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Post-earthquake robots can be used extensively to inspect and evaluate building damage

for safety assessment. However, the surrounding environment and path for such robots

are complex and unstable with unexpected obstacles. Thus, path planning for such

robot is crucial to guarantee satisfactory inspection and evaluation while approaching the

ideal position. To achieve this goal, we proposed a distributed small-step path planning

method using modified reinforcement learning (MRL). Limited distance and 12 directions

were gridly refined for the robot to move around. The small moving step ensures the

path planning to be optimal in a neighboring safe region. The MRL updates the direction

and adjusts the path to avoid unknown disturbances. After finding the best inspection

angle, the camera on the robot can capture the picture clearly, thereby improving the

detection capability. Furthermore, the corner point detection method of buildings was

improved using the Harris algorithm to enhance the detection accuracy. An experimental

simulation platform was established to verify the designed robot, path planning method,

and overall detection performance. Based on the proposed evaluation index, the post-

earthquake building damage was inspected with high accuracy of up to 98%, i.e., 20%

higher than traditional unplanned detection. The proposed robot can be used to explore

unknown environments, especially in hazardous conditions unsuitable for humans.

Keywords: building inspection, inspection robot, building damage, shooting angle, detection performance

INTRODUCTION

A strong earthquake, which can damage the buildings that put them at risk of collapse at any
time, which threatens the safety of rescue forces. Thus, inspection and evaluation post-earthquake
buildings safety are crucial to devise rescue strategies and save survivors. The use of the robot with
remote sensing abilities are relatively safer under harsh conditions to avoid unnecessary injury to
the rescue team. Robot rapid inspection and evaluation damaged building for prompt rescue, quick
response and fast alarm can avoid numerous deaths, which are quite useful during emergencies.
However, the mobility of robot in a post-earthquake environment is complex and unstable owing
to unexpected obstacles, uneven ground, and other unknown situations. Therefore, compared with
the ordinary environment, the post-earthquake environment is much more complicated, and the
robot buildings inspection needs to overcome many difficulties (Figure 1).
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FIGURE 1 | Robot designed for the post-earthquake inspection and evaluation.

The first challenge for the robot used in a disastrous
environment is path planning. The main obstacle for the robot
to access the required area is the interference of uncontrollable
road obstacles in the post-earthquake scenario (Lin et al.,
2022). This involves planning a conflict-free path between the
specified start and end positions. For this purpose, there are
two solutions as follows: off-line planning (Morozov et al.,
2018) and online planning (Lu et al., 2020). Online planning
is more suitable in post-earthquake scenarios with minimal
path planning based on energy-saving requirements (Quagliarini
et al., 2018). Additionally, collision-free paths based on complex
environments were studied (Wang and Chen, 2022). Unmanned
technologies with highly variable terrain features have been
reported (Bayat et al., 2018). The complex environment formed
by extensive damage in dense areas of buildings (Demir et al.,
2021) is not conducive to the inspection of buildings by robots.
Usually, only a narrow space is available for the robot to pass.
However, the traditional dynamic path planning methods might
not be suitable for this purpose. Recently, reinforcement learning
(RL) was fused with path planning to navigate complex disaster
sites (Li et al., 2011; Zhao et al., 2018; Liu et al., 2021). It is a

feasible method to plan a safe path for the robot in demanding
environments with the help of RL so that robot can capture a
view of the building from a suitable angle for evaluating building
safety using photo processing algorithms. Additionally, robot-
assisted inspection is widely used in structure monitoring (Oh
et al., 2009; Murphy et al., 2011; Amhaz et al., 2016; Quintana
et al., 2016; Peel et al., 2018; Cai and Mostofi, 2019; Yan et al.,
2019; Lin et al., 2022). Although the background environment of
these applications is simple, but they provide a feasible concept
for the detection of buildings and their safety assessment under
demanding environments. The difficulty in the post-earthquake
environment is how the robot adapting complex shapes and
irregularly distributed obstacles (Mucka, 2013; Al-Baghdadi et al.,
2020; Luo et al., 2020; Su et al., 2020). It is obvious that the
traditional path planning methods are difficult to meet this
harsh condition.

