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Learning generalizable
behaviors from demonstration

Corban Rivera*, Katie M. Popek, Chace Ashcraft,

Edward W. Staley, Kapil D. Katyal and Bart L. Paulhamus

Johns Hopkins Applied Physics Laboratory, Intelligent Systems Center, Laurel, MD, United States

Generalizing prior experiences to complete new tasks is a challenging and

unsolved problem in robotics. In this work, we explore a novel framework for

control of complex systems called Primitive Imitation for Control (PICO). The

approach combines ideas from imitation learning, task decomposition, and

novel task sequencing to generalize from demonstrations to new behaviors.

Demonstrations are automatically decomposed into existing or missing

sub-behaviors which allows the framework to identify novel behaviors while

not duplicating existing behaviors. Generalization to new tasks is achieved

through dynamic blending of behavior primitives. We evaluated the approach

using demonstrations from two di�erent robotic platforms. The experimental

results show that PICO is able to detect the presence of a novel behavior

primitive and build the missing control policy.
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1. Introduction

Neural networks have demonstrated extraordinary ability to control systems with

high degrees of freedom. An important challenge is how to control such high-degree of

freedom systems with only a few control inputs. One approach to address the scaling

challenge is through modularity and hierarchical control mechanisms (Akinola et al.,

2017; Shazeer et al., 2017; Zhao et al., 2017). These approaches use the limited number

of inputs to select a primitive control policy, from a library of primitive behaviors, and

potentially a target. Complex tasks are performed by chaining primitive behaviors.

As an example of this scenario, consider a Universal Robots UR5 (UR, 2019)

manipulator mounted on a Clearpath Husky platform (Hus, 2019) as shown in Figure 1.

The UR5 is used to demonstrate reaching, grabbing, and lifting a block on a table. Other

tasks may require performing these actions in another order, so it may be useful to learn

and maintain a collection of these primitive behaviors for later use. While the underlying

behavior primitives are well-defined for the reach-and-grasp scenario, other example

scenarios may not have as well-defined or labeled primitives. In this work, we assume

that the underlying label of the behaviors shown in the task demonstrations is unknown.

The questions we investigate are how might we learn and maintain the primitive

library from unlabeled demonstrations and, assuming the behavior primitive library

exists, how would one know when to use, adapt, or create a new primitive behavior. We

propose that the behavior library should be actively maintained to minimize redundancy
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FIGURE 1

Husky-UR5 reach and grasp environment.

and maximize the ability to reconstruct complex tasks through

chains of the primitive behaviors. In this work, we explore

techniques to directly optimize for these criteria by building on

methods that learn from demonstration.

We explore maintaining a behavior primitive library in

an online learning scenario. Given a potentially non-empty

behavior primitive library and a new set of unlabeled task

demonstrations, we seek to update the behavior primitive library

to maximally accommodate the new demonstrations while

maintaining the ability to reconstruct previously demonstrated

trajectories.

Our contribution is an approach called PICO that

simultaneously learns subtask decomposition from unlabeled

task demonstrations, trains behavior primitives, and learns

a hierarchical control mechanism that allows blending of

primitive behaviors to create even greater behavioral diversity,

an overview is shown in Figure 2. Our approach directly

optimizes the contents of the primitive library to maximize

the ability to reconstruct unlabeled task demonstrations from

sequences of primitive behaviors.

2. Preliminaries

Learning from demonstration (LfD) and imitation learning

allow agents to execute a task by observing the task being

performed (Hussein et al., 2017). In the robotics domain, a

goal of imitation learning is to produce a mapping, π , from

states to actions, known as a control policy (Argall et al., 2009;

Schaal and Atkeson, 2010), that has the maximum likelihood

of producing the demonstration dataset D = {ρ1, ρ2, . . . , ρn},

where each ρ = (s1, a1), (s2, a2), . . . , (sT , aT) is a demonstration

trajectory of state, action pairs. The demonstrations can be

created by another control policy (Rusu et al., 2015), by a human

expert (Konidaris et al., 2012), or in a simulated environment

(Shiarlis et al., 2018; Kipf et al., 2019). Let πθ parameterized by

θ . The goal is then to optimize Equation (1) by varying θ .

