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Most existing methods for unsupervised domain adaptation (UDA) only involve two

domains, i.e., source domain and the target domain. However, such trained adaptive

models have poor performance when applied to a new domain without learning.

Moreover, using UDA methods to adapt from the source domain to the new domains

will lead to catastrophic forgetting of the previous target domain. To handle these issues,

inspired by the ability to balance the maintenance of old knowledge and learning new

knowledge of the human brain, in this article, we propose a new incremental learning

framework for domain-incremental cases, which can harmonize the memorability and

discriminability of the existing and the novel domains. By this means, the model can

imitate the learning process of the human brain and, thus, improve its adaptability.

To evaluate the effectiveness of the proposed methods, we conduct two groups

of experiments, including virtual-to-real and diverse-weather cases. The experimental

results demonstrate that our approach can avoid catastrophic forgetting, mitigate

performance degradation in the previous domains, and improve the object detection

accuracy of the novel target domain significantly.

Keywords: unsupervised domain adaptation, incremental learning, object detection, autonomous driving, domain

incremental detection

1. INTRODUCTION

The safety of autonomous driving depends on the perceptual models of self-driving cars. With the
detection results, the vehicles can plan a reasonable trajectory to avoid traffic accidents. In which,
object detection is a fundamental and essential task for autonomous driving. It is similar to humans
walking on the streets and crossing the roads. Each person has a learning mechanism to observe
the positions of incoming cars and pedestrians. When building self-driving vehicles, to improve
the robustness of the object detection algorithms, researchers used to train them with numerous
labeled datasets containing as many situations as possible, which have achieved quite promising
results. However, the relevant disadvantages are also prominent. For example, dataset annotation
is expensive and requires a huge burden of work, i.e., the KITTI dataset includes 15,000 images
containing over 80,000 objects. Moreover, it is well known that different datasets have different
data distributions. For example, the data distribution of the Rainy-Cityscapes dataset is different
from the typical Cityscapes dataset because of the raindrop imprint imposed. Therefore, in terms of
the practical applications, Domain adaption becomes a promising research direction to overcome
these problems by transferring knowledge from the unlabeled (the source domain) to the labeled
(the target domain) data.
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The actual driving scenarios are complex and various. But
the aforementioned existing domain-adaption methods can only
adapt to two scenarios (one labeled and one unlabeled) and
is difficult to cover all possible cases, which differs from the
learning mechanisms of the human brain. The brains are capable
to learn all cases progressively to deal with all kinds of emergency
situations without forgetting previous cases. Moreover, the
original purpose of building a self-driving vehicle is to endow
a normal car with the intelligence of human brains. Thus,
improving the generalization capability of domain adaption
models is key to solving this issue. One possible way is to train
a model for each target domain and select the most suitable one
based on predefined rules. However, normally the size of the
model parameters is huge and could cost much computation
resources for the parameter storage, loading, and switching.
Another way is to simply re-train the model by using another
target domain, which may lead to a forgetting issue of the
previously learned domains. To solve these problems, in this
study, we propose that all target domains should be conducted
sequentially instead of simultaneously so that they cannot be
blended into a whole during the training process of the detectors.

To this end, as shown in Figure 1 we introduce incremental
learning which is inspired by the characteristics of the human
brain in progressive learning and continuous learning. Taking
into consideration of the domain adaption challenges in complex
autonomous driving scenarios, this article proposes a novel
domain-incremental adaptive detection framework that can
continually make the model adapt from one domain to another
at multiple levels. It is as though humans can develop the
adaptation to a new environment. The incremental-learning
model learns to complete “tasks” one by one, where “tasks” refers
to one step of unsupervised domain adaptation. By using the
proposed framework, we extend the single-step adaptation to
domain-incremental cases. Particularly, the incremental dataset
contains previous and new parts. The former consists of a
labeled source domain and several unlabeled target domains,
while the latter is usually another unlabeled target domain
without training. The proposed framework aims to maintain the
memorability of previous domains and enhance the detectability
of the new domains. One challenge behind is how to form a
new task, i.e., deciding which old domain (the source domain
or one of the past target domains) to adapt to the new one
(the target domain). To tackle this problem, our strategy is
to find divergences between the new target domain and all
previous domains through dimensionality reduction and select
the smallest one of them. Thus, our domain-incremental learning
framework can be divided into two stages, i.e., “Recall” and
“Adapt” stages. The “Recall” stage recalls the knowledge of old
target domains through performing adaptation from the source
domain and the latest target domain. To reduce the adverse
effects of incorrect pseudo labels, we introduce “Domain-Mix” to
combine it with the ground-truth labels of the source domain and
extend it with patch-based adversarial learning, better integrating
the two domains as one domain. While the “Adapt” stage learns
the transfer of knowledge given the pseudo labels from the last
target domain. In every step of the “Adapt” stage, the model is fed
by an image that contains information about the two domains,

then views them as a new source domain, and finally adapts
toward the new target domain. Both two stages are indispensable
because the “Recall” stage can generate more accurate pseudo
labels of the previous target domain, playing a foundational role
in the “Adapt” stage. The experiment results will prove this point.

The highlight of the contributions: We discuss why general
incremental learning cannot apply to multiple domain scenes.
After analyzing the research gap in the existing methods, we
propose a domain-incremental learning framework and design
a domain tree to decide the domain adaptation order. In the
framework, we introduce “Domain-Mix” and design patch-
based adversarial learning to refine the quality of pseudo labels,
thus enhancing the discriminability on two domains without
extra computational cost. Experiments and comparison results
demonstrate that our approach achieves the best performance in
domain-incremental adaptive object detection problems. To the
best of our knowledge, we are the first of reporting incremental
adaptation results from a virtual domain to multiple actual
domains.

The remainder of the article is organized as follows. Section 2
briefly introduces some related studies. In Section 3, we address
the problem formulation and single-step domain adaption
method. In Section 4, we present the proposed domain-
incremental adaptation algorithm. Experimental results are
shown in Section 5. Section 6 concludes the article.