The second challenge is how to accurately reflect the damage
of the building through photos, which can be used to predict
the damage caused by the further collapse of the building
in post-earthquake environment. It is a common method to
evaluation the safety of the building by the deformation of
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the building or the inclination angle with the ground (Lipecki,
2022), but the damage to the building by the earthquake can
often lead to more complex deformation, which makes the post-
earthquake environment building safety inspection is difficult.
Usually, the maximum inclination direction of building is further
collapse direction (Wu et al., 2021). Therefore, it is important
to accurately reflect the maximum inclination direction of the
building by adjusting the camera shooting angle.

The third challenge is that the photo method should be
fast and accurate to identify the building damage after the
robot obtains the picture. There are various technical solutions
for detecting building deformation and other feature analyses
(Wu and Liu, 2012; Shi et al., 2016; Huyan et al., 2019).
Considering the complexity of demanding environments and
the requirements of fast inspection and higher accuracy results,
corner point detection algorithm only extracts the corner point
information in the photo instead of the entire photo (Ye
et al., 2021; Zhang and Sun, 2021). It is a fast technique to
meet the detection requirement. However, the existed corner
detection algorithms have poor detection effect on crack features
with complex shapes (Hou, 2010; Zhong et al., 2010; Zheng
and Lin, 2020). Actually, combining an appropriate corner
point detection algorithm with robot path planning, capturing
damaged buildings in complex environments, and making fast
and accurate analysis and evaluation is significant to improve
safety in monitoring building damage.

The rest of the article is organized as follows: In the “Methods”
section, first of all, we propose a small-step path planningmethod
with modified reinforced learning (MRL) to optimize the path
of the robot to adapt to the complex and unstable environment.
Second, by planning the camera angle to obtain high-quality
photos for corner point detection. At last, we designed a
corner point detection algorithm based on the improved Harris
algorithm (H–G) for detecting tilt, displacement, cracks, and
other exterior features of a building. In the “Experiment and
Result” section, we confirmed the effectiveness and reliability of
the proposed method for corner point detection of buildings in
post-earthquake environment. In the “Discussion” section, we
discuss the potential shortcomings of the proposed method along

with more accurate building safety assessment detectionmethods
for the future. The “Conclusion” section summarizes the study.

METHODS

When a building safety inspection is planned in ordinary
environments, first, people need to arrive at the best location,
which near the building, and take the building photos, then
evaluate the safety of the building by detecting the corner points
in photos. However, compared with ordinary environments,
there are three difficulties when inspecting and evaluating
building damage in post-earthquake environments: (1) People
could not enter the environment to find a best location for take
photo, (2) it is difficult to find a best shooting angle to reflect
the inclination of the building, (3) the complex and irregular
cracks appearance on the building make the plain algorithm is
difficult to find the corner points on the building. For solve the
difficulties: (1) we propose a small-step path planning method
with modified reinforced learning (MRL) for the robot, which
simulates a human’s gait (small steps) to avoid obstacles in
complex environment, we use robot instead of humans to work
in post-earthquake environments, (2) we propose a method for
shooting angle planning, that the camera on the robot can obtain
a photo which is the best angle to reflects the inclination of the
building, and (3) we propose an improved corner point detection
algorithm for enhance the complex and irregular cracks detection
accuracy. Finally, we use these three techniques to inspect the
building in demanding environments, the detailed process is
shown in Figure 2.

Robot Small-Step Path Planning in
Demanding Environments
Figure 3 shows the process of post-earthquake robot inspection;
in Figure 3A, points P1 and P2 are the starting and ending
positions of the robot, respectively. Figure 3B shows the
distribution of obstacles along the path. Figure 3C shows the
object photographed by the robot from point P2.

In a post-earthquake environment, due to the complex
distribution of obstacles, people can only walk with a small-step

FIGURE 2 | Robots utilized to inspect and evaluate the building damage for safety considerations.
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FIGURE 3 | Scene description and modified reinforcement learning (MRL). (A) Top view of path planning environment. (B) Obstacle distribution. (C) Detection object.