maxEρ [

T∑

t=1

logπθ (at|st)] (1)

Following optimization, covariate drift can cause errors in

the control process that can place the robot in a previously

unobserved state. Control policies will have higher action

prediction errors in parts of the state space that it has not

observed, leading to poor action predictions and compounding

errors with increased iterations of the policy. One approach that

has been introduced to decrease the impact of covariate shift

is to introduce noise into the demonstrations used for learning

(Laskey et al., 2017). This approach increases the amount of state

space covered by the policy and improves action predictions

around the demonstrations, leading to better generalization and

error tolerance.

2.1. Model agnostic meta-learning

In meta-learning a model is trained on a variety of learning

tasks and the parameters of the method are fine-tuned for

generalization. The idea of meta-learning is to combine a set of

learner models to improve performance on a task more quickly

than one without pretrained models. This is a common strategy

for one-shot (Santoro et al., 2016) or few shot scenarios, where

a model must be trained using one or a few examples. Some

approaches for meta-learning come from the reinforcement

learning (Finn et al., 2017), which typically differ in how they

update individual learners. Somemeta-learning methods update

models using gradient information (Finn et al., 2017) and others

learn how to update learners from data (Bengio et al., 2002;

Andrychowicz et al., 2016).

3. Related work

Imitation learning alone does not provide a mechanism

to generalize demonstrations to new tasks. One mechanism to

address this challenge is task decomposition, which has the goal

of identifying subtasks from demonstration. Subtasks can be

made into sub-policies through imitation learning, including

methods that combine subtask discovery with imitation

learning (Shiarlis et al., 2018; Xu et al., 2018). By decomposing

demonstrations into subtasks, it becomes possible to permute

the sequence of sub-policies to achieve greater task diversity

and generalizability. However, decomposing demonstrations

into subtasks that are maximally useful for recombination is a

challenge in task decomposition (Shiarlis et al., 2018).

Once sub-task policies are established, a hierarchical control

policy can be learned that identifies the sequence of policies
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FIGURE 2

An overview of PICO. The approach takes as input unlabeled demonstrations and a library of primitive behaviors. The goal is to predict the

primitive behavior label associated with each time point in all demonstrations. Additional behavior primitive models can be trained to fill gaps

that are not well-represented by existing behavior primitives.

needed to achieve a specified goal. Given a sufficiently diverse

set of demonstrations the reasoning layer can be learned from

a set of demonstrations (Xu et al., 2018). Several approaches

for learning hierarchical architectures for control policies from

limited demonstrations have been proposed (Duan et al., 2017;

Shiarlis et al., 2018; Xu et al., 2018). We were inspired by the

work on mixtures-of-experts (Jacobs et al., 1991; Shazeer et al.,

2017) which includes a similar hierarchical representation.

Some approaches assume that the behavior primitive

library is fully trained in advance (Xu et al., 2018). In the

reinforcement learning domain, the options framework (Stolle

and Precup, 2002; Kulkarni et al., 2016; Andreas et al., 2017),

and hierarchical reinforcement learning (Dietterich, 2000) are

common approaches for organizing hierarchies of policies. The

techniques in reinforcement learning are often predicated on

being able to interact with an environment and collect a lot

of data. In this work, we focus on learning hierarchical task

decomposition strategies from a limited set of demonstrations.

3.1. Task sketch for sub-policy discovery

Some related approaches (Andreas et al., 2017; Mu et al.,

2019) perform demonstration decomposition by combining

both demonstrations and task sketches. The literature refers to

these approaches as weakly-supervised because the order of tasks

is given and the exact transition points within a demonstration

must be inferred.

Let D be our dataset containing trajectories ρ =

[(s0, a0), (s1, a1), . . . , (sT , aT)] of length T containing state-

action tuples (s, a) for state s and action a. Given a library of

sub-tasks policies B = (π1,π2, . . . ,πK ), A task sketch τ =

(τ1, τ2, . . . , τL) is a sequence of sub-tasks labels where L is the

length of the sketch. A path is a sequence of sub-task labels

ζ = (ζ1, ζ2, . . . , ζT) where T is the length of a demonstration.