2. RELATED STUDY

2.1. Unsupervised Domain Adaptation for
Object Detection
The key idea of adversarial learning (Chen et al., 2018, 2020; Saito
et al., 2019; Csaba et al., 2021; Vibashan et al., 2021) is forcing
backbone networks to produce domain-invariant features, which
is useful for detecting target domains, and confusing domain
discriminators by using a Gradient Reversal Layer (GRL)module.
In Khodabandeh et al. (2019), Kim S. et al. (2019), Zhao et al.
(2020), and Csaba et al. (2021), the authors utilize high-confident
results of the target domain by a source-trained model and re-
trained it on the target model. Due to the domain discrepancy
existing between the source and the target domains, the authors
translate target-domain images into source-like ones, commonly
using Generated Adversarial Networks (GANs) (Chen et al.,
2020; Hsu et al., 2020; Csaba et al., 2021). Contrary to the former,
domain randomization (He and Zhang, 2019; Kim T. et al., 2019)
is to translate the source domain into target-like images for
generalization on the target domain. Mean-Teacher (Cai et al.,
2019; Deng et al., 2021) is similar to self-supervised learning
on unlabeled data, transferring knowledge from a source-teacher
model to a target-student model. Objective relations can be
modeled by graphs and limited via regularization (Cai et al., 2019;
Xu et al., 2020) for detection.

Most recent studies use GAN-based approaches, such as Chen
et al. (2020) and Csaba et al. (2021). However, these approaches
are not applicable for domain-incremental adaptation because
GANs aim at only a pair of domains per time. In incremental
settings, the number of domains is normally more than two.
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FIGURE 1 | Illustration of the single-step domain adaptation and domain-incremental adaptation. The color blue, purple, and red represents the source domain, the

first target domain (A), and the second target domain (B), respectively, while different shapes mean different classes in one domain. Single-step domain adaptation

consists of pixel-level and instance-level alignment to further minimize the domain gap. For domain-incremental cases, the novel target domain needs to align with all

previous domains.

Thus, GANs should be re-trained among previous domains and
new domains, which is time and labor-consuming for multi-
scenario deployment.

2.2. Incremental Learning
Incremental learning is also known as continual learning

or lifelong learning, which is proposed for dealing with
catastrophic forgetting problems on previously learned tasks.
As mentioned in Jing et al. (2022), on the one hand, the

algorithm is required to integrate new knowledge and transfer

old knowledge (plasticity). On the other hand, it must prevent
the significant interference of new knowledge with existing
knowledge (stability). Correspondingly, the human brain can

keep old knowledge in mind and simultaneously extract the
useful part to learn new knowledge. Therefore, the mechanism
for balancing between plasticity and stability in brains inspires
the study of incremental learning.

Existing studies mainly focus on classification tasks, which can
be divided into three groups, i.e., rehearsal-based, regularization-
based, and parameter-isolation-based methods. Rehearsal-based
methods, like the meaning of “rehearsal,” are to hold a few data
of historic tasks (Rebuffi et al., 2017; De Lange and Tuytelaars,
2020) or to generate it with a given data distribution (Lavda
et al., 2018). Regularization-based methods include two sides:
data-focused (Zhang et al., 2020; Kurmi et al., 2021) and prior-
focused (Lee et al., 2017; Aljundi et al., 2018). The former
mainly distills knowledge from previous-trained models to fit
the new data, while the latter limits the variation of important
model parameters. Parameter-isolation-based methods, namely
different parameters for different tasks, copy (Xu and Zhu, 2018;
Rajasegaran et al., 2020) or freeze (Mallya et al., 2018; Serra et al.,
2018) old model parameters when meeting new tasks.

As mentioned before, the above existing methods are
primarily for classification tasks, and only a few of them can
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be used for object detection tasks. Detection approaches mainly
follow the framework of knowledge distillation (Ramakrishnan
et al., 2020; Zhou et al., 2020) and meta-learning (Joseph et al.,
2020). Both of them concentrate on class-incremental scenarios.
However, domains and tasks in this study are synchronously
incremental while the category space is shared. Liu et al. (2020)
have proposed incremental methods across multiple datasets,
transcending previous studies with only single-style datasets. But
our study supposes that domain-gap is the main factor.

2.3. Incremental Multi-Domain Adaptation
Models can prevent forgetting previous domains by applying
incremental learning to multi-domain adaptation. In Su et al.
(2020), the authors utilize gradient regularization to hold
discrimination of source domains and maintain that of the
previous target domain. Similarly, Volpi et al. (2021) propose a
domain randomization method for random domain distribution
and design a meta-learning-based strategy for adapting to each
auxiliary domain. In Kim et al. (2020), the authors propose
to train a memory module for each target domain by Double
Hinge Adversarial Loss. Wei et al. (2020) introduce a knowledge
distillation term to ensure semantic-level consistency between
the source domain and each target domain. This study consists
of two same models, one for ensuring the consistency of the
high-level semantic information, and the other for performing
adversarial learning between the source domain and all target
domains. It seems like a “multi-target domain adaptation.” An
image from the source domain is constantly fed into two models,
which requires much heavy computation. The different point of
our study in this article is that we assume tasks and domains
are both incrementally appearing while preferable pseudo-labels
of one-task target domain can be utilized for training in the
next task.

3. SINGLE-STEP DOMAIN ADAPTATION

First, we introduce single-step domain adaption which is the base
network for our proposed framework. Pixel-level and instance-
level adversarial training strategies are adopted in this study to
access domain-invariant features.

In single-step domain adaptation, it assumes that there exist
two domains, one is a fully-annotated source domain D

S =
{

xSi , y
S
i

}nS

i=1
where xSi ∈ XS, ySi ∈ YS and another one is a raw

target domain D
T =

{

xTi
}nT

i=1
where xTi ∈ XT . According

to the definition of unsupervised domain adaptation, these two
domains have different data distributions but share the same
categories. That is to say,P

(

XS
)

6= P
(

XT
)

and C
(

XS
)

= C
(

XT
)

,
where P and C indicate the data distribution and category space,
respectively.

