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As opposed to macro-expressions, micro-expressions are subtle and not easily

detectable emotional expressions, often containing rich information about mental

activities. The practical recognition of micro-expressions is essential in interrogation

and healthcare. Neural networks are currently one of the most common approaches

to micro-expression recognition. Still, neural networks often increase their complexity

when improving accuracy, and overly large neural networks require extremely high

hardware requirements for running equipment. In recent years, vision transformers

based on self-attentive mechanisms have achieved accuracy in image recognition and

classification that is no less than that of neural networks. Still, the drawback is that without

the image-specific biases inherent to neural networks, the cost of improving accuracy is

an exponential increase in the number of parameters. This approach describes training a

facial expression feature extractor by transfer learning and then fine-tuning and optimizing

the MobileViT model to perform the micro-expression recognition task. First, the CASME

II, SAMM, and SMIC datasets are combined into a compound dataset, and macro-

expression samples are extracted from the three macro-expression datasets. Each

macro-expression sample and micro-expression sample are pre-processed identically

to make them similar. Second, the macro-expression samples were used to train the

MobileNetV2 block in MobileViT as a facial expression feature extractor and to save

the weights when the accuracy was highest. Finally, some of the hyperparameters

of the MobileViT model are determined by grid search and then fed into the micro-

expression samples for training. The samples are classified using an SVM classifier. In

the experiments, the proposed method obtained an accuracy of 84.27%, and the time

to process individual samples was only 35.4ms. Comparative experiments show that

the proposed method is comparable to state-of-the-art methods in terms of accuracy

while improving recognition efficiency.

Keywords: computer vision, deep learning, convolutional neural network, vision transformer, micro-expression

recognition
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INTRODUCTION

In everyday social communication, facial expressions provide
a wealth of emotional information. Typically, facial macro-
expressions last about 4–5 s and are easily perceived by humans.
On the other hand, micro-expressions are rapid involuntary
facial movements that reveal a person’s true feelings. Facial
micro-expression recognition has many applications and has
been an active research area in recent years. Accurate micro-
expression recognition is complicated due to their subtlety and
transient nature. Humans can detect micro-expressions if a video
with many frames is played in slow motion (Ekman, 2009).

However, the accuracy of trained humans in recognizing micro-
expressions in real-life scenarios is only 47% (Frank et al.,
2009). Micro-expression recognition technology has received
more attention due to its wide application in various fields, such

as police interrogation, clinical diagnosis, depression analysis, lie
detection, business negotiation, and teaching aid.

With the development of machine learning and deep learning,

as well as the proposal of benchmark datasets [e.g., SMIC
(Li et al., 2013), CASME II (Yan et al., 2014), and SAMM
(Davison et al., 2016)], research on micro-expression recognition
has increased in recent years, and the methods used have
gradually shifted from the initial manual extraction of features
to deep learning to extract features for learning and training
automatically. For example, in the early days of research, some
researchers attempted to extract subtle changes in facial skin
texture in micro-expressions using local binary patterns on
three orthogonal planes (LBP-TOP) (Pfister et al., 2011; Davison
et al., 2014) that better describe the dynamic texture and
improved methods based on them (e.g., Ruiz-Hernandez and
Pietikäinen, 2013; Wang et al., 2014; Huang et al., 2015, 2017).
Another group of researchers sought to extract features of facial
light changes when subjects made micro-expressions, such as
directional mean optical flow (MDMO) (Liu et al., 2015), bi-
weighted directional optical flow (Bi-WOOF) (Liong et al., 2018),
and fuzzy optical flow directional histogram (FHOFO) (Happy
and Routray, 2017). After extracting the features, the samples
are classified by constructing classifiers. The more commonly
used ones are support vector machines (Pfister et al., 2011;
Huang et al., 2015; Liong et al., 2018) and random forest (Pfister
et al., 2011; Davison et al., 2014). These methods improve the
recognition of micro-expressions to a certain extent but still have
difficulty in capturing too subtle facial changes. On the other
hand, deep learning methods can automatically and efficiently
extract features that are not easily detected and have become one
of the mainstreammethods for extracting features in recent years
(Wang et al., 2018; Wu et al., 2020; Xia et al., 2020a). Therefore,
deep learning methods are also used in micro-expression
recognition for efficient feature extraction and classification
capabilities. Examples range from pre-trained CNNs [e.g., OFF-
ApexNet (Gan et al., 2019) and TSCNN (Song et al., 2019)] to
combining CNNs with long- and short-term memory (Wang
et al., 2018). After achieving high accuracy on single datasets,
researchers have used cross-datasets and composite datasets
on micro-expression recognition. The application scenarios for
micro-expressions align with the cross-datasets and composite

datasets. Therefore, the composite datasets were also used for
the MEGC2019 dataset. However, the increase in accuracy is
accompanied by an increase in the complexity of the network
model. Fast and efficient processing is essential in specific
scenarios, such as embedded systems for car driver monitoring
or teaching aids for student comprehension recognition. These
advantages often come at the cost of limited hardware resources.
Therefore, in recent years, researchers have proposed lightweight
convolutional neural networks such as ShuffleNetV2 (Ma et al.,
2018) and MobileNetV3 (Howard et al., 2019) to improve
efficiency, reduce the cost of hardware resources, and achieve
better accuracy in micro-expression recognition (Xu et al.,
2021). By contrast, attention-based models, particularly visual
transforms (ViTs) (Dosovitskiy et al., 2020), are an alternative
to convolutional neural networks (CNNs) for learning visual
features. Briefly, the original ViT divides an image into a string of
consecutive non-overlapping image blocks and then uses multi-
headed self-attention in the transformer (Vaswani et al., 2017) to
learn features between blocks in the image phase. The trend in
this type of model is to increase the number of parameters in the
ViT network to improve accuracy while introducing the problem
of increased latency. By contrast, many realistic computer vision
tasks, such as object detection and facial recognition, mostly need
to be run on the fly on devices with limited hardware resources.
To improve efficiency, the ViT model for such computer vision
tasks should be lightweight, but its performance is much worse
than the equally lightweight CNN.Moreover, the ViTmodel lacks
the inductive bias characteristic of CNN models, which consider
information to be spatially local, and therefore does not have the
ability to extract and analyze global information that they have.

