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Learning joints relation graphs
for video action recognition

Xiaodong Liu*, Huating Xu and Miao Wang

School of Software, Henan Institute of Engineering, Zhengzhou, China

Previous video action recognition mainly focuses on extracting spatial

and temporal features from videos or capturing physical dependencies

among joints. The relation between joints is often ignored. Modeling the

relation between joints is important for action recognition. Aiming at

learning discriminative relation between joints, this paper proposes a joint

spatial-temporal reasoning (JSTR) framework to recognize action from videos.

For the spatial representation, a joints spatial relation graph is built to capture

position relations between joints. For the temporal representation, temporal

information of body joints is modeled by the intra-joint temporal relation

graph. The spatial reasoning feature and the temporal reasoning feature are

fused to recognize action from videos. The e�ectiveness of our method

is demonstrated in three real-world video action recognition datasets. The

experiment results display good performance across all of these datasets.
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Introduction

With the rapid development of internet and mobile intelligent devices, multimedia

applications, including urban security, medical treatment, education, communication,

industrial production, and cultural film, are more and more widely used. They generate

huge amounts of videos every hour and now account for about 80% of the data. YouTube

has one billion users, with 300 h of video uploaded and 50 million h of video watched per

minute. In addition to Internet video, surveillance video is also an important source of

video data. There are about 30 million surveillance cameras in China, and 60 EB of video

data are generated per month. Thus, how to effectively analyze and understand these data

and create greater economic and social benefits has been a hot topic.

Video action recognition is one of the most important tasks for comprehensively

understanding video content. It has many potential applications, such as human–robot

interaction (de Carvalho et al., 2022), fruit picking (Wu et al., 2022), agricultural (Tang

et al., 2020), and warning decision (Fang et al., 2021). There are various attempts at video

action recognition based on spatial and temporal features. Two-stream convolutional

neural network (CNN) (Simonyan and Zisserman, 2014) consists of spatial and temporal

sub-networks. The spatial streaming sub-network extracts a static feature of the video

frame, and the temporal streaming sub-network extracts optical flow features containing

motion features of the video. Then, the spatial and temporal features are aggregated, and

the action feature of the video is produced. Although the two-stream CNN can utilize

the spatial and temporal features of the video, there are some limitations. First, spatial
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CNN only extracts a single video frame and the information

of the rest video frames is not utilized. Second, optical flow

extraction is very time-consuming. To avoid the waste of video

frames, Wang et al. (2017) fuse spatial features of all video

frames and optical flow features to improve the accuracy of

action recognition, and this method also needs to consume too

much time. 3D Convolutional network (C3D) (Tran et al., 2015)

expands the two-dimensional convolution neural network to

three-dimensional, which can learn both spatial and temporal

features. Its performance is better than two-stream CNN and

does not need to extract optical flow. However, C3D adds

many weight parameters and needs more training data. P-CNN

(Chéron et al., 2015) clips the body joints in the video frame

based on human pose estimation and extracts the spatial and

temporal features of each body joint by CNN. This method

trains an independent CNN network for each joint and fuses

the temporal and spatial features extracted from different joints.

Although this method successfully captures local information,

the internal dependencies between joints are not modeled.

To capture the internal dependencies between joints, recent

methods (Li M. et al., 2019) construct a skeleton graph and

apply graph convolution networks (GCN) (Defferrard et al.,

2016) to extract correlated features. However, the internal

relationship between the evolution of high-level semantics has

not been established, and lacks the middle layer for modeling

the semantics of the target joints, so the potential of using

joints of the semantics in video action recognition based on

the deep learning method cannot be fully exploited. Although

the research on video action recognition has got a lot of

achievements, it still faces some challenges.

First, the action of the video is mainly depending on the

movement of body joints. As an example, let us try to estimate

the action of these videos in Figure 1. In Figure 1A, we mainly

judge the action of the video by the movement of the hand

and elbow. Other information can as an effective supplement to

video action recognition. Similarly, detailed estimations can be

made in Figures 1B–D. Therefore, how to make full use of the

movement of the body joints is a significant challenge for video

action recognition.

Second, the movement of body joints is the low-level feature.

It contains less information than high-level semantics. If we can

extract the movement of high-level semantic of body joints, the

action recognition accuracy can be further improved. Therefore,

how to model the movement of high-level semantics of body

joints is another challenge for video action recognition.