3.1. Multi-Level Domain Adaptation
As shown in Figure 2, the backbone network can be separated
into three parts Fl(l = 1, 2, 3), to acquire three-level features
f l for pixel-level adaptation. Besides, we denote the two fully-
connected layers after the ROI-Alignmodule as F4 and the output
of F4 as f 4 for instance-level adaptation. Before adaptation, all

of the f l(l = 1, 2, 3, 4) pass Gradient Reversal Layers (GRLs)
for extracting domain-invariant features by using adversarial
training. Three pixel-level domain classifiers Cl

pix and one

instance-level domain classifier Cins with a fully-convolutional
structure, are constructed to discriminate which domain each
pixel (instance) of the features f l is from. The optimization
objectives of four domain classifiers are to output corresponding
domain maps, 0 for the source domain and 1 for the target
domain.

L
l
pixel = Lpixel(C

l
pix(f

l
S), 0)+ Lpixel(C

l
pix(f

l
T), 1) (1)

Lins = Lins(Cins(f
4
S ), 0)+ Lins(Cins(f

4
T ), 1) (2)

whereLpixel andLins are regarded as cross-entropy and focal loss,

respectively. f lS and f
l
T represent the l-th layer features from source

domain data DS and target domain D
T , respectively.

3.2. Single-Step Objective Function
Denote C and B as the abbreviation of all domain classifiers
and remaining networks, respectively. Combining supervised
loss Ldet and unsupervised domain adaptation loss Ladv with a
trade-off weight λ, the overall loss function can be designed as

Ladv(D
S,DT) =

3
∑

l=1

L
l
pixel + Lins (3)

Lall(D
S,DT) = Ldet(D

S)− λ · Ladv(D
S,DT) (4)

Because only the source images have ground-truth labels, the
supervised loss is only performed on the source domain D

S.
Moreover, the unsupervised adversarial loss is adopted in
two domains, D

S and D
T . The subtraction sign represents

adversarial learning.

M← min
B

max
C

Lall(D
S,DT) (5)

Given the loss function shown in Equation 4, the optimization
objective is to maximize the gradient from Ladv of domain
classifier C and minimize that of other modules B. In this way,
B aims to confuse the discrimination of C and generate domain-
invariant features. Thus, we can obtain the adapted model M
from the source domain D

S to the target domain D
T .

4. DOMAIN-INCREMENTAL ADAPTION

Based on the single-step domain adaption in Section 3, the
framework of domain-incremental adaption can be further
constructed in this section. To overcome the computation
intensive and under-fitting problems, different from the
traditional methods which either train a model for each pair
of source-target domains or connect target domains in one,
we propose a domain-incremental adaptation framework that
adapts from a mixed source domain to the new target domain.
We refer to the process of the human learning, dividing the
whole incremental learning framework into two main parts: the
“Recall” and “Adapt” stages. The former is akin to reviewing the
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FIGURE 2 | Overview of single-step domain adaptive model. The pink color represents the source domain, while the blue represents the target. This structure has

three pixel-level domain discriminators (C1
pix to C

3
pix ) and one instance-level discriminator (Cins).

previously learned knowledge (previous domains). The latter is
similar to studying new knowledge (the novel target domain),
which is performed by finding the common point between
the old knowledge and the new knowledge. After training
through the proposed framework, the final model can maintain
a balance between the memorability of previous domains and
the discriminability of the new domains. Details will be given in
this section.

First, we provide some preliminaries. Compared with
single-step domain adaptation, domain-incremental adaptation
contains multiple unlabeled target domains instead of one, i.e.,

D
T
k
=

{

xTi
}nT

i=1
. In contrast to multi-target domain adaptation,

domain-incremental adaptation is required to learn step-by-step,
i.e., first from the labeled source domainD

S to the first unlabeled
target domain D

T
1 , then to the second unlabeled target domain

D
T
2 . The relationship between each target domain and the source

domain, without doubt, follows the principle above.Moreover, all
the target domains have mutually unique data distributions but
shared semantic space, namely, P

(

XT
m

)

6= P
(

XT
n

)

and C
(

XT
m

)

=

C
(

XT
n

)

wherem 6= n.

4.1. Build Domain Tree
In single-step domain adaptation, which only adapts from one
domain D

S to another DT
1 , the adaptation order is determined.

In contrast to the single-step adaptation, domain-incremental
adaptation is supposed to continually adapt toward a new target
domain D

T
2 after performing its latest adaptation process. The

model needs to build the next adaptation task in order to
transfer knowledge from the previous domains to the new one.
Specifically, it has two options: either from D

S to D
T
2 or from

D
T
1 to D

T
2 , which depends on the discrepancy between the two

domains. If the domain discrepancy between D
T
1 and D

T
2 is

smaller than that of between D
S and D

T
2 , we ought to design the

next task from D
T
1 to D

T
2 because a smaller domain discrepancy

contributes to easier knowledge transfer.
Here, we provide a simple example for illustration purposes.

Assume that Cityscapes and Foggy-Cityscapes are the source
domain D

S and the first target domain D
T
1 , respectively, a model

adapting from Cityscapes to Foggy-Cityscapes is trained, namely
“Task 1.” In the following, Rainy-Cityscapes appears in the form

of a new target domainD
T
2 . To ascertain the discrepancies among

these three domains, we sample an equal number of images
from each domain at random and adopt approaches for data
dimension reduction (Van der Maaten and Hinton, 2008). As
shown in Figure 3, the center of each domain is calculated and
marked with a star. It is clear to find that the discrepancy between
Foggy-Cityscapes (DT

1 ) and Rainy-Cityscapes (DT
2 ) is smaller

than that between Cityscapes (DS) and Rainy-Cityscapes (DT
2 ).