We assume that L << T. We say that a path ζ matches a task

sketch τ if τ = ζ after removing all adjacent duplicate sub-tasks

in ζ . For example, the path (π2,π2,π2,π3,π3,π1,π1,π1,π1)

matches the task sketch (π2,π3,π1).

4. Methods

In this section, we describe the approaches most closely

aligned with our work referred to as CTC (Graves et al., 2006)

and TACO (Shiarlis et al., 2018). Then, we introduce our

approach called Primitive Imitation for Control (PICO).

4.1. Connectionist temporal classification

Given a datasetD and task sketch τ , one approach to obtain

a set of generalizable sub-tasksB is to separately learn alignment

of trajectories to the task sketch then learn the control policies

for sub-tasks with behavior cloning. Connectionist Temporal

Classification (CTC) (Graves et al., 2006) addresses the problem

of aligning sequences of dissimilar lengths. There are potentially

multiple ways in which a path could be aligned to a task sketch.

Let Z(T,τ ) be the set of all paths of length T that match the task

sketch τ . The CTC objective maximizes the probability of the

task sketch τ given the input trajectory ρ:

θ∗ = argmax
θ

E(ρ,τ )[pθ (τ |ρ)] (2)

θ∗ = argmax
θ

E(ρ,τ )[
∑

ζ∈Z(T,τ )

T∏

t=1

pθ (ζt , |ρt)] (3)
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pθ (ζt , |ρ) is commonly represented as a neural network with

parameters θ that outputs the probability of each sub-task

policy in B. The objective is solved efficiently using dynamic

programming. Inference using the neural network model is used

to find a maximum likelihood path ζ for a trajectory ρ. The

labels in ζ provide an association between state-action tuples

(st , at) and subtask policies π ∈ B. The state-action policies

associated with a single sub-task are used to create a sub-task

policy using behavior cloning.

4.2. Temporal alignment for control

Given a demonstration ρ and a task sketch τ , Temporal

Alignment for Control (TACO) (Shiarlis et al., 2018) will learn

where each subtask begins and ends in the trajectory and

simultaneously trains a library of sub-tasks policies B. TACO

maximizes the joint log likelihood of the task sequence τ and the

actions from sub-task policies contained inB conditioned on the

states. Let aρ and sρ be the set of actions and states, respectively

in trajectory ρ.

p(τ , aρ |sρ ) =
∑

ζ∈Z(T,τ )

p(ζ |sρ )

T∏

t=1

πζt (at|st) (4)

where p(ζ |sρ ) is the product of action probabilities associated

with any given path ζ . The path ζ determines which data within

ρ corresponds to each sub-task policy π and
∏T

t=1 πζt (at|st) is

the behavior cloning objective from Equation (1).

4.3. Primitive imitation for control (PICO)

In this work, we introduce Primitive Imitation for Control

(PICO). The approach differs from previous work in a few

important ways. PICO similarly decomposes behavior primitives

from demonstration. It optimizes the action conditioned on

state and does not require a task sketch, and unlike CTC

(Graves et al., 2006), our approach simultaneously learns

to segment demonstrations and trains underlying behavior

primitive models.

We aim to reconstruct the given trajectories as well as

possible using the existing sub-task policy library. As shown in

Equation (5), we seek to minimize the sum of squared error

between the observed action and the predicted action for all

actions over all timepoints T and all trajectories ρ ∈ D. We

refer to this objective as minimizing reconstruction error. Let

(sρt , aρt ) be the state-action tuple corresponding to ρt timepoint

t in trajectory ρ. The action prediction, Equation (6), is the

product of the probability p(π |sρt ) of a sub-task policy π

conditioned on the state sρt and the action predicted by policy

π(sρt ) for the state sρt . Substituting Equation (6) into Equation

(5) results in Equation (7) which is the optimization problem for

PICO.

min
∑

ρ∈D

T∑

t=0

(aρt − âρt )
2 (5)

âρt =
∑

π∈B

p(π |sρt )π(sρt ) (6)

min
∑

ρ∈D

T∑

t=0

[aρt −
∑

π∈B

p(π |sρt )π(sρt )]
2 (7)

4.4. Neural network architecture

Estimates of both p(π |sρt ) and π(sρt ) are given by

a recurrent neural network architecture. Figure 4 gives an

overview of the recurrent and hierarchical network architecture.