To solve the problem of modeling the semantics of body

joints and their movement evolution, this paper proposes a joint

spatial-temporal reasoning (JSTR) framework for video action

recognition. The JSTR consists of two sub-network. One is the

pose estimation sub-network, which is used to generate the

position of body joints. The other is the action recognition sub-

network which takes as input the results of the pose estimation

sub-network, and features of body joints are generated. Then

a joints spatial reasoning (JSR) graph and intra-joint temporal

relation (IJTR) graph are built, respectively, which is used to

capture position and temporal relations between joints. Finally,

the spatial reasoning feature and the temporal reasoning feature

are fused to recognize the action from videos.

In summary, the contributions of this paper include:

• A geometric constraints-based human pose estimation

method is proposed to improve the accuracy of human

pose estimation.

• We design a joints spatial reasoning network for capturing

position relation between body joints.

• We design an intra-joint temporal relation network for

capturing the temporal evolution of body joints.

To verify the effectiveness of our proposed method, we

compare the performance with the state-of-the-art method on

three real-world video action recognition datasets: UCF101,

HMDB51, and Kinetics. In the experiments of UCF101 and

HMDB51, we obtain an excellent accuracy of 96.3 and 72.4%,

respectively. In particular, on the large-scale kinetics dataset,

we obtain an excellent top-1 accuracy of 75.8% and the top-5

accuracy of 92.6% on the validation set.

The rest of this paper is organized as follows: Section Related

work presents the related work. Section The proposed methods

gives a detailed description of the proposed method. Section

Experiments shows the experimental results. Finally, Section

Conclusion summarizes our conclusions and gives future work.

Related work

There are various attempts at video action recognition

based on spatial and temporal feature fusion. Feichtenhofer

et al. (2016a,b) fused CNNs both spatially and temporally

and then combined them with ResNets (He et al., 2016) to

extract better spatio-temporal features. Sun et al. (2015) propose

factorized spatio-temporal convolutional networks that factorize

the original 3D convolution kernel learning as a sequential

process of learning 2D spatial kernels. The computation cost of

2D CNN is low, but it cannot model the time information, so the

accuracy is relatively low. 3D CNN can model time information

and can obtain better accuracy, but the computation cost is too

high. TSM (Lin et al., 2019) can facilitate information exchanged

among neighboring frames by shifting part of the channels

along the temporal dimension. It can be inserted into 2D CNNs

to achieve temporal modeling, which balances accuracy and

computation cost. STM (Jiang et al., 2019) contains a channel-

wise spatial-temporal module to present the spatial-temporal

features and a channel-wise motion module to efficiently encode

motion features. TEA (Li et al., 2020) was designed to capture

both short- and long-range temporal evolution by a temporal

excitation and aggregation block. However, different features
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FIGURE 1

(A–D) The motivation of JSTR.
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have different contributions to video action recognition. The

difference in the contribution of different features on video

action recognition cannot be fully utilized by simply combining

the different features.

Attention mechanism can make full use of the difference

in the contribution of different features. Simonyan and

Zisserman (2014) uses both RGB and stacked optical flow as

appearance and motion information, respectively. The accuracy

is significantly boosted by simply fusing probability scores.

VideoLSTM (Li et al., 2018) is an end-to-end sequence learning

model, in which hard-wires convolution in the soft-attention

LSTM. Xiang et al. (2018) propose a local feature integration

framework based on a purely attention-based local feature

integration, and carefully analyze the effect of different attention

mechanisms. The attention mechanism can focus on important

features and meanwhile ignore irrelevant signals and noise, so

that the recognition accuracy can be improved.

The internal dependencies between human body joints are

often ignored by the traditional action recognition methods,

which will result in missing abundant information. To capture

dependencies between joints, recent methods apply graph

convolution networks (GCN) to extract correlated features.

ST-GCN (Yan et al., 2018) learn spatial-temporal features

simultaneously. ST-GCN mainly tries to aggregate wider-range

features, but node features during long diffusion might be

weakened. AS-GCN (Li M. et al., 2019) attempts to capture

richer dependencies among body joints and useful non-local

information. MUSLE (Li D. et al., 2019) builds space-time

graphs and clusters the graphs into compact sub-graphs on

each scale. In this paper, the JSTR model position and temporal

relations between joints.