Therefore, themodel is required to adapt from Foggy CitysScapes
(DT

1 ) to Rainy-Cityscapes (D
T
2 ) rather than from Cityscapes (DS)

to Rainy-CitysScapes (DT
2 ), namely “Task 2.”

4.2. A Framework for Domain-Incremental
Adaptation
4.2.1. How to Perform Next Adaptation Task
Suppose that themodelM1 completes the first domain adaptation
task from D

S and D
T
1 and is able to generate pseudo labels of

theDT
1 . After determining the adaptation order during the whole

domain-incremental learning process, we first consider that the
model M1 can be continually adapted from D

T
1 to D

T
2 . To be

specific, DT
1 acts as the source domain of the second domain

adaptation task. The training steps are formulated as:

M1 ← min
B1

max
C1

Lall(D
S,DT

1 ) (6)

M2 ← min
B2

max
C2

Lall(D
T
1 ,D

T
2 ) (7)

However, the above approach is susceptible to the inaccurate
labels in D

T
1 . We involve the source domain D

S in the domain-
incremental learning process in view of the ground-truth labels
inD

S. Contrast toWei et al. (2020) which feedsDS for knowledge
distillation, we combine D

S and D
T
1 as a new source domain

D
S
new for the second adaptation task. Therefore, the domain-

incremental learning procedure can be reformulated as:

M1 ← min
B1

max
C1

Lall(D
S,DT

1 ) (8)

M2 ← min
B2

max
C2

Lall(D
S
new,D

T
2 ) (9)
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FIGURE 3 | Left: Visualization of data distributions of Cityscapes (Cordts et al., 2016), Foggy-Cityscapes (Sakaridis et al., 2018), and Rainy-Cityscapes (Hu et al.,

2019), indicated by red, green, and blue dots, respectively. Right: Illustration of Domain Tree.

4.2.2. Self-Training With Two Domains
The disadvantage of simply combining two datasets (domains)

into one is obvious. On the one hand, if one domain has ground-

truth labels while the other only has unreliable pseudo labels,

training the model with these inaccurate labels will decrease
the performance of the latest target domain. On the other

hand, sampling images randomly from a hybrid dataset can

cause inconsistent data distribution of two consecutive inputs.

This case will reduce the model generalization capabilities and

increase the difficulties in model fitting, thus obtaining sub-
optimal results.

To solve these problems, inspired by Ramamonjison et al.

(2021), we propose to sample one image from the source domain

D
S and the latest target domain D

T
k
, respectively, halve their

long edges and assemble them from left to right in a stochastic

order. We adopt similar ways to transform and concatenate
corresponding data for annotations. Thus, a step of input can

both contain images from two different domains and not bring
extra computational costs. The shape of input images remains

the same before combining two images and after processing.
Moreover, we extend the self-training framework with patch-
based adversarial losses. In pixel-level and instance-level domain

adversarial learning, it usually takes a tensor of zeros or ones as
the optimization goals of domain maps when the input is from

either the source domain or the target domain. However, for

our cases, we modify the ground-truth domain maps because an
input image contains information from two domains. As shown
in the upper right corner of Figure 4, if the left side of the
input is from the source domain, the left half of the ground-
truth domain map is composed of zeros or ones otherwise.
The primary purpose is to enhance discriminability on two
domains in one image. Batch Normalization (BN) layers (Wang
et al., 2019) in a trained model are responsible to store the
running mean and variance in a batch of images, encoding the
style-specific information from each domain so that we only
update the learnable parameters in BN layers while freezing
other parameters during the self-training process. Given only
one image, the model can generate domain-invariant features
for both the source domain and the target domain through the
domain discriminator. After performing self-training with an
adapted model, the quality of pseudo labels of D

T
k

is further
enhanced and we can fetch refined pseudo labels for the following
domain adaptation task.

4.2.3. Domain-Incremental Learning
On the basis of the aforesaid “Self-Training” strategy, we propose
a two-stage domain-incremental learning framework. Suppose
a model trained from the source domain D

S and the k-th
target domain D

T
k
by using the single-step domain adaptation

algorithm mentioned in Section 3 can be obtained asMk. Coarse
pseudo labels ofDT

k
are generated with the weight ofMk, coming
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FIGURE 4 | (A,B) Illustration of the “Recall” and “Adapt” stage. In the first “Recall” stage, boxes in red and yellow represent ground-truth labels of the source domain

and pseudo labels of the latest target domain, respectively. In the second “Adapt” stage, we consider the mixed source domain as the source domain and complete

adaptation. Black and white in the ground-truth domain maps signify the source domain (0) and the target domain (1).

into D
T
kp

where the subscript p represents a target domain with

pseudo labels. In the first stage named “Recall,” we group D
S

and D
T
kp

into D
S
new, feed it into the network, and train Mk

with the above “Self-Training” strategy. Stage “Recall” aims to
raise the quality of pseudo labels and reduce the degree of
knowledge forgetting, which will be further demonstrated in the
later ablation study section. In the second stage “Adapt,” we
update the labels of DS

new via the refined pseudo labels of DT
kp

from the “Recall” stage. After that, we take D
S
new and D

T
k+1

as
the labeled source and unlabeled target domain respectively and
perform a new domain adaptation task with both detection and
adaptation losses. In this stage, the ground-truth domain map
of D

S
new is 0 instead of a combination of 0 and 1. Details of

our proposed learning framework are shown in Figure 4 and
Algorithm 1.

5. EXPERIMENTS

5.1. Datasets and Scenarios Setting
5.1.1. Datasets
Weutilize four commonly used datasets to verify the effectiveness
of our proposed framework. Sim10K (Johnson-Roberson et al.,
2017) is a virtual dataset consisting of 10,000 images snapped
from Grand Theft Auto V (GTA5). Notably, it contains only
one category (“Car”). Cityscapes (Cordts et al., 2016) is a
common dataset with urban driving scenes from 50 different

Algorithm 1 | Domain-incremental adaptation framework.

