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In this article, a multi-layer convolutional neural network (ResNet-18) and Long

Short-Term Memory Networks (LSTM) model is proposed for dynamic gesture

recognition. The Soli dataset is based on the dynamic gesture signals collected by

millimeter-wave radar. As a gesture sensor radar, Soli radar has high positional accuracy

and can recognize small movements, to achieve the ultimate goal of Human-Computer

Interaction (HCI). A set of velocity-range Doppler images transformed from the original

signal is used as the input of the model. Especially, ResNet-18 is used to extract

deeper spatial features and solve the problem of gradient extinction or gradient

explosion. LSTM is used to extract temporal features and solve the problem of long-time

dependence. The model was implemented on the Soli dataset for the dynamic gesture

recognition experiment, where the accuracy of gesture recognition obtained 92.55%.

Finally, compare the model with the traditional methods. The result shows that the model

proposed in this paper achieves higher accuracy in dynamic gesture recognition. The

validity of the model is verified by experiments.

Keywords: gesture recognition, millimeter-wave radar, ResNet-18, LSTM, Human-Computer Interaction

1. INTRODUCTION

With the rapid development of computers, there is a growing need for new ways to interact with
the computer. Gesture interaction is considered a new way of HCI and becomes more and more
popular. Gesture recognition technology enables the computer to understand human instructions
without hardware interaction to achieve the purpose of HCI. Gestures as an intrinsic part of human
communication, either complementing spoken language or replacing it altogether (Hewes, 1992).
A gesture can be defined as a deliberate set of motions executed with any body part to convey a
message or evoke an action (McNeill and Levy, 1982; Kendon, 1990). Gestures can be divided into
two categories based on behavior: static gestures and dynamic gestures. Static gestures refer to stable
shapes made by the user at a certain point in time, while dynamic gestures are a series of coherent
actions produced by the user within a certain period of time, adding temporal information and
action features. Recently, hand gesture recognition as a new form of HCI has become an active field
of research.

On the one hand, gesture recognition technology can provide a convenient and fast way of
HCI. On the other hand, it also reduces the direct contact between people and devices. In recent
years, the COVID-19 pandemic has highlighted the further benefits of contactless interfaces for
preventing the spread of the virus. Contactless gesture recognition can be implemented in a variety
of devices, such as optical cameras and radar. Camera-based methods are more common. Gestures
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are captured by the camera sensor, and the gesture signals in
the form of video or images are obtained, and then these signals
are input into the classifier for classification (Rogez et al., 2015).
However, camera-based methods have certain limitations, such
as being easily affected by light and dust, the privacy protection
of users is not in place, and it is easy to be attacked. Radar
sensors become a major research area. The radar sensor has the
characteristics of small size, easy integration, and high spatial
resolution. Additionally, it can be applied to wearable devices
such as mobile phones, watches, and smart headphones. In
addition, it provides a better privacy protection system than
visual sensors (Ahuja et al., 2021). At present, most of the radars
used in radar-based gesture recognition are millimeter-wave
radars. This kind of radar offers unique advantages because it
works 24/7. In addition, the radar signal can capture motion even
with very small amplitude changes and can accurately distinguish
subtle gestures.

Considering the need for accurate classification of millimeter-
wave radar gesture data, researchers have proposed several
approaches to address this problem. One of the most popular
and traditional classification methods for gesture recognition is
the Dynamic Time Warping (DTW) method. When processing
radar data with DTW, a template set needs to be constructed first,
and then the classification result is obtained by comparing the
difference between the template and the test data. In a previous
study, researchers used the DTW method (Zhou et al., 2017)
to classify 10 categories of gesture signals, and the recognition
accuracy reached more than 91%. However, the DTW algorithm
has the disadvantages of high computational complexity and low
stability. In order to overcome these deficiencies, researchers have
tried to use machine learning methods for millimeter-wave radar
gesture recognition. Among many methods, popular machine
learning algorithm includes Support Vector Machines (SVM),
Hidden Markov Models (HMM), and K-Nearest Neighbor
algorithms (KNN). By extracting the micro-Doppler features
from the time-frequency map of the gesture signal, and using the
SVM algorithm to classify 4 categories of gestures, an accuracy
of 88.56% is obtained (Zhang et al., 2016). When using HMM
to recognize 6 categories of millimeter-wave radar gestures, an
HMM model is established for each gesture, and calculate the
probability of each gesture through the established model. The
gesture with the highest probability is the obtained classification
result, and the accuracy rate reaches 88.3% (Malysa et al., 2016).
But when the task ofmulti-class gesture recognition is performed,
the HMM is not applicable. The KNN algorithm was also applied
to recognize dynamic gestures (Xian et al., 2018). Compared
with the traditional method, the accuracy of the KNN method
is improved, but it is only for small sample datasets. Among
the several machine learning methods mentioned above, manual
feature extraction is required, which is not efficient. In order to
overcome the difficulty that machine learning requires manual
feature extraction, the deep learning algorithm for radar gesture
recognition is becoming a hot field. The advantage of deep
learning is that it can achieve end-to-end training, eliminating
the need for machine learning algorithms to manually extract
features, and simplifying the tedious step of the workload. The
algorithms of deep learning in radar gesture recognition mainly

include Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN). A study uses a data fusion approach for
driving gesture action recognition using 3D CNN (Molchanov
et al., 2015). The Soli team used an end-to-end recurrent neural
network method to recognize 4 categories of gestures through
the range-Doppler feature images of radar gesture signals and
obtained an accuracy of 92.1%. When using 11 categories of
gestures, an accuracy of 87% is obtained (Hazra and Santra,
2018).

A classificationmodel for 11 categories of gestures is proposed
in this article, which innovatively combines two deep learning
algorithms. Using the Soli dataset and the model uses ResNet-18
as the feature extractor to extract the distance-doppler features
of each frame. Then extract frame-to-frame temporal features
using LSTM, and finally, classify gestures through a softmax
layer. Here, the input data were a group of Range Doppler Map
(RDM) images which include distance and speed information
for gestures. The classification accuracy of the model is 92.55%,
which is higher than the previous models.

2. DATASET DESCRIPTION

Previous gesture capture devices include optical-based gesture
capture devices (Yao and Li, 2015) and depth camera-based
gesture capture devices (Ren et al., 2011). These devices are either
susceptible to light conditions or are inconvenient to use on a
daily basis. In this case, these devices are not conducive for people
to use forHCI anytime and anywhere. By contrast, the advantages
of millimeter-wave radar are reflected. The radar sensor can
provide more and richer Doppler information without being
affected by lighting conditions, and a variety of similar gestures
can also produce distinguishable Doppler features. Embedding
radar into electronic devices such as smartphones or watches
enables the fine-grained perception of human interactions (Lien
et al., 2016). By accepting a hand gesture as an input modality,
electronic devices can be controlled without touching a button,
boosting the reliability of the device and design flexibility.
Moreover, it can heighten convenience for users. With the
development of technology, a hot direction of HCI is gesture
interaction using millimeter-wave radar sensors. Google’s Soli
project is an example of gesture recognition. Soli radar sensors
can be embedded intomobile and wearable devices for interactive
gesture recognition.

This article starts with Google’s Soli project (Lien et al.,
2016). Soli is a new sensing technology that uses miniature
radar to detect gestures in the air. This specially designed radar
sensor can track target movement with sub-millimeter accuracy
and then process the radar signal into a series of universal
interactive gestures to facilitate the control of various wearable
and microdevices. Google’s Soli project uses a new 60GHz
Frequency Modulated Continuous Wave (FMCW) millimeter-
wave radar to create a radar-based sensor optimized for HCI.

The Soli dataset contains many groups of gesture data, each
consisting of a series of 32*32 RDM images. Each group of images
selects 20 frames as a sequence to represent a complete gesture.
The dataset contains 11 gesture categories, from 10 different
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FIGURE 1 | (A) An random example of the dataset, (B) 20 frames of selected images for this example.

users. Each category of gesture contains 25 samples, for a total
of 2,750 samples. The dataset is divided into a training set and
validation set according to the ratio of 6:4. Figure 1 shows an
image from a sample. Each RDM image frame is preprocessed
by a per-pixel Gaussian model to remove background noise
and normalize the signal to adjust the variance caused by radar
reflection. Each RDM image in the Soli dataset also contains four
channels of data captured by four receivers on the radar.

3. METHODS

A lot of existed gesture classification models are based on
images (Wu et al., 2012) or videos (Cardona et al., 2019),
and they rely on spatial information. The radar data does
not directly contain information about shape, so several
existing algorithms (Pisharady and Saerbeck, 2015) are rarely
applicable. The traditional radar-based gesture recognition
method can be summarized in three steps: signal transformation,
feature extraction, and classification. The ResNet-18 and LSTM
architectures used to build an end-to-end learning model are
shown in Figure 2. The model combines the steps of signal
transformation and feature extraction. ResNet-18 is used for
feature extraction, and LSTM is used for temporal feature
extraction. Compare the proposed model with machine learning
models and deep learning models. These models included
random forests (RF) (Camgöz et al., 2014) and CNN+LSTM
(Wang et al., 2016).