In order to make the micro-expression recognition model
have the advantages of both the lightweight CNN and ViT, this
study chooses MobileViT (Mehta and Rastegari, 2021) proposed
by Apple as the model, which combines the lightweight CNN
model MobileNetV2 with ViT so that the model as a whole
has the characteristics of both, and the model consists of two
parts: the MobileNetV2 block and the MobileViT block. In order
to address the insufficient number of samples in the micro-
expression dataset, the macro-expression migration learning
method is used to avoid the inadequate feature extraction ability
of the model, as well as the overfitting problem. At the same
time, we used the random spatial transformation method to
balance the number of samples of different emotion categories
when dealing with the problem of the unbalanced number of
emotion samples. In the pre-processing part of the dataset, we
applied the same treatment to macro- and micro-expressions
to make them as similar as possible, including taking out the
vertex frames of each expression sample, extracting the facial
regions, and cropping them to a fixed size after grayscale
processing. Finally, due to the slight differences between the
micro-expression samples, a support vector machine, which is
more capable of discovering the maximum differences between
samples, is used to classify the samples.

Our main contributions are summarized as follows:
The MobileNetV2 block in the MobileViT model is trained

as a facial expression feature extractor through migration
learning of macro-expressions, which can effectively improve

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 922761

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Lightweight ViT Model

the recognition accuracy and robustness in micro-expression
recognition training.

In view of the insufficient number of samples in the micro-
expression dataset and the unbalanced number of emotion
categories, the data augmentation method is adopted to balance
the samples and add L2 regularization to the convolutional
and fully connected layers in the MobileViT model to
avoid overfitting.

A grid search is introduced to allow some hyperparameters to
be set to the most appropriate values before formal training.

The proposed method is comparable to the state-
of-the-art MER method through a large number of
comparative experiments.

The rest of the article is organized as follows: Section Related
Work is a summary review of relevant research in recent years.
Section Micro-Expression Recognition Model Design explains
the proposed model and preparatory work. Section Experiments
provides experimental results and performance evaluation.
Finally, Section Conclusion and Future Work concludes the
article with conclusions and future work.

RELATED WORK

This section summarizes the more popular deep learning
methods for recognizing micro-expressions today and some
research on the application of ViT in image classification.

In recent years, many researchers have considered deep
learning as one of the effective methods for learning visual
features. Neural network methods in deep learning have been
widely used in image processing, video analysis, and speech
recognition. In the absence of manual feature extraction, end-
to-end neural network models are able to perform classification
and prediction by learning numerous high-dimensional features
and datasets with insufficient amounts of data. The convolutional
neural network, one of the most widely used deep learning
methods, is currently the leading approach in many image-
related fields, such as large-scale object recognition (Guo et al.,
2016) and face recognition (Schroff et al., 2015). In the past
few years, CNNs have been heavily modified in terms of the
increasing number of layers and block design, with famous
successors such as AlexNet (Krizhevsky et al., 2012), VGGNet
(Simonyan and Zisserman, 2014), and GoogLeNet (Szegedy et al.,
2015). Despite the different network structures, deep learning
models all benefit from the ability to learn high-dimensional
representations from large datasets.

Recently, several studies applying deep learning for micro-
expression recognition have emerged. Researchers used CNNs
to extract features from micro-expression videos and further
applied classifiers such as SVM to obtain classification results.
Subsequently, Peng et al. (2017) designed the first end-
to-end medium-scale neural network, called dual time-scale
convolutional neural network (DTSCNN), for micro-expression
recognition. The DTSCNN has two temporal channels and is
designed for data with different temporal properties, for example,
the cameras used for data collection have different frame rates.
Each channel has only four convolutional layers and four pooling