(D) Process of MRL.

size (0.5m), at the same time, approach the target position by
continuously adjusting the walking direction. Inspired by human
behavior, we design an algorithm for the robot to avoid obstacles
and walking in the shortest distance in complex environments, as
shown in Figure 3D; RL helps the robot to plan the path using
small moving steps to ensure the path planning to be optimal in
a neighboring safe region so that the robot can avoid obstacles
within a diameter of 1.0m in steps of 0.5m while moving. After

a step-by-step iteration, the optimal walking path between the
detected target and the building was calculated.

In Figure 3D, MRL combines the image information (in 2D)
of the local environment and the overall environment using
multiple photos consisting of three dimensions as the input for
the neural network. The weights of the neural network are used
to learn the features and provide the basis for decision making
for obstacle avoidance in the output layer. The stepwise rolling
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Algorithm 1: Deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action–value function Q with random weights θ

Initialize target action–value function Q̂ with weights θ− = θ

For episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence

∅1 = ∅(s1)

For t = 0.5, T do

With probability ε, select a random action at

Otherwise select at = argmaxaQ(∅(st ), a; θ )

Execute action at in the emulator and observe reward rt and

image xt+ 1

Set st+1 = st, at, xt+1, and preprocess ∅t+1 = ∅(st+ 1)

Store transition (∅t, at, rt,∅t+1) in D

Sample random minibatch of transitions (∅j , aj , rj , ∅j + 1) from D

Setyj =







rj if episode terminates at step j + 1

rj + γ maxa′ Q
(

∅j+1, a
′
; θ−

)

otherwise

Perform a gradient descent step on [yj – Q(∅j , aj ; θ )]2 with

respect to the network parameters θ

Every C steps reset Q̂ = Q

End For

End For

optimization strategy in this study has a planning radius of 0.5m.
The forward direction of the robot within a step of 0.5m is given
in the output layer of the network (at 30◦ intervals for the path
direction selection) after one iteration. After obtaining the new
position, the new position information replaces the previous local
position information as the input to the network for the next
iteration. This cyclic process eventually provides the results for

multiple local small-step path optimization to cover the entire
environment. In the given environment, the walking path of the

robot via small steps and MRL updates the moving direction,

thereby enabling the robot to avoid unknown disturbances. The

algorithm is shown Algorithm table:

Planning Shooting Angle for High-Quality
Photos
After the small-step path planning method with MRL, the best
robot inspection location will be found. In order to obtain high-
quality photos to evaluating the safety of the building, the best
shooting angle needs to be found, as shown in Figures 4A,B, two
different angled photos of the building in the post-earthquake
environment, cracks shown at location-1 and location-2 in
photos are different. At the same time, because the oblique angles
is different that the clarity of the photo is also different. However,
the clear distribution of the cracks is important for evaluating
the safety of the buildings. Usually, the photos obtained from the
shooting angle of the damaged surface (forward profile) of the
building can best reflect the distribution of cracks (as shown in
Figure 4C), and the photos are also the clearest, the principle is
shown in Figure 4D, the camera in o position is radially offset
from the profile S, whereas the camera in o’ position is radially
perpendicular to the profile S. An appropriate depth of field is

the premise of obtaining a satisfactory photo. Under fixed lens
parameters, whether a camera can capture a satisfactory photo
depends on the appropriate depth of field (the difference between
the foreground depth and rear depth of field of a majority of
cameras is <1m). The depth of field is calculated, as shown in
Eq. (1).



















1L1 =
FδL2

f 2+FδL

1L2 =
FδL2

f 2−FδL

⇒ 1L = 1L1 + 1L2 =
2f 2FδL2

f 4 − F2δ2L2
, (1)

where δ represents the diameter of the allowable dispersion circle,
f denotes the focal length of the lens, F represents the shooting
aperture value of the lens, 1L1 denotes the front depth of field,
1L2 indicates the rear depth of field, and 1L denotes the depth
of field.