3.1. ResNet-18
Deep Convolutional Neural Network (DCNN) is widely used
in data classification and has made rapid progress, such
as speech recognition (Dahl et al., 2011), text classification

FIGURE 2 | A diagram of the model architecture. The CNNs form a

ResNet-18 model (He et al., 2016). The Long short-term memory (LSTM) is an

RNN model with two hidden layers, each with 512 units.

(Deng et al., 2021), video classification (Akilan et al., 2019), and
image classification (He et al., 2016). The advantages of DCNN
are reflected in three aspects: local area perception, sampling in
space or time, and weight shared. Meanwhile, DCNN also has
some disadvantages. Generally, the identification effect of shallow
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FIGURE 3 | The residual block structure of ResNet.

network layers is poor. With the increase of network layers, the
identification effect is good at the beginning and then decreases.
This is because the gradient disappears or the gradient explodes
as the number of network layers deepens.

In order to solve the shortcomings of DCNN, the researchers
proposed an improved method: ResNet. The residual block was
introduced into DCNN as an improvement. Figure 3 shows the
structure of the residual block. Its main characteristic is the
shortcut residual connection between continuous convolution
layers. Gradients can flow directly through these connections,
which makes training DCNN much easier by reducing the
vanishing gradient effect. In Figure 3, the weight layer is the
convolutional layer, x is the input, H(x) is the output, F(x) is the
residual mapping function, and H(x) = F(x)+ x.

The ResNet-18 was used to extract spatial features from
the input data. Before classifying gestures as a sequence, each
32*32*20 image was put into a 2D CNN to extract features
associated with gestures. ResNet-18 is a deep convolutional
network with residual blocks. In DCNN, ResNet-18 is the
relatively deep model with 11 network layers the first 9 layers are
convolution layers and followed by a GAP layer that averages the
sequence processing. For the simple reason that ResNet-18 here
is used for feature extraction rather than classification directly,
the last two layers of the ResNet-18 (the fully connected layer and
the softmax layer) were removed. The activation function for the
final layer was a rectified linear unit [ReLU(x) = max(0, x)]. The
resulting output feature map size was 1× 1× 512 for each frame,
which was then flattened. The feature output of size 20× 512 for
each sample is used as the feature input of the LSTM.

3.2. Long Short-Term Memory Networks
Recently, RNNs have been outperformed in model dynamic
processes. It has been shown that the LSTM is good at processing
sequence data and can mine timing information in the data
(Hochreiter and Schmidhuber, 1997), as well as advantages in
training longer sequence data, making it a suitable choice for
dynamic gesture recognition. In this article, the radar-based

FIGURE 4 | Long short-term memory internal structure diagram.

gesture recognition problem is a time series problem which
means that the value of a certain moment is affected by the
previous moment or several moments. So LSTM is a suitable
choice for dynamic gesture recognition. Figure 5 shows the
classification process.

Long short-term memory is derived from the RNN and
is an extension of RNN. In order to improve the accuracy,
the traditional RNN usually adopts the method of deepening
the number of layers. However, the traditional RNNmay have the
problem of gradient disappearance or explosion as the number
of layers deepens. To alleviate this problem, the gate function
is introduced by LSTM. It is used to store, modify, and access
the internal state. A general LSTM cell is composed of the input,
forget, and output gate (Refer to Figure 4 for an illustration). In
Figure 4, xt is the input sequence element value at time t. i is the
input gate that determines how much information xt currently
reserves or does not reserve for the current state ct . c is the cellular
state or memory unit, that controls the transmission and is at the
heart of the network. f is the forget gate, which determines how
much of the cell state ct−1 from the previous moment is saved to
the current c. o is the output gate, which determines howmuch ct
passes to the output ht in the current state. ht−1 refers to the state
of the hidden layer at time t − 1.