The proposed methods

Overview

The overall network framework of the joints spatial-

temporal reasoning framework (JSTR) is illustrated in Figure 2.

It consists of the pose estimation sub-network and the action

recognition sub-network. First, we uniformly sample a set of

T frames from the video and extract their feature vectors by

a backbone network, such as Resnet (He et al., 2016). Second,

the last convolution layer feeds into a pose estimation sub-

network and generates the position of body joints, which is used

as the input of the action recognition sub-network. Third, the

features of each joint are extracted by RoIAlign (He et al., 2017)

according to the positions of body joints. After that, a non-linear

transformation is performed to get an L dimensional feature

vector for each body joint. Fourth, the features of body joints will

be split into two branches: one branch is a joint spatial reasoning

(JSR) sub-network, which is used to build a relation graph to

capture position relations between joints. The other branch is an

intra-joint temporal relation (IJTR) sub-network, which models

the temporal information between body joints. Then, the output

features of JSR and IJTR are fused to form joints spatial-temporal

reasoning feature for recognizing action from videos.

Pose estimation

The accuracy of pose estimation is important for our JSTR

network, and it is a key module for feature extraction of body

joints. To further improve the accuracy of pose estimation,

we extend the structured feature learning framework (Xiao

et al., 2016) and give a geometric constraint-based human pose

estimation method (GCHP), which is illustrated in Figure 3.

We first apply the pose estimation CNN network to generate

the positions of body joints and the distance between body joints

can be obtained by the positions of body joints. Thus, the loss

function of joints’ distance can be obtained by calculating the

real distance and the generated joint position. Let dij denotes the

relative distance between the i-th joint and the j-th joint, and the

loss function of joint distance can be expressed as follows.

Ld =

N
∑

n=1

P
∑

i=1

dij (1)

where Ld is the loss function, N is the number of training

images, and P is the number of body joints.

Let Lp is the loss function of joints’ position, and it can be

calculated by

Lp =
∑

x

∑

y

m(x, y)
∑

k

tx(x, y) log

(

ezk(x,y)
∑

k′ e
zk′ (x,y)

)

(2)

where (x,y) is the position of the body joint, k is the index of

the joints, tk(x,y) is the real label of the position (x,y), and zk(x,y)

is the predicted value.

Geometric constraint function L is a combination of the

position loss function and distance loss function, and it can be

calculated by

L = Lp + λLd (3)

where λ is used to balance the weight of position loss

function and distance loss function.

Note that our geometric constraints-based human pose

estimation method can be directly inserted into the existing

pose estimation pipeline. They can effectively strengthen feature

representations and do not increase too many parameters.

Action recognition framework

In the video action recognition sub-network, a joint

spatial-temporal reasoning graph is built to perform relational
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FIGURE 2

The framework of JSTR. The video frames are fed into a backbone network, such as Resnet. The last convolution layer feeds into a pose

estimation sub-network and generates the position of body joints. The features of each joint are extracted by RoIAlign according to the

positions of body joints. Upon these original features and positions of joints, a spatial-temporal reasoning graph is built. Then, the spatial

features and temporal features are fused to recognize the action from videos.

FIGURE 3

Geometric constraint-based human pose estimation.

reasoning on joints for action recognition. The positions of

body joints are obtained by the pose estimation sub-network,

which is the input of the last convolution layer of the video

action recognition sub-network. Features of each joint are

obtained by RoIAlign (He et al., 2017). Afterward, upon

these original features and positions of joints, we build a

spatial-temporal reasoning graph, where each node denotes a

joint. For the spatial graph, each edge is a scalar weight, which

is computed according to the two joints’ features and their

relative position. For the temporal graph, each edge represents

the temporal information of the same joint. The GCN is applied

to conduct relational reasoning based on a spatial-temporal

reasoning graph. After graph convolution, the spatial-temporal

relational representation for joints is generated. Then the spatial
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features and temporal features are fused to recognize the action

from videos.

Building JSR graphs

Graph model has been found to be effective at representing

the spatial and temporal relations in visual content. Therefore,

the graph structure is utilized to model body joints relation for

action recognition.