We solve for the objective in Equation (7) directly by back

propagation through a recurrent neural network with Equation

(5) as the loss function. The model architecture is composed

of two branches that are recombined to compute the action

prediction at each timepoint.

To more easily compare with other approaches that do not

blend sub-task policies, we estimate the maximum likelihood

sub-task policy label at each timepoint. We refer to sub-task

policies as behavior primitives. The behavior primitive label

prediction is given by the maximum likelihood estimate of π

shown in Equation (8) for time t in trajectory ρ.

argmax
π∈B

p(π |ρt) (8)

Figure 3 illustrates how we compute the predicted action ât

at time t. In the figure, the probability of π given state sρt is

λπ = p(π |sρt ) for π ∈ B. The latent representation ht at the

current timepoint t is a function of both the value of the latent

representation of the previous state ht−1 and the current state st .

Figure 4 details the architecture used for PICO based on

the Husky+UR5 dataset example. Unless otherwise specified,

the fully connected (FC) layers have ReLU activations, except

for the output layers from behavior primitive models. The last

layer of behavior primitive models have linear activations to

support diverse action predictions. While not shown in Figure 4,

the network architecture also returns the predicted latent

embedding and behavior primitive distribution for additional

visualization and analysis.
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FIGURE 3

Hierarchical recurrent deep network architecture for task decomposition, novel behavior primitive discovery, and behavior blending.

FIGURE 4

Neural network architecture for PICO. Given a set of input trajectories and a behavior primitive library, the core architecture follows two

branches, the left most branch estimates a distribution over the behavior primitives. The right hand branch estimates the action prediction from

each primitive behavior sub-model. We compute the predicted action as a linear combination between the behavior primitive distribution and

the set of predicted actions from all behavior primitives.
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4.5. Discovering and training new
behavior primitives

An important aspect of our approach is the ability to

discover and create new behavior primitives from a set of

trajectories and a partial behavior primitive library. PICO detects

and trains new behavior primitive models simultaneously.

As shown in Figure 3, PICO supports building new behavior

primitive models by adding additional randomly initialized

behavior models to the library prior to training. For our

experiments, we assume that we know the correct number of

missing primitives.

We define a gap in a trajectory as region within a

demonstration where actions are not predicted with high

probability using the existing behavior primitive models. A

gap in a trajectory implies that the current library of behavior

primitives is insufficient to describe a set of state-action tuples

ρ in some part of the given trajectory. This also implies that

the probability p(π |ρt) that the data ρt for time point t was

generated by the current library of behavior primitive models is

low for all π ∈ B. These low probabilities increase the likelihood

that an additional randomly initialized behavior primitive policy

πnew might have a higher probability p(πnew|ρt) > p(π |ρt) for

π ∈ B. The data ρt is then used to train πnew. For nearby

data in the same gap region ρt+1, it is now more likely that

p(πnew|ρt+1) > p(π |ρt+1) for π ∈ B. This mechanism allows

πnew to develop in to a new behavior primitive that is not

well-covered by existing primitives.

4.6. Training details

PICO is trained end-to-end by back propagation. This is

possible because all functions in themodel are differentiable with

the exception the argmax function. For experiments making

use of pretrained behavior primitive models, the contents of the

behavior primitive library are trained using the DART (Laskey

et al., 2017) technique for imitation learning.

As shown in Equation (5), the loss used to train the model is

mean squared error between the predicted and observed actions

over all timepoints and all demonstrations. There is no loss

term for label prediction accuracy, because we assume that the

demonstrations are unlabeled.

4.7. Metrics

Two metrics are computed to estimate performance. First,

we evaluate mean squared error (MSE) as shown in Equation

(5) between the predicted and given action. Second, we compute

behavior primitive label accuracy which is a comparison between

the predicted and given behavior primitive label. Label accuracy

is computed as the number of matching labels divided by the

TABLE 1 Method comparisons using the Husky UR5 Reach and Grasp

dataset.