layers in order to avoid overfitting. The achieved recognition
rate is about 10% higher than some previous state-of-the-
art methods. Recently, Khor et al. (2018) proposed to train
a network with convolutional and recursive layers for micro-
expression recognition. Instead of using data enhancement on
the dataset, they extracted optical flow features to enrich the
input for each time step or specific time length. However,
they did not achieve competitive results due to the occurrence
of overfitting cases caused by using deep networks on small
datasets. Moreover, for the nature of micro-expressions with a
duration of <1/2 s, training the network on complete video clips
may not be appropriate. Since the sample size of the micro-
expression dataset is still very small, it cannot be adequately
trained using deep convolutional neural networks, and the
training cost is high, which is difficult for ordinary computer
hardware resources to meet the training requirements. Xia et al.
(2020b) analyzed the composite dataset, suggesting that a low-
resolution and shallow network model would help improve the
accuracy of the model trained on the composite dataset and
proposed a recurrent convolutional network with a partially
parameter-free module to validate their argument, showing that
the proposed method outperforms state-of-the-art approaches.
Another study by this author (Xia et al., 2018) proposed an
end-to-end framework consisting of recursive convolutional
networks (RCNNs) to recognize micro-expressions. The RCNN
was used to learn subtly changing features and to recognize
micro-expressions. Song et al. (2019) proposed a three-stream
convolutional neural network (TSCNN) for micro-expression
recognition and designed a module with dynamic temporal flow,
static spatial flow, and local spatial flow for the TSCNN to
learn and integrate temporal, whole face region, and local face
region cues in micro-expression videos, respectively, for micro-
expression recognition. The results are also compared to those
of state-of-the-art approaches in many studies. Temporal jitter
was used to enrich the training samples to facilitate the learning
process, and the effectiveness of the method was validated on
three spontaneous micro-expression datasets. Therefore, another
researcher later used lightweight convolutional neural networks
to solve the micro-expression recognition problem and achieved
better results. For example, Belaiche et al. (2020) performed
two ways of optimization based on ResNet18 to reduce the
depth of the network by reducing the residual layers and using
more compact optical flow features as input. Their proposed
network rivals the accuracy of the state-of-the-art methods at that
time while significantly reducing the necessary memory space.
Xu et al. (2021) performed the micro-expression recognition
task based on optical flow features and using a modified
MobileNetV2, which improved the training efficiency but did not
outperform the more complex deep neural network models in
terms of accuracy.

In the field of computer vision, to find the region of interest
(ROI) in an image and highlight the performance at that location,
some researchers have introduced the self-attention mechanism
widely used in natural language processing. Formicro-expression
recognition, this mechanism can help the network focus on
the crucial feature regions of the face and reduce the negative
influence of irrelevant facial areas and backgrounds. The ViT
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introduced by Dosovitskiy et al. (2020) directly inherited the
architecture of natural language processing, based on multi-
headed self-attentiveness, and applied to raw image patches
for classification. However, they concluded that ViT struggles
to generalize when the amount of data is insufficient. The
convolution-free visual transformer DeiT proposed by Touvron
et al. (2021) achieved amaximumof 83.1% on ImageNet accuracy
and introduced a data-efficient training procedure that reduces
the amount of data required for training. Even so, ViT struggles
to achieve high accuracy rates at lightweight.

MICRO-EXPRESSION RECOGNITION
MODEL DESIGN

Each part included in the model is described in detail in
this section. The model consists of three main parts: pre-
processing of macro- and micro-expressions, transfer learning of
macro-expressions, and theMobileViTmodel. In pre-processing,
to achieve better results in transfer learning, we used the
same pre-processing approach for macro-expression and micro-
expression samples. Their differences are minor after pre-
processing. To solve the problem of the insufficient number
of micro-expression samples, a composite dataset similar to
MEGC2019 was used. Using transfer learning, the overfitting
problem that tends to occur on small- andmedium-sized datasets
can be avoided to a certain extent. Through transfer learning,
part of the convolutional layer of MobileViT can be trained as an
extractor of facial expression features. Subsequent training will
be effective in extracting subtle facial features. The MobileViT
model has been partially adapted and improved for the micro-
expression recognition task by adding L2 regularization to the
convolutional and fully connected layers to avoid overfitting
during training. Unlike micro-expressions, which have minimal
variation between samples, the SVM classifier was chosen to find
differences between samples. The flow chart of the recognition
model is shown in Figure 1.

Pre-processing
Usually, in image classification tasks, a pre-processing step is
essential. Since datasets are produced with different sampling
equipment and laboratory conditions, this will lead to differences
in image resolution, brightness, and other metrics. When
drawing samples from the macro-expression dataset, we need to
pay attention to whether their backgrounds are close to those
of micro-expression samples to avoid using noise as one of
the features in migration learning. In this study, the original
image sequence provided by the dataset is selected for pre-
processing. The training cost can be significantly reduced by
pre-processing, such as color processing and cropping size steps.
In this study, the complete micro-expression image sequence is
a continuous image including the start frame, apex frame, and
the end frame, where the vertex frame is the image of the most
prominent moment of micro-expression, so the vertex frame
of each expression sample is first taken out and converted to
grayscale image in the pre-processing step. Since the images
are processed to learn features, rather than manipulating the
images themselves, the color information is not essential in

micro-expression recognition. After that, the facial region is first
extracted using OpenCV and Dlib toolkit and modified in size
to 256 × 256 pixels and marked with facial marker points. The
coordinates of the left eyeA(xL, yL) and the right eye B(xR, yR) are
obtained from the marker points. The coordinates of the center
of the two eyes C(xC, yC) are calculated from the coordinates
of the two eyes, and the angle γ required to rotate the face to
horizontal is calculated from the coordinates of the center and the
coordinates of the left eye. Finally, the eyes are masked to avoid
extraneous noise from eye movements. The pre-processing flow
chart is shown in Figure 2. Its angle calculation equation is given
as follows:

γ = arctan
yC− yA
xC−xA

The number of samples from different emotion categories
is not close to each other in either the macro- or micro-
expression dataset, so a data enhancement approach of random
spatial transformations is introduced in processing. When pre-
processing a small number of emotion samples from a particular
emotion category, a small random horizontal or vertical shift
of its pixel positions is performed, or the samples are subjected
to a horizontal flip operation. In this way, the number of
samples contained in each emotion class is effectively balanced,
and the preference for a particular emotion class is reduced
during training. After pretreatment, the samples are also carefully
observed for facial integrity and horizontal facial posture to
ensure that each sample meets the experimental requirements.