Graph definition

We consider a joints spatial relation (JSR) graph. The nodes

V = {(fi, pi)|i = 1, 2, ..., P} are a set of P body joints, where

fi is the d-dimension appearance feature of the i-th joint, and

pi = (xi, yi) is coordinates of the i-th body joint. Let A ∈ RP×P

be the adjacent matrix of the JSR graph, which represents pair-

wise relation among joints. The relation value Aij is the affective

coefficient, which is used to measure the intensity of the features

of nodes.

To obtain sufficient representational power to capture

the underlying relation between two joints, both distance

information and angel information need to be considered.

Moreover, the distance relation and angel relation have different

position attributes. Therefore, the relation value can be defined

as a composite function below:

Aij = h(fd(pi, pj), fa(pi, pj)) (4)

where fd(pi, pj) denotes the distance relationship between

two joints, and the angel relation is calculated by fa(pi, pj).

The function f() is a fusion function that fuses distance and

angel relation.

Next, we will give the definition of distance relation, angel

relation, and the fusion function.

Let pi = (xi, yi)(i = 1, 2, ..., P) be the coordinates of the i-

th joints, the distance relationship between the i-th joint and the

j-th joint can be expressed as:

fd(pi, pj) =
∥

∥

∥
l
j
− l

i

∥

∥

∥

2
(5)

Let fa(pi, pj) be the angel relation between the i-th and j-th

body joints, and it can be expressed as:

fa(pi, pj) = arctan
yj − yi

xj − xi
(6)

The function h fuses distance and angel relation. In our

experiments, we adopt the following function to compute the

value of Aij (Jianchao and Limin, 2019).

Aij =
fd(pi, pj) exp(fa(pi, pj))

P
∑

j=1
fd(pi, pj) exp(fa(pi, pj))

(7)

where we perform normalization on each joint using the

Softmax function so that the sum of all the related values of one

actor node i will be 1.

Building IJTR graphs

Temporal information of body joints is a crucial cue for

activity recognition. We model the temporal information of

body joints by the intra-joint temporal relation (IJTR) Graph.

The IJTR graph is represented by an adjacent matrix AT ∈

RP×P. During training, we randomly sample a set of K = 2

frames from the entire video and build IJTR Graph. Therefore,

for the adjacent matrix AT of the IJTR Graph, we directly set

AT
ij = 1, if the i-th joint and the j-th joint are in two sample

frames, and AT
ij = 0, otherwise. At testing time, a sliding

window approach is used, and the features from all windows are

mean-pooled to form a global activity feature.

Reasoning and training on graphs

The convolutional neural network is originally used to

extract visual features of images or videos based on 2D or 3D

filters. In contrast, a graph convolutional neural network (GCN)

can perform message propagation from nodes to its neighbor

nodes. Thus, it is usually used to perform relational reasoning.

In this paper, GCN is applied to reasoning relations of human

body joints.

Given a graph with N nodes, the operation of one graph

convolution layer can be expressed as follows.

X(l+1) = σ ((D )−
1
2A(D)−

1
2X(l)W

(l)) (8)

where D ∈ ℜP×P is the degree matrix of A, X(l) is the output

of the (l − 1)-th layer, W1 is the learned parameters, and σ (.) is

a non-linear activation function like ReLU.

In particular, in our JSTR framework, the adjacent matrix

of the JSR is defined in Section Building IJTR graphs and the

adjacent matrix of the IJTR is defined in Section Reasoning

and training on graphs. X(0) = [f (x1), f (x2), ..., f (xP)] is the

initial feature matrix, where f (xi) is the feature vector of the

i-th joint. The final output of the GCN is updated features of

joints, X(l), in the graphs, which can be aggregated into a frame-

level vector. In this paper, the GCN output of JSR and IJTR is

aggregated into spatial relation features and temporal relation

features, respectively, and then these two features are aggregated

into spatial-temporal relation features for recognizing action

from videos.

Experiments

Dataset

UCF101

UCF101 (Soomro et al., 2012) has 13,320 web video clips and

101 action classes. The videos range from daily life activities to

unusual sports and each video. The average accuracy of three

training/testing splits is adopted in our experiments.
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TABLE 1 Experimental results on the MPII dataset.