Husky UR5 Label accuracy (%) MSE action prediction

PICO 96 0.053

TACO (MLP) 74 3.59

TACO (RNN) 73 3.75

CTC (MLP) 25 4.20

CTC (RNN) 33 2.68

The bold values indicate the highest scores observed in each category.

total number of comparisons. Both metrics are computed over

all timepoints and over all demonstrations in the test set.

4.8. Baseline implementations

Shiarlis et al. (2018) developed TACO, which aligned

subtasks to demonstrations given a library of primitives and

a task sketch, where a task sketch describes the sequence in

which subtasks will appear. In addition, in their recent work

(Shiarlis et al., 2018), they extended the connectionist temporal

classification (CTC) algorithm (Graves et al., 2006), commonly

used to align sequences for speech recognition, for use with

identifying subtasks. For this work, we use TACO and the

extended version of CTC as baseline comparisons for our

algorithm, using an open source implementation1. Both were

tested using MLP and RNN architectures.

5. Experiments and discussion

We evaluate PICO using a reach-grab-lift task using

a Husky+UR5 environment. The dataset consists of 100

demonstrations of a Clearpath Husky robot with a UR5

manipulator performing a variety of reach, grasp, and lift tasks

(see Figure 1). The number of time steps in the demonstrations

varied from 1,000 to 1,800, but each used all three primitives:

reach, grasp, and lift.

The first experiment quantifies the ability of PICO to identify

primitive task labels from demonstration independently from

learning behavior primitives. The second experiment evaluates

the ability of PICO to identify parts of demonstrations that are

not represented by existing behavior primitives and rebuild the

missing behavior primitive.

1 https://github.com/KyriacosShiarli/taco
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FIGURE 5

Example behavior primitive label accuracy for a single test demonstration. We compared the label predictions given by PICO (red) to the ground

truth (blue). (A) A sample reconstruction for a single trajectory with an existing behavior primitive library. Timepoints are on the x-axis. and

behavior primitive label is on they y-axis. The labels 0, 1, and 2 correspond to reach, grasp, and lift, respectively. (B) Reconstruction of an

example trajectory and discovery of a missing behavior primitive (grasp).

FIGURE 6

Accuracy of PICO to correctly identify a primitive’s label on the validation set (20 randomly selected trajectories). (A) The leftmost bar shows

performance when all primitives are in the library, successive bars denote accuracy when the reach, grasp, and lift primitives are dropped out

and learned from a randomly generated “gap” primitive. Error bars represent the standard deviation across five validation trials. (B) Mean squared

error between the ground truth action and the learned model’s estimate averaged across 20 randomly selected test trajectories five times.

5.1. Reconstruction from existing
primitives

Our initial experiment is an ablation study that separately

evaluates the estimate of the primitive behavior probability

distribution and the action predictions from learning

behavior primitives. We train and freeze behavior primitive

models for reach, grasp, and lift using the ground truth

labeled data from trajectories. We evaluated PICO, TACO

(Shiarlis et al., 2018), and CTC based on label classification

accuracy. For Taco and CTC we additionally compared

the methods using MLP and RNN based underlying

network models. We evaluated all methods based on

an 80/20 split of demonstrations into training and test

sets. The average of five independent runs were obtained

for each approach. In Table 1, we show the results of the

comparison.

Figure 5A shows a comparisons between the predicted

label based on Equation (8) and the ground truth label. Over

all trajectories in the test set, the average label classification

accuracy was 96% compared to the ground truth label. The

summary of results are shown in Table 1.
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FIGURE 7

The organization of the learned latent space associated with the

Husky-UR5 dataset for reach, grasp, and lift (red, green, and

purple, respectively).

FIGURE 8

The joint-domain dial scenario. A Jaco manipulator modeled in

Mujoco presses a sequences of four keys on a dialpad. The

positions of the keys are randomly shu	ed for each

demonstration. The positions of the joints and positions of the

keys are given as state information.

5.2. Behavior primitive discovery

In our next experiment, we evaluate the ability of PICO

to recognize and build a missing behavior primitive model.