Transfer Learning of Macro-Expressions
Some deep learning studies will train the network model on the
ImageNet dataset (Russakovsky et al., 2015) and then fine-tune
it before using it. By contrast, micro-expression recognition is
different from other image recognition classification tasks in that
all images are facial image data, so training on the ImageNet
dataset is not appropriate. In this study, we choose to train
MobileViT on four macro-expression datasets. They are the
extended Cohn-Kanade dataset (CK+) (Lucey et al., 2010), Oulu-
CASIA NIR&VIS facial expressions (Zhao et al., 2011), Jaffe
(Lyons et al., 1998), and MUG Facial Expression (Aifanti et al.,
2010). From the four macro-expression datasets, 9,342 images
were selected for migration learning, including 3,085 samples of
positive emotions, 3,263 samples of negative emotions, and 2,994
samples of surprising emotions. We take samples by looking at
factors such as background and head tilt angle to get as close as
possible to the micro-expression samples taken.

After pre-processing, they were fed into the MobileViT model
for training. The overall architecture of MobileViT is given in
Figure 3, and the detailed parameters of the model are listed
in Table 1. The MobileViT model mainly includes MobileNetV2
block and MobileViT block, and the role of MobileNetV2 block
is especially to downsample, extract local information, and
extract local features. It is also the main module of transfer
learning training, through the training of a high number of
macro-expression samples, to get the excellent facial expression
to feature extraction when the classification. The weights of
the MobileNetV2 block are saved when the highest accuracy
is achieved, and the MobileViT module contains standard
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FIGURE 1 | Flow chart of recognition model: (1) same pre-processing of the micro-expression image and macro-expression image sequences; (2) feeding

macro-expressions into the network model for training and saving the weights when recognition accuracy is highest; (3) loading weights; (4) feeding micro-expression

data into the model for training; (5) using the SVM classifier for classification. The micro-expression sample in the figure is from subject 1 of the CASME II dataset and

the macro-expression sample is from subject 23 of the Oulu-CASIA NIR&VIS dataset.

convolution, point convolution, and a transformer, which is
mainly used to extract global information so that the transformer
includes the characteristics of convolution. Once the macro-
expression samples are fed into the MobileViT model, first, the
tensor is subjected to a layered 3 × 3 standard convolution
and 2-fold downsampling to reduce the dimension of the tensor
and increase the number of channels. Then four MobileNetV2
(Sandler et al., 2018) (MV2) blocks are input and are twice
downsampled, and the two downsamplings are not adjacent to
each other, using Swish (Elfwing et al., 2018) as the activation
function, and the dimension of the tensor is 32 × 32. The tensor
is fed into the MobileViT and MobileNetV2 blocks alternately,
where the MobileViT block extracts the global information of
the tensor and outputs it, as detailed in 3.3. The MobileNetV2
block continues to extract the local information and continues to
double downsample. This process is carried out in two rounds
to obtain a tensor of dimension 8 × 8, which is convolved with
1× 1 and channel compressed. Finally, the result is output by the
classifier after global average pooling.

In addition, to improve the robustness of the network,
pixel fine-tuning with probability 0.3 (maximum value 20) was
performed on the images in the training set. A batch gradient
descent method with a momentum of 0.9 was used during
the training process. The batch size was set to 32, and the
learning rate was initialized to 0.01. After 100 epochs, the average
recognition rate for the three types of macro-expressions reached
98.45%. After amodel has undergonemigration learning, it needs
to be fine-tuned to get higher accuracy in subsequent training. It
is usually used to freeze the weights of all convolutional layers

and gradually unfreeze the convolutional layers as the number of
training iterations increases until all are unfroze and trained with
the complete data.

Optimized MobileViT Model
After the model has undergone migration learning, the
micro-expression samples will be fed into the fine-tuned
model for recognition and classification. The main reason
lightweight CNNs are more efficient and have lower latency
than conventional CNNs is the proposed separable convolution
(Chollet, 2017). The separable convolution is general enough to
replace the network model in most vision tasks. It is easy to train,
effectively reducing the network model size and lowering the
latency. However, its problem is that the separable convolution is
still local in space, and it is challenging to extract global features.
ViT, as transformer’s attempt in computer vision concerns, has
obtained better results in image classification problems in recent
years. Similar to transformer’s operation, a one-dimensional
learnable position encoding is added to each patch to preserve
its spatial information. The assembly is fed into the encoder
as joint embeddings. ViT inserts a learnable category identity
whose state at the output of the transformer’s encoder is used
as the performance classification criteria. In addition, a two-
dimensional permutation method complements the pre-trained
positional encoding to maintain a consistent order of the blocks
when inputting images of arbitrary resolution so that global
features can be obtained. However, it does not introduce an
image-specific inductive bias and does not generalize well in the
presence of insufficient training data.
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FIGURE 2 | Pre-processing flow chart, where (A) original image; (B) processed to grayscale image; (C) extracted facial region and cropped size; (D) adjusted facial

angle so that the face is horizontal; (E) masked in the eye. The micro-expression sample in the figure is from subject 1 of the CASME II dataset.

FIGURE 3 | MobileViT architecture, Conv-n × n represents the standard n/times n convolution, MV2 refers to the MobileNetv2 block, and the block undergoing

downsampling is marked with ↓2 (Mehta and Rastegari, 2021).