In Figure 4 xt is the feature vector extracted for each cell, the
relation between input, internal state, and output is formulated
as follows:

it = σ (Wxixt +Whiht−1 + bj) (1)

ft = σ (Wxf xt +Whf ht−1 + bf ) (2)

it = σ (Wxoxt +Whoht−1 + bo) (3)

σ is the logistic sigmoid function, is given by σ (x) = ex

ex+1 .
The input gate, forget gate, output gate, and cell activation
are respectively represented by i, f , o, and c, as Figure 4 shows.
The results of it , ft , ot are the current input sequence xt and
the previous state output ht−1 multiplied by the corresponding
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FIGURE 5 | Long short-term memory classification model.

weight plus the corresponding bias and finally obtained by
the sigmoid activation function, the cell and hidden states are
computed as follows equations (Hochreiter and Schmidhuber,
1997):

c̄t = tanh(Wxcxt +Whcht−1 + bc) (4)

In Equation (4), the instant state c̄t of the current moment unit
is activated using the tanh activation function. Additionally, the
new cell state ct is a combination of current memory c̄t and
long-term memory ct − 1.

ct = ft · ct−1 + it · c̄t (5)

The output ht of the LSTM unit can be calculated by Equation (6)

ht = ot · tanh(ct) (6)

A series of learned parameters form the weight W. In the above
formula, Wxi,Wxf ,Wxo, and Wxc are the weight vector of the
input layer to input gate, forget gate, output gate, and cell state.
Whi,Who,Whf , and Whc are weight vectors of hidden layer to
input gate, output gate, forget gate, and cell state. bi, bo, bf , and
bc are biased for input gate, output gate, forget gate, and cell
state. tanh is a hyperbolic tangent activation function, is given by

tanh(x) = (ex−e−x)
(ex+e−x)

. The operator· represents the multiplication

of vector elements.

3.3. ResNet-18 and LSTM
As shown in Figure 5, the ResNet-18 and LSTM model is
proposed in this article for dynamic gesture recognition.
Compared to traditional CNN, ResNet-18 reduces training error
while adding more layers. This is because residual blocks have
been added to the ResNet-18. In residual blocks, the input can
faster forward propagation across layers. The addition of residual
blocks solves the problem of gradient disappearance with the
deepening of network layers. Besides, batch normalization was

used to improve numerical stability and make the training model
easier. This article adopts ResNet-18 to extract spatial features
of dynamic gestures. Then the extracted features are transmitted
to LSTM, and further temporal feature extraction is carried out
on the sequence data through LSTM to solve the long-term and
short-term dependencies between the data. LSTMmakes it easier
to learn long-term dependence. This is because compared to
traditional RNN, LSTM introduces the idea of self-circulation.
One of the key extensions is that the weight of the self-circulation
is context-dependent, rather than fixed. LSTM can generate the
path of gradient continuous flow for a long time, thus solving
the problem of gradient attenuation in traditional RNN. LSTM
performs well on challenging sequence processing tasks. The
gesture recognition problem studied in this article is a temporal
problem. So LSTM is used for feature extraction in the time
domain. Finally, the module composed of a full connection layer
is used to output the classification results.

These two deep learning architectures (ResNet-18 and LSTM)
are trained jointly in an end-to-end way rather than individually.
For training, each Range-Doppler image belonging to a gesture
sequence is passed through the ResNet-18 for feature extraction.
The features extracted by ResNet-18 are passed as input to the
LSTM layer. LSTM is given an input sequence x = (x0, x1, ..., xt)
wherein our case that xt is the feature vector extracted by the
ResNet-18 at time t. After the ResNet-18, there is an LSTM
layer, which is composed of 512 units. Then the LSTM output
at all times is weighted and averaged as the upper representation.
Finally, through a softmax layer, carry out the operation of full
connection, and finally get the category ŷ of the predicted results.

3.4. Implementation Details
The gesture recognition problem is defined as a multi-
classification problem. The experiment is divided into four
stages: data processing stage, definition stage, training stage, and
evaluation stage. The data processing stage includes data set
division and label normalization. The definition stage includes
the definition of model structure, loss function, optimizer,
learning rate, and other parameters. In the training stage, use
the model proposed in the article to train on the training set. In
the evaluation stage, the validation set is used to evaluate and the
results are obtained. The data set is divided into a training set
and a test set in a ratio of 6:4. The training set includes 1,650
samples and the test set includes 1,100 samples. There are 11
categories of datasets used in this article, each sample in the
data set corresponds to only one category respectively, and the
label adopts one-Hot encoding, which is the representation of
classification variables as binary vectors. The one-Hot encoding
first requires that the classification values be mapped to integer
values. Each integer value is then represented as a binary vector,
which is zero except for the index of the integer, which is marked
as 1. Encoding the labels makes it very convenient to calculate the
loss function or accuracy. The last layer of the model is defined as
a classification output layer, which enables the model to classify
samples fed into the network. The softmax layer is used for multi-
classification problems. The softmax function is the activation
function of this layer and the categorical_crossentropy is the loss
function. Two metrics are defined to evaluate the quality of the
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network model, accuracy, and loss. The loss function adopts the
cross-entropy loss function, which is defined as follows:

softmax(yi) =
eyi∑n
i=1 e

yi
(7)