Input: Domain data DS, DT =
{

DT
1 , ...,D

T
K−1

}

, DT
K .

Output: Final modelM.

1: if K=1 then
2: ******** First domain adaptation task ********
3: Initialize model from scratch.
4: Perform domain adaptation with DS and DT

1 .
5: Get adaptive modelM1.
6: else
7: ******** Domain-incremental adaptation task ********
8: Initialize model fromMK−1.
9: Generate coarse pseudo label from DT

K−1.

10: Integrate domain data DS
new =

{

DS,DT
K−1

}

via
DomainMix.

11: “Recall Stage”: Self-Training with patch-based domain
adaptation.

12: “Adapt stage”: Update labels of DS
new and perform Domain

adaptation from DS
new to DT

K .
13: Obtain adaptive modelMK .
14: end if

cities under clear weather and contains 2,975 training images
and 500 validation images. On account of pixel-wise annotations,
we utilize the minimum enclosing rectangle to obtain its
bounding-box labels. Foggy-Cityscapes (Sakaridis et al., 2018)
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and Rainy-Cityscapes (Hu et al., 2019) are synthetic datasets
that adopt GAN-like techniques to generate various degrees of
foggy and rainy weather. Both Foggy-CitysScapes and Rainy-
CitysScapes have identical content (annotations and subset
split) with CitysScapes. Rainy-CitysScapes lacks the “train”
class in the validation subset. Thus, we randomly sample
35 images from all 169 images with the “train” class in
the training subset and incorporate them with the original
validation subset.

5.1.2. Group of Experiments
Given these datasets, we design two series of experiments
to evaluate our model in domain-incremental adaptation:
(i) Diverse Weathers. Cityscapes→ Foggy-Cityscapes→Rainy-
Cityscapes. The performance of all eight classes (bus, bicycle,
car, motorcycle, person, rider, train, truck) is observed and the
total precision is calculated. (ii) Virtual-to-Real. SIM10K→
Cityscapes→Foggy-Cityscapes→Rainy-Cityscapes. Due to the
category space limitation of the Sim10K, this series of
experiments only validate the “Car” models.

5.2. Implementation Details
We build our detector with ResNet-101 (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015) datasets as the
backbone network to extract accurate visual representations for
subsequent domain adaptation. Each input image is resized to
600 pixels on the shorter side through the training process
and pre-processed via random flipping. During each iteration
of training, one source-domain image and one target-domain
image are input successively. For the primary domain adaptation
task, from the source domain to the first target domain, we
follow a regular training strategy with a learning rate of 0.001
for 50k iterations and then decrease by a factor of 10 for the
last 20k iterations. For the other adaptation tasks, e.g., from the
first target domain to another new target domain, for instance,
we maintain a lower learning rate of 0.0001 and report the
model which performs best on the Rainy-Cityscapes dataset.
When generating pseudo labels, we use a confidence threshold
of 0.5 and 0.7 for Experiments Group I and II, respectively. At
the validation phase, we demonstrate the performance of our
model by the mean average precision (mAP) of all categories
with a widely-used intersection over union (IoU) threshold
of 0.5. Supposed that APi is the precision of category i, the
mAP is calculated by the means of all APi. Finally, we use
the PyTorch framework to implement our domain-incremental
learning framework.

5.3. Comparison Results With Incremental
Learning Methods
Considering our domain-incremental learning framework,
orthogonal to all single-step domain adaptation methods, we do
not compare it with other state-of-the-art proposals in single-
step settings. However, we also incorporate some of them into
our framework to evaluate their effectiveness because the main
focus of this article is incremental learning applied in domain
adaptation, such as SWDA and HTCN without interpolation
(hereinafter called HTCN).

We perform three different incremental learning strategies
for each origin single-step domain adaptation method. For the
sake of fairness, each comparison is conducted on the basis of
the same single-step domain adaptation approach. The strategies
are briefly described below. “MIX” means that the model is
continually trained on mixed target domains, including old and
new ones. “FT” is to directly fine-tune the model with the
new domain as the target domain while keeping the source
domain. Similarly, “PFT” firstly generates pseudo labels via
trained models of the last adaptation task and then utilizes them
to perform the next adaptation period. Besides, we also specify
the lower-bound and upper-bound bounds. “Source only” trains
a detector only with the source domains and evaluates it on
target domains without adaptation to new target domains. Other
than “PFT,” “SFT” fine-tune the last trained model from the
old target domain with ground-truth labels to new domains,
while “SMFT” has access to the ground-truth source and the
last target domain. Moreover, “SSFT” also adopts a two-stage
training strategy but utilizes ground-truth labels of the last target
domain in the second stage. The degree of forgetting during the
incremental learning process is marked via a number with the
symbol “↓.” It is calculated by subtracting MAPpre from MAPaft
where MAPpre is the accuracy before adapting to the new target
domain while MAPaft means the precision after adapting. We
choose “ILB” (Wei et al., 2020) as the state-of-the-art domain-
incremental adaptation method. Due to a lack of source code, we
reproduce “ILB” and report the results on our dataset settings.