Experiment Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Tang et al. (2018) 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8

Xiao et al. (2018) 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6

Yang et al. (2020) 97.1 95.9 90.3 86.4 89.1 87.1 83.3 89.9

Zhang et al. (2021) 97.5 96.0 90.7 87.3 89.5 87.7 83.4 90.3

GCHP 98.1 96.2 90.8 87.4 89.9 86.7 83.6 90.6

HMDB51

The HMDB51 dataset (Kuehne et al., 2011) has 6, 766 videos

downed from movies and web videos, and each video is labeled

with one of the 51 action categories. The average accuracy

of three training/testing splits is adopted in our experiments.

Videos are subject to different viewpoints, video quality, camera

motions, and occlusions.

Kinetics

The kinetics dataset is a large dataset for human action

recognition, containing over 240,000 video action clips (Carreira

et al., 2017). It uses a training set of 236,763 videos and a testing

set of 19,095 videos. There are 400 types of actions.

Implementation details

An input video is uniformly partitioned into 16 segments,

and one frame is randomly Sampled from each segment to

obtain 16 frames for one video. The pose estimation sub-

network generates 16 body joints, and the features of each joint

are extracted by RoIAlign and get a 1,024-dimensional feature

vector for each joint. Two JSR and IJTR are pre-trained on the

training set separately. The network is trained in 150 epochs

using the minibatch size of 32. The learning rate starts from

0.001 and multiplies to 0.1 every 30 epochs.

The evaluation of GCHP

The GCHP is evaluated on the MPII (Andriluka et al.,

2014) dataset. It contains 25,000 images with 40,000 different

human instances and uses a training set of about 28,000 human

instances and a testing set of 11,000 human instances, and the

total number of body joints used is 16. The PCP (percentage

of correct parts) is employed in this experiment. Similar to

structured feature learning, the strict PCP, which only when both

ends lie within 50% of the ground truth will this prediction is

correct, is used. We compare experimental results with three

deep learning-based methods (Tang et al., 2018; Xiao et al.,

2018; Yang et al., 2020; Zhang et al., 2021). Table 1 shows the

experimental results on the MPII dataset. As we can see from

Table 1, our GCHP outperforms previous state-of-the-art work

on every body part evaluated.

Ablation studies

In this subsection, we perform detailed studies on the

action recognition datasets to understand the contributions of

our model components to video action recognition. In our

experiments, we selected 14 body joints for one frame and

sampled 20 frames for one video.

Joints spatial reasoning

We first train the pose estimation sub-network on the MPII

dataset (Andriluka et al., 2014), and the trained network is used

to predict the position of body joints. In our experiments, we

select 14 body joints including head, upper arm, lower arm,

upper leg, lower leg, and etc. Then, ROIAlign is used to extract

features of these body joints. JSR is built and Table 1 gives the

results of the fusion of JSR and baseline method TSN (Wang

et al., 2016; Zhang et al., 2021). We can observe that JSR can

improve the accuracy by 0.7, 0.6, and 1.1%, respectively, on

Kinetics, UCF101, and HMDB51 dataset.

Intra-joint temporal relation

We further evaluate the effect of IJTR. In the training

phase, two adjacent video frames are selected to build the IJTR

graph. In the test phase, we use a sliding window approach,

and the emotion features from all windows are fused in a

mean-pooled manner. Table 2 gives the results of the fusion of

IJTR and baseline method TSN. As can be shown in Table 3,

the accuracy improved by 0.3, 1.1, and 2.2%, respectively, on

Kinetics, UCF101, and HMDB51 datasets.

Joints spatial-temporal reasoning

The output of JSR and IJTR is fused and produce the feature

of joints spatial-temporal reasoning. Table 4 gives the results

of JSTR. Table 4 shows the comparison results of JSTR and

baseline method TSN, we can see that the accuracy improved
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TABLE 2 Exploration of SA.

Method Kinetics

accuracy

(%)

UCF101

accuracy

(%)

HMDB51

accuracy

(%)

TSN 92.4 94.2 69.4

JSR 93.1 94.8 70.5

TABLE 3 Exploration of PR.

Method Kinetics

accuracy

(%)

UCF101

accuracy

(%)

HMDB51

accuracy

(%)

TSN 92.4 94.2 69.4

IJTR 92.7 95.3 71.6

TABLE 4 Exploration of JSTR.