The size of the buildings detected in this study are larger
than the depth of field (the difference between the foreground
depth and the rear depth of field). To obtain clear photos of the
building, the adjustment of the angle between the camera and
the building (affecting the area of the depth of field) plays an
important role when capturing photos. The focal point of the
camera is located on the central axis of the building so that the
contour of the object is symmetrically distributed. This has a
significant impact on the detection results of the displacement,
crack, and deformation of the building in a post-earthquake
environment. Consider the axial section S of the building as
the reference plane. In Figure 4D, L1, L2, L3, and L4 are the
distances from position o (focal point of the camera) to points
P1, P2, P3, and P4 of the building, respectively, L1’, L2’, L3’,
and L4’ are the distances from the position o’ to the points
P1, P2, P3, and P4 of the building, respectively. However, L1
6= L2 and L3 6= L4. It can be observed from Eq. (1) that
1L of the two points P1 and P2 (and P3 and P4) as in the
photo captured by the camera is different, the position o’, L1’ =
L2’, and L3’ = L4’, the 1L is same. Considering the inclination
of a building in post-earthquake environment, as an example,
the different 1L of the left and right sides in the photo will
interfere with the corner detection algorithm. Therefore, it is an
important prerequisite for the building safety assessment to find
the best inspection angle, which is perpendicular and centered
to the inclination of the building. The small-step path planning
method with MRL proposed in this study can not only be used
for unexpected obstacles and unknown disaster avoidance in
demanding environments after earthquakes, but also can be used
to adjust the robot shooting angle location with small steps
of 0.5 m.

Photos-Based Building Damage
Assessment
The Harris algorithm is a corner detection algorithm proposed
by Harris and Stephens (Chris and Mike, 1988)). This algorithm
has the advantages of achieving speed in calculation and high
precision, but it also has the shortcomings of single scale, large
amount of calculation, and multiple false corner points. The
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FIGURE 4 | Relationship between camera depth of field and shooting angle. (A) Take a photo from the front of the building. (B) Take a photo from the side face of the

building. (C) Shooting angle planning. (D) Principle of shooting angle planning.

improved Harris algorithm overcomes the shortcomings of the
plain by combining the following three methods: (1) integrating
the Gaussian kernel convolutional function to solve the problem
of single scale of the Harris algorithm, (2) calculating the gray-
scale difference of the initial pixel points to reduce the amount
of calculations, (3) using the method of USAN area judgment to
improve the accuracy of corner detection. The Gaussian kernel
convolutional function method is shown in Eqs. (2) and (3):

L(x, y, σ ) = G(x, y, σ )∗I(x, y) (2)

G(x, y, σ ) =
1

2πσ 2
e
−

(x−m/2)2+(y− π/2)2

2σ2 (3)

where “∗” denotes the convolution operation; m and n denote
the size of the Gaussian template; (x, y) denotes the pixel point
position; and δ indicates the scale parameter. The multi-scale

sequence of the photo is obtained by transforming the photo
using continuously varying scale parameters.

In the improved algorithm, for a photo size ofM×N, the scale
space L(x, y, δ) can be defined as the convolution of the original
parameters and Gaussian function G(x, y, δ).

The Gaussian function can map the information in the
original photo to a higher dimension. This method of
transforming the scale helps to extract the features of the
information in the photo.

Aiming at the shortcomings of Harris, the large amount
of calculations need a long time to detect, and 17 pixels arc-
length template is used to replace the circular template (37
pixels) to reduce the detection time; the process is shown in
Figure 5.

Let the number of pixels similar to it in the neighborhood of
the pixel coordinate to be measured as n(x, y). Then, the formula
for the calculation is as follows:
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FIGURE 5 | Circular template transform as arc–length template.

C
(

x, y
)

=

{

0 ∀di ≤ g
1 ∃di > g

(i = 1, 2, 3, 4, 5, 6, 7, 8) (4)

n(x, y) =
∑

c(x, y), (5)

where (x, y) is the coordinate value of the target pixel on the
template and g is the grayscale difference threshold.