5.3.1. Diverse Weathers
In this section, we verify the performance of our proposed
domain-incremental learning framework on “DiverseWeathers.”
The first task is adapting from Cityscapes to Foggy-Cityscapes.
The second task is continually adapting to Rainy-Cityscapes.
First, we train a model with the single-step domain adaptation
method described in Section 3, completing an adaptation task
from Cityscapes to Foggy-Cityscapes. The detection results (37.1
on the Foggy-Cityscapes dataset) are shown as “Base-line” in
Table 1. Then we report multiple comparison experiment results
on both Foggy-Cityscapes and Rainy-Cityscapes. The former is
to inquire about the degree of forgetting on the previous target
domain, i.e., Foggy-Cityscapes, while the latter is to investigate
the effects on the new target domain, i.e., Rainy-Cityscapes.
Noted that all of the next experiments will be carried out on
the basis of the “Base-line” model. The results are shown in
Table 1. From the results, we can see that ourmethod achieves the
highest accuracy on the previous target domain (36.1 on Foggy-
Cityscapes), obtaining a minimum performance decline (1.0 vs.
1.1 with PFT vs. 2.1 with MIX vs. 3.1 with FT vs. 1.5 with ILB).
Meanwhile, our framework gets the highest accuracy on the new
target domain (38.5 on Rainy-Cityscapes vs. 28.8 with Source-
only vs. 32.5 with PFT vs. 36.5 with MIX vs. 37.7 with FT vs. 37.3
with ILB). It indicates that our approach has the ability to not
only transfer knowledge from previous domains but also avoid
the forgetting issue. By contrast, all other incremental learning
methods have different levels of drawbacks. “FT” neglects to
recall previous domains so that it is prone to cause catastrophic
forgetting and a sharp decline in the performance of the previous
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target domain (from 37.1 to 34.0 on Foggy-Cityscapes) even
though it gains a second-best result on the new target domain
(37.7 on Rainy-Cityscapes). As for “MIX,” models achieve poor
performance on both the previous and new target domain
(35.0 on Foggy-Cityscapes and 36.5 on Rainy-Cityscapes). The
main reason is that the model cannot adapt to diverse data
distributions simultaneously. “PTF” can protect against loss of
previous-learned knowledge (36.0 on Foggy-Cityscapes) but fails

TABLE 1 | Results of “Diverse Weathers” adaptation.

Methods Bus Bicycle Car Motorcycle Person Rider Train Truck mAP

Foggy-Cityscapes

Source-

only

32.1 31.6 36.0 24.1 25.9 39.4 9.1 16.4 26.8

Base-line 46.5 34.1 45.6 29.5 32.7 45.8 38.0 24.3 37.1

PFT 45.6 33.1 44.3 25.5 30.6 44.8 41.3 23.0 36.0(↓ 1.1)

MIX 44.3 33.2 43.7 29.0 29.8 42.2 34.1 23.7 35.0(↓ 2.1)

FT 46.7 31.9 43.8 25.8 28.8 43.4 34.3 25.1 34.0(↓ 3.1)

ILB 43.0 34.5 44.4 26.2 31.5 44.8 39.2 21.3 35.6(↓ 1.5)

Ours 47.3 34.3 44.5 25.9 31.1 44.2 35.2 25.9 36.1(↓ 1.0)

SFT 51.3 34.4 48.8 32.8 32.7 45.5 46.8 29.3 40.2

SMFT 52.4 36.3 45.7 33.8 33.3 46.2 45.7 29.6 40.4

SSFT 52.0 34.7 44.7 30.3 32.4 45.0 54.8 28.2 40.3

Rainy-Cityscapes

Source-

only

60.7 27.7 35.2 1.4 23.6 55.5 24.7 1.6 28.8

PFT 76.5 28.2 44.2 1.6 24.4 59.6 20.5 5.2 32.5

MIX 97.3 28.8 43.3 1.5 23.1 58.5 33.8 6.0 36.5

FT 95.3 27.8 43.7 2.2 23.8 59.7 41.1 8.4 37.7

ILB 91.6 31.4 44.1 5.7 24.1 60.6 33.1 7.9 37.3

Ours 89.1 30.9 44.0 1.7 23.6 60.2 38.7 19.0 38.5

SFT 87.4 32.4 48.7 3.4 25.1 60.8 50.2 25.7 41.7

SMFT 89.3 33.4 45.4 15.5 24.8 57.9 47.9 21.6 42.0

SSFT 89.3 28.0 44.2 6.7 23.7 56.9 50.2 20.9 40.0

The bold and underline values represents the “Highest” and the “Second Highest” result.

to learn new domains effectively (32.5 on Rainy-Cityscapes)
due to incorrect pseudo labels. In addition, putting experiment
results on Foggy-Cityscapes and Rainy-Cityscapes together, ILB
obtains a suboptimal performance (35.6 on Foggy-Cityscapes and
37.3 on Rainy-Cityscapes). In summary, our proposed domain-
incremental learning framework has the best comprehensive
performance on whether previous or new target domain (36.1
on Foggy-Cityscapes and 38.5 on Rainy-Cityscapes). In the
supervised methods, we adopt the ground-truth labels to replace
pseudo labels and thus the performance has a large improvement.
Moreover, “SMFT” has the highest accuracy, which proves that
the combination of the source domain and the last target domain
contributes to adapting to the new target domain.

5.3.2. Virtual-to-Real
To the best of our knowledge, we are the first to survey
incremental adaptation results from virtual datasets to real-
world ones. In this section, the experiment includes three
tasks: a) an initial task: adaptation from the source domain
(Sim10K) to the first target domain (Cityscapes); b) the first
incremental task: adaptation to the second target domain (Foggy-
Cityscapes); c) the second incremental task: adaptation to the
third target domain (Rainy-Cityscapes). On account of the
increasing number of datasets, we display experimental results
in the form of histograms rather than tables. Moreover, due to
the availability of only one class in the source domain (Sim10K
dataset), we only evaluate the performance of “Car.” The related
experimental results can be found in Figure 5. Note that we
do not draw the adaptation results on task a) but directly
compare the accuracies on target domains after performing
task b) and task c). This is because we can learn about the
degree of forgetting on previous target domains by comparing
the heights of blue bars (Cityscapes) and orange bars (Foggy-
Cityscapes). The left side shows the results of task b). Our
proposed domain-incremental learning framework gains the best
performance (41.9 on Cityscapes and 26.3 on Foggy-Cityscapes)
in comparison with other incremental learning based methods.
For example, FT obtains a second-best result on the first target
domain (36.8 on Cityscapes) but a poor performance on the

FIGURE 5 | Left: The adaptation results from Sim10K to Foggy-Cityscapes. Right: The adaptation result from Sim10K to Rainy-Cityscapes. The vertical and horizontal

axis represents overall performance (mAP) and different datasets (domains).
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second target domain (17.6 on Foggy-Cityscapes), which gets
the same conclusion as demonstrated in Section 5.3.1. Other
methods (MIX, PFT) have similar conclusions. Then we focus
on the performance comparison of task c) shown on the right
side of Figure 5. We perform domain-incremental adaptation
experiments and train the model based on the trained model
from task b). In terms of previous target domains, compared to

TABLE 2 | Ablation study results on “Diverse Weathers” adaptation.