Method Kinetics

accuracy

(%)

UCF101

accuracy

(%)

HMDB51

accuracy

(%)

TSN 92.4 94.2 69.4

JSTR 93.6 96.3 72.4

TABLE 5 Mean classification accuracy (%) compared with

state-of-the-art methods on UCF101 and HMDB51.

Method UCF101 (%) HMDB51 (%)

Two Stream (Simonyan and

Zisserman, 2014)

88 59.4

TSN (Zhang et al., 2021) 94 68.5

Fusion (Feichtenhofer et al.,

2016a)

92.5 65.4

ST-ResNet (Feichtenhofer

et al., 2016b)

93.4 66.4

Attention cluster (Xiang et al.,

2018)

94.6 69.2

MUSLE (Li D. et al., 2019) 94.8 72.2

Our methods 96.3 72.4

by 1.2, 2.1, and 3.0%, respectively, on kinetics, UCF101, and

HMDB51 datasets.

Comparison with the state-of-the-art

Now, we compare our model with the state-of-the-art

methods. We compare our model with the state of the art

methods on UCF101 and HMDB dataset. Our approach obtains

robust improvements over the state-of-the-art methods. As

can be seen from Table 5, the accuracy of our method on

TABLE 6 Kinetics top-1 and top-5 accuracy (%).

Method Top-1 (%) Top-5 (%)

TSM (Lin et al., 2019) 72.5 90.7

STM (Jiang et al., 2019) 73.7 91.6

TEA (Li et al., 2020) 74.0 91.3

MUSLE (Li D. et al.,

2019)

75.1 92

Our methods 75.8 93.6

UCF101 and HMDB datasets is 96.3 and 72.4%, respectively.

Compared with the state-of-the-art method, it increased by 1.5

and 0.2%, respectively, on the UCF101 and HMDB datasets. We

also notice that the methods (Simonyan and Zisserman, 2014;

Feichtenhofer et al., 2016a,b; Zhang et al., 2021) fuse spatial

and temporal features without attentionmechanism and relation

reasoning, so their accuracy is relatively low. Attention cluster

(Xiang et al., 2018) improves performance by first analyzing the

importance of each local feature and then bestowing the global

feature. Relation reasoning is adopted in MUSLE (Li D. et al.,

2019) and the accuracy can be improved.

On Kinetics, Table 6 shows the kinetics top-1 and top-5

accuracy on different methods. TSM (Lin et al., 2019) balances

accuracy and computation cost by being inserted into 2D CNNs

to achieve temporal modeling. The computation cost is relatively

low, and the accuracy is also relatively low. STM (Jiang et al.,

2019) uses a unified 2D CNN network that integrates spatial-

temporal and motion features. It can extract long-term temporal

features without 3D CNN, and the accuracy is higher than

TSM. TEA (Li et al., 2020) was designed to capture both short-

and long-range temporal evolution, which further improves the

accuracy. MUSLE (Li D. et al., 2019) exploits the discriminative

sub-graphs across different scales for facilitating spatio-temporal

reasoning. The accuracy is higher than those methods without

a reasoning relationship. As shown in Table 6, the top-1 and

top-5 accuracy of our method are 75.8% and 93.6, respectively.

It increases top-5 by 1.6% compared with the state-of-the-

art method. There are two reasons that JSTR can achieve

excellent performance. First, JSR can capture position relations

between joints. Second, the temporal information of body joints

is modeled.

Conclusion

To model the relation between body joints, a joint spatial-

temporal reasoning (JSTR) framework is proposed. The JSTR

consists of two sub-networks. In the pose estimation sub-

network, geometric constraints-based human pose estimation

is applied to further improve pose estimation accuracy. In the

action recognition sub-network, a joints spatial reasoning (JSR)

graph and intra-joint temporal relation (IJTR) graph are built,
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respectively, which is used to capture position and temporal

relations between joints. Finally, the spatial reasoning feature

and temporal reasoning feature are fused to recognize the

action from videos. We validate JSTR in action recognition

using three datasets, UCF101, HMDB51, and Kinetics. The

experiment results show that JSTR can improve the recognition

accuracy compared to the state-of-the-art methods. In terms of

future work, we hope to extract spatio-temporal GCN features

simultaneously to further improve the accuracy of action

recognition and integrate it into end-to-end trained networks.
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