EXPERIMENT AND RESULT

An experimental platform was established to verify the designed
robot, path planning method, and detection performance. We
mainly focus on the verification of the proposed path generation
method for an efficient object search, the importance of the
correct shooting angle for corner detection, and the effect of our
proposed improved Harris algorithm.

The MRL Method for Robot Path Planning
and the Best Camera Shooting Angle
According to the characteristics of obstacles distribution in the
post-earthquake environment from starting point A to ending
point B, for the shortest distance from point A to point B for robot
path planning, we compared our MRL method with the random
object search method (Solberg et al., 2008), the MaxInfo method
(Kollar and Roy, 2009), and the ShortestPath method (Dornhege
and Kleiner, 2013) when the robot reaches position B, take photos
from three angles of the target building (axis offset left, axis
vertical, and axis offset right), through the corner detection effect
to confirm the impact of the shooting angle on the building safety
detection, the experimental results are shown in Figure 6.

Figure 6A shows the distribution of obstacles in the post-
earthquake environment, which demonstrates that our MRL
method can find the target object with less path length than

the other methods. The MRL algorithm can make the robot
move in the shortest distance from P1 to P2, it is inspired by
human walking behavior and direction decision-making in the
post-earthquake environment; it is more suitable for robot path
planning to inspect the safety status of the buildings in the post-
earthquake environment. Figures 6B–D show the photos taken
from different angles when the robot reaches the vicinity of the
building after passing the MRL algorithm path, B is the axis offset
to the left, C is the axis symmetrical, and D is the axis offset to the
right. It can be seen from the formula [Eq. (1)] that C has themost
uniform distribution of photo clarity. Through Harris corner
detection, it is found that the detection effect of the building
core detection area S, as shown in Figure 6C, is the best, which
is better than the corresponding ones shown in Figures 6B,D.
The regions detected 18% and 20% more ground-truth corners,
respectively.

Effect of Corner Detection Algorithm at
Different Shooting Angles
Taking the photos with axial (X), radial (Y), and tangential
(Z) rotate of buildings as objects, the corners of the photos
are detected by the improved H–G and Harris algorithm,
respectively, the detection results are shown in Figure 7.

Figures 7A,B are showing the corner detection results of the
building under different rotation angles by the Harris algorithm
and the H–G algorithm, respectively. It can be observed from the
photos that at different shooting angles, more real corners were
detected by the improved algorithm. The improved detection
accuracy was 98%, compared with the plain algorithm, which
improved by approximately 20%. The higher corner detection
accuracy means that when the building undergoes changes in
appearance, such as inclination, displacement, cracks, etc., the
algorithm has a more accurate description of the evolution
process of corner information after the earthquake (e.g., the
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FIGURE 6 | Result of MRL and shooting angle for building safety assessment. (A) Comparison of path planning algorithms. (B) Shooting angle axis is offset to the left.

(C) Shooting angle axis is symmetrical. (D) Shooting angle axis is offset to the right.
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FIGURE 7 | Comparison of corner point detection results before and after improvement. (A) Results of corner detection by Harris algorithm. (B) Results of corner

detection by H-G algorithm.
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FIGURE 8 | Result of representative photo–class detection.

generation of cracks is accompanied by the generation of new
corners). More accurate results of the corner detection have
important reference value for the post-earthquake building
safety assessment.

Improved Corner Detection Algorithms
We performed 30 corner detection photo experiments on
6 types of building appearances on our database using 5
algorithms. In addition, we also compared the effects of
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TABLE 1 | Comparison with the average detection time of the five algorithms.