Methods BusBicycle Car MotorcyclePersonRiderTrainTruck mAP

Foggy-Cityscapes

HTCN-

Baseline

46.2 35.4 44.3 25.6 32.3 46.5 35.1 26.7 36.5

HTCN-MIX 46.4 30.9 43.1 27.7 29.0 43.6 32.2 22.4 34.4(↓2.1)

HTCN-FT 41.7 29.0 42.8 23.4 27.8 40.2 33.2 26.8 33.1(↓3.4)

HTCN-PFT 47.5 32.7 43.9 23.4 30.9 45.4 34.3 27.4 35.7(↓0.8)

HTCN-ILB 47.6 31.8 43.4 24.2 29.5 44.9 26.7 29.3 34.7(↓1.8)

HTCN-Ours 49.5 32.0 43.6 24.3 30.0 43.9 31.1 29.8 35.5(↓1.0)

Ours 47.3 34.3 44.5 25.9 31.1 44.2 35.2 25.9 36.1

w/o Recall 43.7 35.4 42.5 22.1 28.8 41.2 34.4 23.8 33.5(↓2.6)

w/o

Domain-Mix

44.0 31.9 41.8 25.6 28.2 42.6 33.1 26.2 34.2(↓1.9)

Rainy-Cityscapes

HTCN-MIX 82.7 26.8 43.5 2.3 23.2 53.6 41.2 16.9 36.3

HTCN-FT 84.1 26.1 43.3 3.5 23.5 54.3 37.8 20.6 36.7

HTCN-PFT 76.4 27.3 43.9 3.9 24.5 58.8 33.2 18.2 35.8

HTCN-ILB 81.8 26.3 43.1 5.5 24.0 58.3 41.1 19.9 37.5

HTCN-Ours 85.5 27.6 43.5 7.4 23.5 58.5 37.5 24.8 38.5

Ours 89.1 30.9 44.0 1.7 23.6 60.2 38.7 19.0 38.5

w/o Recall 77.9 29.3 44.3 1.9 23.9 59.7 29.0 14.2 35.0(↓3.5)

w/o

Domain-Mix

79.0 30.4 43.8 2.4 23.1 58.9 31.6 17.5 35.8(↓2.7)

The bold and underline values represents the “Highest” and the “Second Highest” result.

the performance of task b), the accuracies show no significant
decline (from 41.9 to 42.1 on Cityscapes and from 26.3 to
26.2 on Foggy-Cityscapes). In contrast, the performance declines
significantly with the methods of whether MIX, FT, or PFT. The
mAP of FT, for instance, drops from 36.8 to 34.6 on Cityscapes
for being lack of constraints on previous target domains. With
regards to the new target domain (Rainy-Cityscapes, signified
by gray bars in Figure 5), our proposed domain-incremental
adaptation framework obtains the best grade (32.6 vs. 9.3 with
MIX vs. 17.6 with FT vs. 29.4 with PFT). Moreover, instead of
directly utilizing the ground-truth labels of the source domain
(Sim10K), we also attempt to generate pseudo labels of the
first target domain (Cityscapes) to build task c). The result is
shown as the “OURS-CS” bar on the right of Figure 5. Although
the performance on Cityscapes slightly drops, the accuracies on
Foggy and Rainy Cityscapes are actually improved, particularly
for Foggy-Cityscapes (from 26.2 to 32.2). We suspect that the
domain gap between the source domain (Sim10K) and the new
target domain (Rainy-Cityscapes) contains not only a style-based
gap but also a weather-based gap. Such a domain gap is too
large for models to fit in, limiting the overall performance.
This conclusion confirms our views in Section 4.1, and it
is essential for domain-incremental learning to determine the
adaptation order.

5.4. Ablation Study
5.4.1. Two-Stage Training Strategy
To verify the impact of the “Recall” stage, when we obtain
model Mk−1 adapted from the source domain DS to the last
target domain DT

k−1
, we directly generate pseudo labels of

DT
1 , combine it with DS as a new source domain and adapt

toward DT
k
. In Table 2, the sharp performance declines (2.6

and 3.5 on Foggy-Cityscapes and Rainy-Cityscapes, respectively)
show that mere single-stage adapting from a mixed source
domain to the new target domain degrades the performance

FIGURE 6 | The mAP on all target domains with different confidence thresholds. The left belongs to the experiments “Diverse Weather” (from Cityscapes to

Rainy-Cityscapes) while the right is “Virtual-to-Real” (from Sim10K to Rainy-Cityscapes). The vertical and horizontal axis represents overall performance (mAP) and

different choices of confidence thresholds.
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FIGURE 7 | Visualized detection results on each series of experiments. The red rectangles indicate the locations of objects. (A) “Diverse Weather” with Methods of

Section 3 (Proposed Framework). (B) “Diverse Weather” with Methods of Section 3 (PFT). (C) “Diverse Weather” with Methods of Section 3 (MIX). (D) “Diverse

Weather” with Methods of Section 3 (FT). (E) “Diverse Weather” with HTCN. (F) “Virtual to Real” with Methods of Section 3.

on both previous and new target domains. It thereby proves
that two stages play an integral role in further avoiding
catastrophic forgetting and utilizing the ground-truth source
domain to support the transfer of knowledge. Moreover, in
the last line of the Table 2, we also compare the results with
“Domain-Mix” or without “Domain-Mix.” The comparison
results (degrading 1.9 and 2.7 on Foggy-Cityscapes and
Rainy-Cityscapes) indicate that “Domain-Mix” contributes to
generating refined pseudo labels of the last target domain.
Without “Domain-Mix,” the training process of the “Adapt” stage
can only adopt coarse pseudo labels with a tremendous amount
of noise.