We ran a leave-one-behavior-out experiment where one of the

three primitives (i.e., reach, grasp, lift) was replaced with a

randomly-initialized behavior primitive. This experiment used

the same 100 trajectories on the Husky+UR5 dataset discussed

in the previous section and a 80/20 split between training and

validation sets. Again, five trials were run with the training and

validation sets randomly chosen. The label accuracy and action

prediction MSE are shown in Figure 6. The leftmost bar shows

the results with all primitives pre-trained with behavior cloning.

TABLE 2 Method comparisons using the Jaco Pinpad dataset.

Jaco Pinpad Label accuracy MSE action prediction

PICO 65% 0.0061

TACO (MLP) 47% 0.55

TACO (RNN) * *

CTC (MLP) 31% 0.57

CTC (RNN) 29% 0.58

*TACO (RNN) resulted in NaN loss after repeated attempts.

The bold values indicate the highest scores observed in each category.

The remaining bars show the accuracy when reach, grasp, and

lift, respectively, were replaced with the gap primitive. Note,

the gap primitive was updated throughout the training with

back-propagation such that the final primitive ideally would

perform as well as the original pre-trained, behavior-cloned

version; this comparison is shown with the action prediction

MSE. The error bars show the standard deviation across the

five trials. While the label accuracy across all three replaced

primitives is approximately the same, the action prediction for

the lift primitive is significantly worse. We believe this is due to

the larger variance in lift trajectories. Unlike the reach and grasp

which have restrictions placed on their final target position (it

needs to be near the block), the final position of lift is randomly

placed above the block’s starting position.

As shown in the sample trajectory in Figure 5B, the label

prediction of the trained model closely aligns with the ground

truth label from the example trajectory. Over all of the test

trajectories, the average label classification accuracy was 96%.

5.3. Visualizing the learned latent space

To better understand the role of the embedding space for

predicting the primitive probability distribution, we visualized

the embedding of all states vectors from the test set in the

recurrent hidden layer. We would expect that a useful latent

embedding would naturally cluster states that correspond to

different primitives into distinct locations in the embedding

space. Figure 7 shows layout of the latent space in two

dimensions. Each point corresponds to a state vector from the

test dataset. The points are colored by the ground truth label.

5.4. Jaco dial domain dataset

We also make use of the Jaco dial domain dataset (Shiarlis

et al., 2018) illustrated in Figure 8. The dial dataset is composed

of demonstrations from a Jaco manipulator pressing four keys in

sequence (e.g., 3, 5, 4, 5). The positions of the keys are randomly

shuffled for each demonstration, but the position of each key is
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given in the state vector. Repetitive use of primitives are allowed

in the demonstrations. The intention with this dataset is to treat

pressing an individual digit as a behavior primitive. For this

dataset, label prediction accuracy is a challenging metric without

a task sketch because the starting position of the Jaco may not

provide clues about which buttonwill be pressed. As the Jaco gets

closer to a button, it becomes more clear which button will be

pressed. The dataset of dialpad demonstrations were generated

using default parameters and code from TACO (Shiarlis et al.,

2018).

5.5. Dial domain comparison

The goal of this comparison is to evaluate the label

prediction accuracy of themetacontroller in PICO. To isolate the

label predictions of the metacontroller, the behavior primitive

library is pretrained on the training dataset including 1,200

demonstrations and frozen. Label classification and action

prediction accuracy is then evaluated on the test set including

280 demonstrations.

The average results of five runs are shown for TACO and

CTC. We evaluate each approach using the same label accuracy

and action prediction metrics. The summary of results are

shown in Table 2. We found that our approach achieves the

highest label accuracy at 65%. The overall label accuracy of

PICO on the dial dataset is lower than the Husky+UR5 dataset.

Additional analysis revealed that many of the mislabeling

occurred at the beginning of a new key press where context about

where the Jaco is moving next is weakest. The dataset is also

more challenging than the Husky dataset because the number

of unique behavior primitives has increased from 3 to 10.