No. Harris Harris 1 Harris 2 Harris 3 H–G No. Harris Harris 1 Harris 2 Harris 3 H–G

1 1.1788 0.3152 1.2220 1.2153 0.8181 16 0.7125 0.3051 0.7490 0.6913 0.4866

2 0.8101 0.3088 0.9002 0.8083 0.5629 17 1.3079 0.3243 1.3611 1.3216 0.9585

3 1.1057 0.3269 1.1298 1.2547 0.7194 18 0.5166 0.2939 0.5476 0.5235 0.3647

4 1.4826 0.3679 1.5061 1.5263 0.9992 19 1.0701 0.3430 1.1210 1.0968 0.7862

5 1.3183 0.3489 1.3650 1.2978 0.9430 20 1.6090 0.3430 1.8122 1.6672 1.1530

6 2.6264 0.3291 2.6863 2.6312 1.8362 21 0.9310 0.3353 0.9610 0.9711 0.6579

7 1.2170 0.3556 1.3111 1.2270 0.8330 22 1.9091 0.3660 1.9678 1.8864 1.4001

8 1.3086 0.3455 1.3588 1.2876 0.9624 23 0.7559 0.3217 0.7980 0.7278 0.5153

9 1.3825 0.3286 1.4578 1.3759 0.9714 24 0.6870 0.2931 0.7417 0.6571 0.4769

10 1.3378 0.3618 1.3715 1.3010 0.9617 25 1.3761 0.3349 1.4203 1.3782 1.0258

11 2.3462 0.3322 2.5108 2.3544 1.6776 26 1.0657 0.3467 1.1092 1.0585 0.7788

12 1.1526 0.3605 1.1794 1.1327 0.8496 27 1.5914 0.3604 1.6540 1.5604 1.1473

13 1.3263 0.3525 1.3542 1.3312 0.9650 28 1.0164 0.3193 1.0382 1.0412 0.7087

14 0.7489 0.3444 0.7767 0.7519 0.5109 29 0.8818 0.3216 0.9078 0.9007 0.5743

15 0.6562 0.3028 0.7222 0.6864 0.4580 30 0.9340 0.3091 0.9389 0.9625 0.6507

the five algorithms through different evaluation indicators.
The appearance detection effect of six types of representative
buildings is shown in Figure 8, the detection time results of the
five algorithms for each picture are shown in Table 1, and the
accuracy rate, detection rate, and the average detection time are
shown in Table 2.

The 6 types of building appearances in Figure 8 are Debris on
the surface (photo 1–5), Rough surface (photo 6–10), Contour
is not clear (photo 11–15), Contour is clear (photo 16–20),
Corner is not clear (photo 21–25), Corner is clear (photo 26–30)
respectively, we select photo1, photo 6, photo 12, photo 18, photo
24, and photo 30 among the 6 types as representative photos,
and the five algorithms for detecting photos are Harris, Harris-1,
Harris-2, Harris-3, H-G (ours) respectively.

The experimental results show that compared with other
algorithms, our proposed algorithm (H–G) can detect more real
corners under different building appearances, which is better
than the other corner detection algorithms, and compared with
the original Harris corner detection algorithm, 20% more real
corners are detected by H–G algorithm.

It can be observed from Table 1 that the detection time of
the algorithm in Harris 1 (Zheng and Lin, 2020) is the shortest.
The edge contour of the photo was extracted using the Canny
edge operator to detect the corner of the edge contour. As the
number of pixels of the edge contour was far less than the
number of pixels in the photo, the efficiency of the algorithm in
Harris 2 (Zhong et al., 2010) improved significantly. In Harris
3 (Hou, 2010), the algorithm improves the accuracy of corner
detection through the bilateral threshold, which does not involve
improving the corner detection speed. However, it increases the
calculation of one lower threshold compared with the original
Harris algorithm. Thus, the running time is slightly longer than
the corner detection time of the original Harris algorithm. The
improved algorithm in reference, Harris 3 (Hou, 2010), does not
involve improving the response speed of the algorithm, so the
detection time is not much different from the original Harris
algorithm. In this study, the improved algorithm optimizes

TABLE 2 | The average index value of the five algorithms of this study.