5.4.2. Applicability to Other Domain Adaptation

Methods
We consider “HTCN” (Chen et al., 2020) without interpolation
while other settings remain the same as in Chen et al.
(2020). From Table 2, it can be observed that HTCN with our
proposed domain-incremental framework has a comprehensive
optimum performance (35.5 on Foggy-Cityscapes and 38.5 on
Rainy-Cityscapes) than other incremental-learning approaches.
Although PFT gains 35.7 on the previous target domain
(Foggy-Cityscapes) which is a little better than our methods, it
remains a really poor performance on the new target domain
(35.8 on Rainy-Cityscapes) due to inaccurate pseudo labels
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from Foggy-Cityscapes. Generally, ILB obtains the second-best
accuracy on two target domains (34.7 on Foggy-Cityscapes and
37.5 on Rainy-Cityscapes). In a word, our proposed domain-
incremental learning framework can acquire a state-of-the-art
accuracy, no matter what the single-step domain adaptation
algorithm is adopted.

5.4.3. Performance With Different Confidence

Thresholds
We also study the overall performance under different confidence
thresholds, which affect the quality and quantity of pseudo
labels. Although a high threshold can make preferable pseudo
labels, it results in a reducing number of labels, which limits
the learning of models. On the contrary, a low threshold can
avoid the lack of labels, but it is easier to make mistakes, thus
generating a higher proportion of false labels. Through the results
from Figure 6, for the “Diverse Weather” experiments shown on
the left side, the detection accuracies on the previous and the
new target domains reach the highest (36.1 on Foggy-Cityscapes
and 38.5 on Rainy-Cityscapes) when the confidence threshold
is 0.6. As the increase or decrease of the confidence threshold
(from 0.6 to 0.8 or from 0.6 to 0.4), the mAP on two domains
simultaneously drops. As regards the “Virtual-to-Real” drawn
on the right, the performance peaks when 0.7 is selected as the
threshold. Compared to “Diverse Weather,” we find that this
series of experiments has a lower sensitivity to the increasing
confidence thresholds. With the improvement of the threshold
(from 0.7 to 0.8 then to 0.9), the mAP shows a slight fall or
even remains unchanged (from 42.0 to 41.5 then to 41.4 on
Cityscapes, from 26.2 to 26.4 then to 26.1 on Foggy-Cityscapes,
and from 32.6 to 32.0 then to 32.1 on Rainy-Cityscapes). In
a contrast, the accuracies drop significantly (from 42.0 to 41.0
then to 40.4 on Cityscapes, from 26.2 to 25.8 then to 24.2 on
Foggy-Cityscapes, and from 32.6 to 28.0 then to 25.8 on Rainy-
Cityscapes) with the decline of confidence thresholds (from 0.7
to 0.6 then to 0.5). We think that the model in the “Virtual-to-
Real” experiment generates superior detection results. They often
have higher confidence scores so high thresholds will not filter
out these results. To sum up, we determine to use 0.6 and 0.7 as
the confidence threshold to generate pseudo labels, respectively.

5.5. Visual Detection Performance
Figure 7 shows some visualized detection results on experiments
“Virtual-to-Real” and “DiverseWeathers.” It can be seen that our
proposed framework performs well in all target domains in terms
of avoiding catastrophic forgetting and transferring knowledge
to new domains. Specifically, in the figure, the top and middle
rows visualize detection results of “Diverse Weathers,” which
are the results on Foggy-Cityscapes before adaptation, Foggy-
Cityscapes and Rainy-Cityscapes after adaptation from left to
right. The only difference between these two rows is the adapted
methods of single-step domain adaptation, described in Section
3 and HTCN (Chen et al., 2020) respectively. Even if adapting
to the new target domain (Rainy-Cityscapes), the objects on the
previous target domain (Foggy-Cityscapes) remain unchanged
whether big or small or suffering occlusion. At the same time,
the adapted model performs well on Rainy-Cityscapes, detecting

the vast majority of objects (cars, walking people, and so
on). The bottom row belongs to “Virtual-to-Real” experiments
including Cityscapes, Foggy-Cityscapes, and Rainy-Cityscapes,
respectively. As mentioned in the Section 5.1.2, we only aim
at reporting the positions of cars. The visualized results show
that the model trained with our proposed domain-incremental
learning framework achieves a high level of detecting the
locations of cars.

6. CONCLUSION

In this article, inspired by the human brain’s ability to
both memorize the old knowledge and learn new knowledge,
we propose a domain-incremental adaptation framework that
harmonizes the discriminability andmemorability for single-step
domain adaptationmethods whenmeeting a new domain. Multi-
level domain adversarial training modules aim at extracting
domain-invariant representations to transfer knowledge from the
source domain to the current target domain. Although pseudo
labels could be a link between previous-learned knowledge, the
model is susceptible to be influenced by inaccurate and uncertain
pseudo labels. Tomitigate those negative impacts, we adopt a self-
training strategy with adversarial losses, assembling the last target
domain with pseudo labels together with the source domain
with ground-truth labels. Our domain-incremental learning
framework mainly includes two parts. The first “Recall” stage
is to retrospect old knowledge from previous target domains
so that it prevents memory deterioration and further refine
pseudo labels. The second “Adapt” stage is to adapt and transfer
from a combined source domain to the new target domain.
These two stages trains iteratively to find a balance between
learning and memorizing with only one labeled source domain.
Experimental results have shown that our proposed domain-
incremental adaptation framework performs the best compared
with the existing methods.
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