To solve the aforementioned problem, the MobileViT module

is introduced, which aims to enable the model to acquire the

samples’ global features and add a CNN-specific inductive bias
to ViT. As shown in Figure 4, first, a standard convolutional

layer with n × n is applied for a given image input tensor

X ∈ R
H×W×C (where H, W, and C are the width, height,

and number of channels of the image, respectively), to which a
point convolutional layer is connected, yielding XL ∈ R

H×W×d.

An n × n convolutional layer encodes local spatial information.
By contrast, the point convolutional layer projects the tensor to
the high-dimensional space by learning linear combinations of
the input channels. After ensuring the effective perceptual field

of having H × W, ViT with multi-headed self-attentiveness is
chosen for the long-range non-local dependence. The method
is to expand XL into N non-overlapping flattened blocks XU ∈

R
P×N×d, where P = wh, N = HW

P is the number of blocks, and
h ≤ n andw ≤ n are the height and width of a block, respectively.
For each p ∈ {1, · · · , P}, the relationship between the blocks is
encoded by applying a transformer. XG ∈ R

P×N×d is obtained
as follows:

XG

(

p
)

=Transforme r
(

XU

(

p
))

,1 ≤ p ≤ P

Unlike ViT, which loses the spatial order of pixels, MobileViT
loses neither the block order nor the spatial order of pixels within
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TABLE 1 | MobileViT architecture, where d represents the input size of the conversion layer in the MobileViT block.

Layer Output size Output stride Repeat Output Channels

Image 256 × 256 1

Conv-3×3, ↓2 MV2 128 × 128 2 1 1 16 32

MV2, ↓2 MV2 64 × 64 4 1 2 64 64

MV2, ↓2 MobileViT block (L = 2) 32 × 32 8 1 1 96 96 (d = 144)

MV2, ↓2 MobileViT block (L = 4) 16 × 16 16 1 1 128 128 (d = 192)

MV2, ↓2 MobileViT block (L = 3) Conv-1 × 1 8× 8 32 1 1 1 160 160 (d = 240) 640

Global pool Linear 1× 1 256 1 1,000

Network Parameters 5.6 M

By default, the kernel size n is set to 3 in the Mobile ViT block and the space size of the block (height h and width w) is set to 2.

each block. Therefore, XG ∈ R
P×N×d can be collapsed to obtain

XF ∈ R
H×W×d. Then, XF is projected to the low C-dimensional

space using point-to-point convolution and combined with X

by the join operation. Another n × n convolution layer is
then used to fuse the local and global features in the tandem
tensor and output. Since XU(p) uses convolution to encode local
information in the n × n region and XG(p) encodes the global
information of the P blocks at the pth position, each pixel in
XG can encode the information of all pixels in X, as shown in
Figure 5. Thus, the MobileViT block has no loss of an effective
sensory field.

The convolution kernel size n = 3 is used in the MobileViT
block in this experiment, the spatial dimension of the feature
map is usually a multiple of 2, and it is only h, w ≤ n when it
ensures that no pixel information is lost, so h = w = 2 is set
at all spatial levels. The converter layer in MobileViT requires
a d-dimensional input, as shown in Figure 4, and the output
dimension of the first feedforward layer in the transformer layer
is set to the default value of 2d, instead of 4d, in the standard
transformer block of Vaswani et al. (2017).

In the original ViT, for a given block, the spatial information
is converted to subliminal by learning a linear combination of
pixels. The global information is then encoded by learning inter-
block information using a transformer. Thus, these models lose
the image-specific inductive bias, which is inherent to CNNs.
So they need deeper models to learn visual representations.
By contrast, MobileViT uses a combination of convolution
and transformer to give MobileViT blocks convolution-like
properties while allowing global processing. This modeling
capability enables the design of shallow and narrow lightweight
network models.

The micro-expression dataset is characterized by a small
sample size and very subtle differences between samples.
In order to make the MobileViT model better cope
with the micro-expression recognition problem, first, the
weight decay rate of the model is adjusted through several
experiments, gradually increasing from 0.0001 to 0.1, and
finally, the model accuracy is highest at 0.01. Second, in
the selection of the classifier, the SVM classifier can better
find the difference between samples and thus improve the
classification accuracy.

EXPERIMENTS

This section evaluates the proposed approach with several
popular macro-expression datasets and three benchmark micro-
expression datasets. Information about the datasets is first
provided, followed by the experimental details. Finally, the results
of some related works are compared and analyzed.

Datasets
The quality of the images in the dataset significantly impacts
the experimental results, so the more popular macro-expression
and micro-expression datasets were chosen for this study.
The datasets used in the experiments are all public datasets,
obtained by request through the dataset manager. The number of
emotion categories in the experiment was 3: positive emotions,
negative emotions, and surprise. Positive emotions included only
happiness, and negative emotions contained anger, disgust, and
sadness. The surprise category of emotions, on the other hand,
needed to be categorized separately as there was not enough
information to determine their causes. The macro-emotion
dataset for transfer learning and the micro-emotion dataset for
core experiments are described as follows.

Macro-Expression Dataset Datasets

The CK+ dataset consists of 593 video clips from 123 subjects.
Motion units were labeled on the last frame of each image
sequence. Among the 593 clips, 327 had emotion type labels,
namely, anger, contempt, disgust, fear, happiness, sadness, and
surprise. Each clip starts from the normal facial expression frame
and ends at the vertex frame. The last three frames were selected
from the corresponding video clips of the three types of emotions
desired in the experiment.