Also of note, we compare our results to TACO which is

a weakly supervised approach. TACO is given the ordering

of tasks. For task sequences of length 4, this means that a

random baseline would be expected to achieve an accuracy

of 25%. For an unlabeled approach like PICO, any of the 10

behavior primitives could be selected at each timepoint. With

only unlabeled trajectories, the expected accuracy of a random

baseline would be 10%.

In both the reach and grasp and pinpad domain, we observed

large performance gains in our approach over both TACO and

CTC. Both and TACO align actions to behaviors and train

new behaviors in a single end-to-end model. In contrast, CTC

optimizes the alignment of actions to behavior labels separately

from training new primitive behaviors. Shiarlis et al. (2018) point

out that the joint optimization results in superior performance

of TACO over CTC. We can partially attribute the superior

performance of our approach over CTC to the use of an end-

to-end model and joint optimization.

We also observed superior performance of our approach

over TACO (Shiarlis et al., 2018). The key difference between

our approach and TACO is that our approach uses soft attention

over behavior primitives to learn a behavior blending strategy. In

contrast, TACO makes use of hard attention over behaviors for

action prediction. Consequently, our approach effectively makes

use of more parameters for each action prediction increasing

the expressive power of our approach relative to TACO with a

similar network size.

Several interesting open challenges remain. The

introduction of methods that can accommodate any number

of behaviors without reshaping the core network would be a

valuable next step. Also, new representations are needed that

can accommodate behaviors primitives with high variance.

6. Conclusion

In this paper, we describe PICO, an approach to learn

behavior primitives from unlabeled demonstrations and a partial

set of behavior primitives. We optimize a metric that directly

minimizes reconstruction error for a set of demonstrations

using sequences of behavior primitives.We directly compare our

results to similar approaches using demonstrations generated

from simulations of two different robotic platforms and achieve

both better label accuracy and reconstruction accuracy as

measured by action prediction mean squared error.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary materials, further

inquiries can be directed to the corresponding author/s.

Author contributions

CR, KP, and CA carried out the experiments. All authors

reviewed the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932652
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932652

References

Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., and Allen, P. (2017). “Task
level hierarchical system for BCI-enabled shared autonomy,” in 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids) (Birmingham),
219–225. doi: 10.1109/HUMANOIDS.2017.8246878

Andreas, J., Klein, D., and Levine, S. (2017). “Modular multitask reinforcement
learning with policy sketches,” in Proceedings of the 34th International Conference
on Machine Learning, Vol. 70 (Sydney, NSW), 166–175.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul,
T., et al. (2016). Learning to learn by gradient descent by gradient descent.
arXiv [Preprint]. arXiv: 1606.04474. Available online at: https://arxiv.org/pdf/1606.
04474.pdf

Argall, B., Chernova, S., Veloso, M., and Browning, B. (2009). A survey
of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483.
doi: 10.1016/j.robot.2008.10.024

Bengio, Y., Bengio, S., and Cloutier, J. (2002). “Learning a synaptic learning rule,”
in IJCNN-91-Seattle International Joint Conference on Neural Networks (Seattle,
WA).

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq
value function decomposition. J. Artif. Intell. Res. 13, 227–303. doi: 10.1613/jair.639

Duan, Y., Andrychowicz, M., Stadie, B., Ho, J., Schneider, J., Sutskever, I.,
et al. (2017). “One-shot imitation learning,” in Advances in Neural Information
Processing Systems (Long Beach, CA), 1087–1098.

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th International
Conference on Machine Learning, Vol. 70 (Sydney, NSW), 1126–1135.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006).
“Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd International Conference
on Machine Learning (Pittsburgh, PA), 369–376. doi: 10.1145/1143844.11
43891

Husky (2019). Available online at: www.clearpathrobotics.com/husky-unmanne
d-ground-vehicle-robot/ (accessed September 10, 2019).

Hussein, A., Gaber, M., Elyan, E., and Jayne, C. (2017). Imitation
learning: a survey of learning methods. ACM Comput. Surv. 50, 21:1–21:35.
doi: 10.1145/3054912

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991).
Adaptive mixtures of local experts. Neural Comput. 3, 79–87. doi: 10.1162/neco.19
91.3.1.79

Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez, A., Grefenstette,
E., et al. (2019). “CompILE: compositional imitation learning and execution,”
in Proceedings of the 36th International Conference on Machine Learning,
Vol. 97 of Proceedings of Machine Learning Research (Long Beach, CA),
3418–3428.