Algorithms Average Average Average

accuracy (%) detection detection

rate (%) time (s)

Harris 23.55 75.56 1.2121

Harris 1 39.94 55.23 0.3333

Harris 2 46.76 83.42 1.2660

Harris 3 54.55 83.99 1.2209

H–G 51.89 87.14 0.8584

the defined 37-pixel circular template by optimizing a 17-pixel
circular template, which reduces the amount of calculation,
significantly improves the corner detection speed, and reduces
the corner detection time. Therefore, compared with the original
Harris algorithm and the algorithms mentioned in Harris 2
(Zhong et al., 2010) and Harris 3 (Hou, 2010), the H–G algorithm
in this study has the shortest average detection time and the
fastest response speed.

The five algorithms discussed in Harris 3 consider the average
value of the related indicators of the corner points of the building
photos to obtain five algorithm-related indicators, as shown in
Table 2.

As shown in Table 2, the Harris algorithm has the lowest
accuracy for detecting the corner point in building photos,
whereas the other four algorithms have improved in accuracy.
In conjunction with the correct rate and detection rate of
the different types of building corner detection, the improved
algorithm proposed in this study has the best detection effect
when compared to other algorithms. Compared to other types
of building photo detection, the detection effect also enhances
a certain increase. In Harris 1, the Canny operator and Susan
operator were combined to detect the angular point of the edge
contour of the photo. Although the detection time was reduced
significantly, the real angle of the partial photo was lost, resulting
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in a reduction in the detection rate. In Harris 2, the bilateral
threshold was increased based on the original algorithm for the
angular point screening, and the accuracy of the algorithm was
improved using a small increase algorithm. However, it does not
improve the detection speed of the algorithm. In Harris 3, by
replacing the center value similar to that in the original algorithm
with the center pixel point grayscale value, the region of the
center pixel point adjacent to the center pixel point was reduced
by the imperial detection and misuse of the original algorithm,
thereby improving the accuracy of the algorithm, which was
not large compared to the detection time of the algorithm.
Therefore, in this study, we improved the algorithm to increase
the accuracy of the algorithm, after the angular point detection,
mean threshold settings in the multi-scale building image after
the wavelet transforms improved the detection speed and the
real-time of the algorithm by improving the screening of the
ring template.

CONCLUSION

Tominimize the secondary disasters of earthquakes, in this study,
we considered dangerous buildings damaged by earthquakes as
the object and proposed a distributed small-step path planning
method with MRL to plan a route for the robot in demanding
environments. To ensure that the path planning is optimal in
a neighboring safe region, a limited distance and 12 directions
were gridly refined for the robot to move. When the robot
reached the vicinity of the damaged building, it captured a high-
quality photo at a suitable camera angle. It used the improved
Harris corner detection algorithm to analyze the deformation
of the building in the picture for the safety assessment of
the building. The experimental results show that the building
corner capture accuracy using the proposed method is higher
than that of the plain (Harris) corner detection algorithm.

However, some problems were also exposed. For example, the

robot needs to be in a suitable position so that the focal length

of the camera is perpendicular to the building’s tilt direction.
However, this position is difficult to determine as it can only

be approached by visual inspection in 0.5-m steps. Although the

optimal position cannot be found theoretically, the experiment
shows that the deviation within 0.5m does not affect the photo
quality. After analyzing the parameters of the entire system,
we believe that the error of 0.5m is within the depth of field
of the camera. Additionally, with the development of science
and technology, especially further breakthroughs in the basic

theory of neuro–brain science, the understanding of intelligent
expression and decision-making by the people will be improved
to a certain extent, thereby enabling the robot to have a more
accurate understanding of the scene information to make more
intelligent decisions. Thus, new technology will enable a more
accurate assessment of building safety.

The aforementioned experiment shows that (1) distributed

small-step path planning method with MRL has a shorter path

compared with that of the plain random algorithm method;
(2) the shooting angle of the camera affects the accuracy of

corner detection. In the same structure, the shooting angle
radial vertical of the camera of the building detection plane has
high (20% improved) accuracy compared with the radial offset
of the building detection plane; and (3) the improved Harris
algorithm proposed in this study is 20% better than the plain
Harris algorithm.
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