The Oulu-CASIA NIR&VIS facial expression dataset contains
80 subjects aged between 23 and 58 years and includes six typical
categories of expressions, namely, happiness, sadness, surprise,
anger, fear, and disgust. The image resolution was 320 × 240
pixels. All of these videos had two imaging systems captured,
namely, the near-infrared and visible systems. The last three
frames of each video captured by the visible light system were
selected in this experiment.
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FIGURE 4 | MobileViT block, where Conv-n × n represents the standard n× n convolution.

FIGURE 5 | Each pixel sees every other pixel in the MobileViT block. In this

example, the red pixel uses the transformer to focus on the blue pixel (the pixel

in the corresponding position in the other blocks). Because the blue pixel

already encodes the information of neighboring pixels using convolution, this

allows the red pixel to encode the information of all pixels in the image. Here,

each cell in the black and gray grids represents a block and a pixel,

respectively.

Jaffe was published in 1998. The database contains 219 images
of seven facial expressions (six basic facial expressions + one
neutral expression) posed by 10 Japanese female models. Each
woman was asked to perform seven types of expressions, namely,
sad, happy, angry, disgusted, surprised, fearful, and neutral. In
this experiment, the image with the correct expression label was
selected from the corresponding images.

The MUGFE database consists of 1,032 video clips from 86
subjects, with 35 female and 51 male individuals, all of them
being Caucasians between 20 and 35 years of age. The frame
rate was 19 fps, and the resolution was 896/times 896 pixels.
One part of the database contained six basic expressions, and

the other part included laboratory-induced expressions. Each clip
contained between 50 and 160 frames, starting and ending with
the normal expression frame and ending with the vertex frame in
between; six to 10 frames close to the vertex were selected from
each segment in this experiment.

In the four aforementioned macro-expression datasets, 9,342
images were selected for migration learning, including 3,085
samples of positive emotions, 3,263 samples of negative
emotions, and 2,994 samples of surprising emotions.

Micro-Expression Datasets

The SMIC dataset contains 164 micro-expression clips from 16
subjects, six females and ten males. The collection was done by
cameras with different frame rates. These subjects underwent
emotion to capture in an interrogation room environment,
and the experiment also contained punishment and threat
mechanisms that suppressed irrelevant facial expressions of
the participants.

The CASMEII dataset contains 247 micro-expression clips
from 26 subjects, captured using a camera with a frame rate of
200 fps, producing more images in the same amount of time and
at a higher resolution than SMIC.

The SAMM dataset contains 159 micro-expressions from
32 subjects, achieving gender balance while including multiple
ethnicities and nationalities, with a resolution of 400× 400 in the
facial region, the highest of any dataset. The acquisition process
uses a variety of LED devices to ensure the stability of the light.

In the CASMEII and SAMM datasets, the vertex frames
were labeled, while the SMIC dataset did not label the vertex
frames, so the middle image of the expression image sequence
was selected as the vertex frame in the SMIC dataset. Finally,
216 positive emotion samples, 231 negative emotion samples,
and 170 surprised emotion samples were selected from the
aforementioned three micro-expression datasets.

Experimental Setup
For the experimental setup, the authors of MobileViT provided
three scales of models, but due to the high complexity of the
micro-expression recognition task, we chose the largest scale
model. The hardware platform on which the models were run
was an Intel Core i99980HK CPU, a 32 GB RAM, and an AMD
Radeon Pro 5500M 8 GB graphics card. The experiment was
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TABLE 2 | Comparative effectiveness of ablation experiments.

Approach Composite dataset CASME II SMIC SAMM

UAR UF1 UAR UF1 UAR UF1 UAR UF1

MobileViT without transfer learning 0.6348 0.6524 0.6571 0.6452 0.6018 0.6215 0.6398 0.6187

MobileViT without SVM classifier 0.6002 0.6128 0.6102 0.6237 0.6075 0.5925 0.5977 0.5921

MobileViT 0.6981 0.7318 0.6997 0.7251 0.7356 0.7141 0.6781 0.7428

MobileNetV2 without transfer learning 0.5721 0.5488 0.5815 0.5913 0.6018 0.6002 0.5741 0.6021

MobileNetV2 without SVM classifier 0.5981 0.6003 0.5749 0.5820 0.5991 0.6008 0.5952 0.6101

MobileNetV2 (Sandler et al., 2018) 0.6425 0.6652 0.6328 0.6125 0.6368 0.6589 0.6236 0.6614

ResNet18 without transfer learning 0.6028 0.6211 0.6238 0.6191 0.6233 0.6391 0.5937 0.6195

ResNet18 without SVM classifier 0.6331 0.6558 0.6244 0.6335 0.6025 0.6347 0.6273 0.6589

ResNet18 0.6682 0.6715 0.6522 0.6428 0.6271 0.6542 0.6632 0.6743

DeIT without transfer learning* 0.6526 0.6625 0.6471 0.6332 0.6514 0.6682 0.6689 0.6472

DeIT without SVM classifier* 0.6549 0.6382 0.6711 0.6697 0.6794 0.6810 0.6502 0.6602

DeiT* (Touvron et al., 2021) 0.6879 0.6731 0.6814 0.6994 0.6881 0.6970 0.7052 0.7028

The * symbol indicates that the model is a non-convolutional model, so the weights of the full model are preserved in that part of the experiment. The rest of the model only preserves

the weights of the convolutional layers.