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A. (2012). Robot learning
from demonstration by constructing skill trees. Int. J. Robot. Res. 31, 360–375.
doi: 10.1177/0278364911428653

Kulkarni, T., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016).
“Hierarchical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation,” in Advances in Neural Information Processing Systems
(Barcelona), 3675–3683.

Laskey, M., Lee, J., Fox, R., Dragan, A. and Goldberg, K. (2017). “Dart:
Noise injection for robust imitation learning,” in Conference on Robot Learning
(Mountain View, CA: PMLR), 143–156.

Mu, T., Goel, K., and Brunskill, E. (2019). “Plots: procedure learning
from observations using subtask structure,” in Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems
(Montreal: International Foundation for Autonomous Agents and Multiagent
Systems), 1007–1015.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J.,
Pascanu, R., et al. (2015. Policy distillation. arXiv [Preprint]. arXiv: 1511.06295.
Available online at: https://arxiv.org/pdf/1511.06295.pdf

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016).
One-shot learning with memory-augmented neural networks. arXiv:1605.06065.
doi: 10.48550/arXiv.1605.06065

Schaal, S., and Atkeson, C. (2010). Learning control in robotics. IEEE Robot.
Autom. Mag. 17, 20–29. doi: 10.1109/MRA.2010.936957

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., et al.
(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv [Preprint]. arXiv: 1701.06538. Available online at: https://arxiv.org/pdf/
1701.06538.pdf

Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., and Posner, I. (2018). “Taco:
learning task decomposition via temporal alignment for control,” in International
Conference on Machine Learning (Stockholm).

Stolle, M., and Precup, D. (2002). “Learning options in reinforcement learning,”
in Abstraction, Reformulation, and Approximation, eds S. Koenig andR. C. Holte
(Berlin; Heidelberg: Springer), 212–223. doi: 10.1007/3-540-45622-8_16

Universal Robots (2019). Available online at: www.universal-robots.com
(accessed September 10, 2019).

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., et al. (2018).
“Neural task programming: learning to generalize across hierarchical tasks,”
in IEEE International Conference on Robotics and Automation (Brisbane), 1–8
doi: 10.1109/ICRA.2018.8460689

Zhao, J., Li, W., Mao, X., Hu, H., Niu, L., and Chen, G. (2017). Behavior-
based ssvep hierarchical architecture for telepresence control of humanoid robot
to achieve full-body movement. IEEE Trans. Cogn. Dev. Syst. 9, 197–209.
doi: 10.1109/TCDS.2016.2541162

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932652
https://doi.org/10.1109/HUMANOIDS.2017.8246878
https://arxiv.org/pdf/1606.04474.pdf
https://arxiv.org/pdf/1606.04474.pdf
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1613/jair.639
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/3054912
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1177/0278364911428653
https://arxiv.org/pdf/1511.06295.pdf
https://doi.org/10.48550/arXiv.1605.06065
https://doi.org/10.1109/MRA.2010.936957
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://doi.org/10.1007/3-540-45622-8_16
www.universal-robots.com
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1109/TCDS.2016.2541162
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Learning generalizable behaviors from demonstration
	1. Introduction
	2. Preliminaries
	2.1. Model agnostic meta-learning

	3. Related work
	3.1. Task sketch for sub-policy discovery

	4. Methods
	4.1. Connectionist temporal classification
	4.2. Temporal alignment for control
	4.3. Primitive imitation for control (PICO)
	4.4. Neural network architecture
	4.5. Discovering and training new behavior primitives
	4.6. Training details
	4.7. Metrics
	4.8. Baseline implementations

	5. Experiments and discussion
	5.1. Reconstruction from existing primitives
	5.2. Behavior primitive discovery
	5.3. Visualizing the learned latent space
	5.4. Jaco dial domain dataset
	5.5. Dial domain comparison

	6. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


