, which produce
the lowest validation set loss. All models are trained on NVIDIA
RTX2080Ti, with CUDA10.1 and cuDNN V7.6.

4.3. Experiments Result
In the experimental results section, we first show the effect of
different sliding window parameters on the performance of the
lower-limb movement prediction method and determine the
sliding window parameters by comparison. Second, we compare
HCSNet with other lower-limbmovement prediction methods in
both within-subject and cross-subject situations.

4.3.1. Sliding Window Parameter Determination
The size of the sliding window and the moving step length
will affect the extraction of sEMG signal features, especially
the extraction of hand-crafted features, which in turn affects
the performance of the lower-limb movement prediction
methods. In this article, a sliding window parameter comparison
experiment is designed. By setting different sliding window
sizes and moving steps, the changes in the accuracy of the
lower limb movement prediction method based on hand-crafted
features and machine learning are observed, and the sliding
window parameters are determined. The specific results are
shown in Figure 4.

Figure 4 shows the average lower limb movement prediction
accuracy of all subjects under different sliding window
parameters. The model used is a lower limb movement
prediction model based on hand-crafted features and RBFSVM.
It can be intuitively seen that as the length of the sliding window
increases, the prediction accuracy of the model will gradually
increase. When the sliding window size is about 300, the
prediction accuracy of the model reaches the inflection point.
In addition, the smaller the moving step size, the higher the
prediction accuracy of the model. Considering the interaction
period of the actual HRI, we finally choose the sliding window
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FIGURE 5 | Within-subject movement prediction performance, 4-fold cross-validation is used to avoid the phenomenon of model overfitting averaged over all folds

and all subjects.

TABLE 1 | Within-subject movement prediction performance (Test set ACC).

Subject ID SVM (%) LDA (%) KNN (%) RF (%) MCSNet (%) GoogleNet (%) ResNet (%) HCSNet (%)

S1 88.50 87.60 85.80 89.20 100.00 80.99 88.31 100.00

S2 91.70 89.40 89.00 94.20 92.59 90.56 91.23 96.30

S3 96.20 93.90 94.40 96.10 96.30 93.48 94.80 100.00

S4 91.80 92.40 93.20 95.40 100.00 90.87 89.94 100.00

S5 90.10 89.90 90.00 90.80 100.00 86.54 93.38 100.00

S6 81.80 80.10 80.30 85.40 77.78 78.85 79.81 74.07

S7 89.00 89.70 86.50 90.30 100.00 89.29 94.99 100.00

S8 82.10 82.40 82.90 87.90 85.19 84.85 84.30 88.89

S9 91.80 92.90 88.80 94.40 100.00 93.06 94.45 100.00

S10 91.20 90.70 90.40 94.00 100.00 94.22 89.37 100.00

Ave acc 89.42 88.90 88.13 91.77 95.19 88.27 90.06 95.93

size as 300 and the moving step as 150 (that is, 50% of the sliding

window size).

4.3.2. Within-Subject Classification
For within-subject, we divide the data of the same subject

according to a ratio of 7:3 and then use 70% of the data to train
the model for that subject. Four-fold cross-validation is used to
avoid the phenomenon of model overfitting.

We compare the performance of both hand-crafted features
and machine learning-based lower-limb movement prediction

models (RBFSVM, LDA, KNN, and RF) and deep learning-based
lower-limb movement prediction models (MCSNet, GoogleNet,
and ResNet) with HCSNet.

It can be clearly seen from Figure 5 that after fusing hand-
crafted features and learning-based features, the lower-limb
movement prediction accuracy of HCSNet is significantly higher
than other movement prediction models, especially the models
based on handcrafted features. In addition, the lower-limb
movement prediction accuracy of GoogleNet and ResNet is
close to the lower-limb movement prediction models based
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FIGURE 6 | Cross-subject movement prediction performance averaged over all folds.

on hand-crafted features, which shows that in the case of
small samples, the pure deep learning method cannot extract
more sEMG information. However, the lower-limb movement
prediction accuracy of HCSNet is significantly higher than that
of GoogleNet and ResNet, which indicates that the extracted
hand-crafted features and the learning-based features have
complementary information, and the features learned based on
deep learning methods cannot completely replace the hand-
crafted features. Table 1 shows the prediction accuracy of each
subject under different lower-limb movement prediction models.
It can be found that HCSNet can achieve 100% lower-limb
movement prediction for most subjects. It means that HCSNet
can effectively extract each subject’s lower limb movement
feature, thereby achieving good movement prediction.

4.3.3. Cross-Subject Classification
In the case of cross-subject, we randomly selected the data of
seven subjects to train the model and selected the data of three
subjects as the validation set. The whole process is repeated five
times, producing five different folds.

Cross-subject prediction results across all models are shown
in Figure 6. It can be seen that the hand-crafted features-based
lower-limbmovement prediction models have poor performance
in the cross-subject situation, with an average accuracy rate of
about 70%. In addition, the lower-limb movement prediction
model based on learning-based features outperforms the models
based on hand-crafted features. This shows that in the case of

big data, hand-crafted features contain less effective information
than learning-based features. In this case, the HCSNet model
proposed in this paper can still achieve an accuracy of 90.37% in
lower limbmovement prediction, which is far from other models.
It proves the effectiveness of HCSNet.

5. CONCLUSION

In this article, a human-exoskeleton interface for lower limb
movement prediction in patients with hemiplegia is proposed.
It uses the sEMG signals of the unaffected lower limbs of
patients with hemiplegia to predict lower-limb movements
and constructs a lower limb movement prediction framework
(HCSNet) that fuses hand-crafted features and deep neural
networks. The synergy features of different sEMG channels are
extracted using MCSNet, which are subsequently combined with
hand-crafted features such as time and frequency domains. An
sEMG data acquisition experiment is designed to verify the
proposed HCSNet. In the two cases of within-subject and cross-
subject, the lower limb movement prediction performance of
HCSNet is compared with four traditional machine learning-
based movement prediction models and three state-of-the-art
deep learning-based movement prediction models. The results
show that HCSNet has a goodmovement prediction performance
in both within-subject and cross-subject situations. In the future,
we consider applying the proposed human-exoskeleton interface
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to an actual exoskeleton platform. In addition, we will focus on
multi-modal movement prediction based on sEMG and EEG.
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