FIGURE 6 | MobileViT determines hyperparameters without grid search.

divided into two parts: macro-expression migration learning and
micro-expression recognition and classification. A grid search
method was used to optimize the values of hyperparameters,
including batch size, initial learning rate, and a number of
iterations, before the start of each part of the experiment in
order to make the model converge quickly during training and
to save time in tuning parameters. The model is evaluated using

a subject-independent evaluation protocol by taking all samples
from one subject in each iteration as the test set and the rest of
the subjects as the training set. The objects in the test set will
therefore be different from all the objects in the training set and
so may also contain different feature distributions. This way of
evaluating the generalization ability of the model is gradually
becoming more mainstream in micro-expression recognition
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FIGURE 7 | MobileViT does not add L2 regularization terms.

tasks. In order to make a fair comparison with other studies,
we use the unweighted recall rate (UAR) and the unweighted
F1 score (UF1) as evaluation metrics alongside the accuracy
rate. These metrics allow the accuracy of model recognition and
the ability to balance between different classes to be measured.
Assume that TP, FP, and FN are the true positive, false positive,
and false negative, respectively. The UAR is calculated by

UAR= 1
C

∑C
c=1

TPc
Nc

,where TPc and Nc are the number of true
positives and all samples in the c-th class, respectively. The UF1

is computed as UF1= 1
C

∑C
i=c

2Pc×Rc
Pc+Rc

, where Pc=
TPc

TPc+FPc
and

Rc=
TPc

TPc+FNi
for the c-th class.

In the first part of the experiment, an SGD optimizer with
a momentum of 0.9 was determined by a grid search, with an
initial learning rate of 0.01 and a batch size of 32. In the second
part, an Adam optimizer was determined by the same grid search,
with an initial learning rate of 0.007 and a batch size of 64.
The convolutional and fully connected layers of the model were
subjected to L2 regularization at a scale of 0.2 and dropout at a
scale of 0.5 to avoid overfitting. To improve the speed of each
part of the experiment, the Keras 2.2.4 library was utilized.

Experimental Results and Discussion
In order to demonstrate whether the use of transfer learning
and the use of SVM classifiers are effective in improving the
performance of the model, ablation experiments are necessary.

The model was therefore subjected to three sets of comparison
experiments, of which the performance of the model in different
situations can be seen in Table 2. When the models were
trained directly on the micro-expression dataset without transfer
learning training, there were varying degrees of performance
degradation on both the composite and individual datasets. The
largest degradation is in the SMIC dataset, which we believe
is likely due to the fact that the SMIC dataset has less data
than the remaining two datasets, resulting in an underfitting
of the model. There was also a decline in performance of the
composite and separate datasets when the model did not employ
an SVM classifier. Although a number of studies have used
Softmax as a classifier, for the micro-expression recognition
task, SVM was better at classifying between small differences.
To further illustrate the effectiveness of transfer learning and
SVM classifiers in improving the models, Table 2 also includes
different neural networks for comparison experiments, showing
that the performance of MobileNetV2 (Sandler et al., 2018),
ResNet18, and the ViTmodel DeiT (Touvron et al., 2021) without
convolutional layers without transfer training is lower than that
of the models with transfer learning. The same is true for the
SVM classifier in the other models.

The grid search to determine the hyperparameters also

requires ablation experiments to prove the effectiveness of adding
L2 regularization to the convolutional and fully connected layers
of the model. Figure 6 shows that the model converges more
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TABLE 3 | UAR and UF1 performance of different approaches under LOSO protocol on composite or individual datasets.

Approach Composite dataset CASME II SMIC SAMM

UAR UF1 UAR UF1 UAR UF1 UAR UF1

LBP-TOP (Pfister et al., 2011) 0.5785 0.5882 0.5429 0.5026 0.5280 0.2000 0.4102 0.3954

LBP-SIP (Wang et al., 2014) 0.4681 0.4829 0.5281 0.5369 0.5142 0.4452 0.4169 0.4412

HOOF (Chaudhry et al., 2009) 0.5814 0.5982 0.5782 0.5874 0.5696 0.5574 0.5877 0.5639

MDMO (Liu et al., 2015) 0.5125 0.5635 0.5382 0.5492 0.4812 0.4926 0.5108 0.5021

ResNet18 0.6682 0.6715 0.6522 0.6428 0.6271 0.6542 0.6632 0.6743

CNN-LSTM (Wang et al., 2018) 0.3942 0.3852 0.4125 0.4113 0.4276 0.4150 0.3086 0.3020

DenseNet121 0.3414 0.4253 0.3334 0.4604 0.3518 0.2909 0.3374 0.5645

RCN-Best (Xia et al., 2020b) 0.7190 0.7466 0.6600 0.6584 0.8131 0.8653 0.6771 0.7647

TSCNN (Song et al., 2019) 0.5849 0.5923 0.6009 0.6124 0.5924 0.5839 0.6103 0.6083

MobileNetV2 (Sandler et al., 2018) 0.6425 0.6652 0.6328 0.6125 0.6368 0.6589 0.6236 0.6614

DeepViT (Zhou et al., 2021) 0.7025 0.7158 0.7001 0.6982 0.7152 0.7369 0.7114 0.6928

DeiT (Touvron et al., 2021) 0.6879 0.6731 0.6814 0.6994 0.6881 0.6970 0.7052 0.7028

MobileViT (Ours) 0.6981 0.7318 0.6997 0.7251 0.7356 0.7141 0.6781 0.7428

The bold values indicate the highest values under the particular metrics.

FIGURE 8 | MobileViT uses grid search and adds L2 regularization terms.

slowly when trained without the grid search to determine the
hyperparameters, requiring more iterations to achieve optimal
performance. Figure 7 shows that overfitting occurs when L2
regularization is not added, that is, the training accuracy is
close to 100% while the validation accuracy is only 43%, so

overfitting measures are necessary on small datasets. Figure 8
shows that the training accuracy of themodel after the grid search
and the addition of regular terms has improved significantly
compared to Figure 6 and does not show the overfitting
in Figure 7.
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FIGURE 9 | Confusion matrix of MobileViT training results on the composite micro-expression dataset.

Table 3 shows a comparison between the state-of-the-art
approach and the proposed approach to demonstrate the
performance of the model. First of all, the table contains
some traditional methods, LBP-TOP (Pfister et al., 2011)
is an appearance-based feature and was used as a baseline
at MEGC2019, and the results have been published on
their conference website. LBP-SIP (Wang et al., 2014), as
an improvement of the LBP-TOP method, does show some
improvement in performance. Whereas HOOF (Chaudhry
et al., 2009) has been used as a baseline approach for optical
flow features for a long time, the ROI-based optical flow
feature approach proposed by MDMO (Liu et al., 2015)
outperformed HOOF. MobileViT models achieve significantly
better performance than several manual feature approaches. In
fact, the deepmodels outperformed themanual feature extraction
methods in most cases. Next, some of the deep networks were
compared. ResNet18 and DenseNet121 achieved better results in
a number of image classification problems as a baseline approach

for deep networks, but the differences between the datasets used
for training were more pronounced, the number of samples
was more than adequate, and training on the micro-expression
dataset would suffer inadequate training. The combination of
CNN and LSTM was not used, and the number of micro-
expression samples limited the performance of the model. The
table also shows the most recent state-of-the-art approach RCN
(Xia et al., 2020b), whose maximum value per dataset we took for
comparison in our comparison experiments and whose proposed
approach has good adaptability across datasets. The TSCNN
is also one of the most advanced approaches, but MobileViT
with migration learning performs significantly better. These
comparisons also show that MobileViT blocks can effectively
improve the accuracy of micro-expression recognition after
extracting local and global information. MobileViT does not
achieve exactly the same performance compared to these deep
models, due to the fact that MobileViT is a lightweight network
model that is superior in terms of training efficiency. Finally,
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TABLE 4 | Comparing the time to identify individual sentiment samples by

different network models.

Model Time

MobileNetV2 31.8 ms

DeiT 53.7 ms

ResNet18 82.3 ms

Proposed Approaches 35.4 ms

MobileViT is similar to DeepViT (Zhou et al., 2021) and DeiT
without convolutional layers and is closer in performance to the
deep neural network models, but DeepViT and DeiT have 55 and
86M parameters, making it difficult to run on platforms with
poor hardware conditions.

In order to analyze in more detail the difference between
the three types of micro-expression recognition results and the
accuracy of different emotion categories, the confusion matrix
was calculated, as shown in Figure 9. From the figure, it can be
seen that negative emotions have the highest accuracy in the three
emotion classification experiments. This is because the negative
category has the largest number of emotion samples, and it is
easier for the neural network to grasp its features during the
training process. The positive and surprise emotions have lower
recognition rates. The surprise class emotions have the lowest
number, so it is difficult to obtain accurate features from a small
amount of data.

In terms of recognition speed, the average time taken
to recognize an expression by different models in the same
experimental environment and equipment is compared in
Table 4. The methods compared in the table are all baseline
methods as many of the models do not provide the relevant
source code, and it is difficult to reproduce their network
structures. Compared to the lightweight MobileNetV3 model
without the ViT structure, MobileViT takes slightly more
time and has a significant advantage over ResNet18. However,
compared to the model without the convolutional structure, the
recognition efficiency is much improved and is slightly greater
than the minimum duration of micro-expressions (30ms),
allowing facial micro-expressions to be captured in a timely and
effective manner.

The pre-processing part of the data is given great importance
in the experiments, and the images in the macro-expression
dataset need to be processed as close as possible to the micro-
expression images. At the same time, to avoid the problem
of the unbalanced number of sample categories, the same
number of emotion category samples is randomly selected in
each training iteration in the experiment to prevent the neural
network model from classifying the samples to a certain emotion
category more favorably. The merged dataset also improves the
generalization ability of the model during the training process
and has better stability when facing new samples. In fact, the size
of the facial action region for micro-expressions is very limited.

Therefore, directly extracting the feature vector of the face
using the complete facial samples will contain more redundant
information, which will reduce the expressiveness of the feature
vector and thus affect the recognition accuracy.

CONCLUSION AND FUTURE WORK

This study is the first application of self-attentive mechanisms to
the field of micro-expression recognition. A migration learning
approach and an optimized MobileViT model are proposed.
The convolutional layer in MobileViT is trained to be a facial
expression feature extractor with an excellent performance by
migration learning, and a grid search is used to find the
value of the best hyperparameter. The L2 regularization term
is added to the convolutional and fully connected layers of
MobileViT in order to avoid overfitting. MobileViT satisfies
both the lightweight nature of the model and the access to
the global representation. The method does not become more
complex than lightweight CNNs by incorporating the ViT
structure but, at the same time, achieves better performance
than the convolution-free ViT structure, extracting the global
representation while ensuring the lightweight of the model
and obtaining a performance close to that of the state-of-
the-art MER methods. In future work, on the one hand, we
will continue to try to improve the transformer model to
make it real time and able to run micro-expression recognition
applications well in embedded devices. On the other hand, we
will try to simulate the acquisition environment in different
situations by adding perturbations to the micro-expression
samples or by adjusting different parameters of the images and,
thus, adjust the model to adapt to the stability of recognition
in different environments and improve the robustness of
the model.
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