L(y, ŷ) = − 1

n

n∑

i=1

ŷ× log[softmax(yi)] (8)

In the above formula, n is the total sample number of training, yi
is the true value label, ŷ is the predicted label. In the loss function,
it only cares about the probability of prediction for the right
category. The optimization function selects Root Mean Square
Prop (RMSProp) algorithm, and the formula of the algorithm in
the t round iteration is shown below:

sdw = βsdw + (1− β)dW2 (9)

sdb = βsdb + (1− β)db2 (10)

TABLE 1 | Traning parameters.

Parameters Setting

Framework TensorFlow

Epochs 100

Loss function Cross entropy loss

Optimizer algorithm RMSProp

Learning rate 0.00001

LSTM Units = 512

LSTM Activation ReLU

Dense Units = 11

Dense activation softmax

W = W − α
dW

√
sdW + ε

(11)

b = b− α
db

√
sdb + ε

(12)

RMSProp algorithm uses differential square weighted average for
the gradient of weightW and bias b, which is beneficial to correct
the swing amplitude of gradient, making the swing amplitude of
each dimension smaller, and making the convergence of network
function faster. In the above formula, sdW and sdb are the gradient
momentum accumulated by the loss function during the previous
t − 1 iteration, respectively, ε is a number used to smooth
gradients, usually to the power of 10−8.

Before analyzing a frame sequence of a gesture, each
individual 32×32×4 frames was fed through ResNet-18 to extract
relevant spatial features. The first layer of ResNet-18 is a 3 × 3
convolutional layer with 64 output channels and stride 1. The
residual block first has two 3× 3 convolutional layers of the same
output channel and stride 2. Each convolutional layer is followed
by a batch normalization layer and ReLU activation function
layer. Besides, use an additional 1×1 convolution layer to modify
the number of channels and stride of the convolutional layer.
The ResNet-18 is composed of 4 residual blocks. Each residual
block doubles the number of channels of the previous residual
block. In the model proposed, in this paper, the number of output
channels used is 64, 128, 256, 512. The output for each frame was
1 × 1 × 512. Then flattened each feature map to 512 × 1. In
order to avoid overfitting, a dropout layer is added after the dense
layer, and the probability value is set to 0.5. A feature output map
of shape 20 × 512 for every 20 frames dynamic gesture to be
used as input for the LSTM. The LSTM in this article is many-
to-one since then fed a sequence of 20 frames into the LSTM to
extract temporal features. The final size of the LSTM network was
chosen to be 1 layer with 512 units. Finally, the classification of
11 categories of dynamic gestures was achieved through a fully

FIGURE 6 | (A) Accuracy change in ResNet-18 and LSTM model. (B) Loss change in ResNet-18 and LSTM model.
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connected layer with 11 units, and the activation function uses
the softmax function.

During the experiment, the parameters used in the experiment
are set as follows: the learning rate is 0.00001, the epochs are 100,
and the batch_size is 16. The model proposed in this article is
implemented on TensorFlow (Abadi et al., 2016), a deep learning
framework. This model is built using this framework and trained
the network with 100 epochs using small-batch samples. To
prevent overfitting, add a dropout layer with a probability of
0.5 after the fully connected layer. Specific training parameters
are shown in Table 1. The entire network is trained in an end-
to-end manner. Computations are performed on Google’s Colab
using GPUs.

4. RESULTS AND DISCUSSION

After repeated training on the data, the average optimal accuracy
is 100% on the training set and 92.55% on the validation set. Then
conducted tests on the test set, and the result showed that the
accuracy of the recognition rate was close to 93%. In order to
see the experimental result more intuitively, a graph shows the
change curve of the loss rate and accuracy rate of the network
model with the increase of training epochs in Figure 6, the blue
line represents training operation and the red line represents

TABLE 2 | Model training results.

Time Optimal accuracy on

the training set (%)

Optimal accuracy on the

validation set (%)

1 100.00 92.15

2 100.00 92.73

3 100.00 92.32

4 100.00 92.64

5 100.00 92.91

validation operation. The result shows that in the network model
constructed in this article, convergence began after about 20
epochs, and since then the accuracy rate gradually increased
while the loss rate gradually decreased. After 20 epochs, the
accuracy of the training set converges to 99.95%, and that of
the validation set converges to 92.55%. The results of repeated
training on the model are shown in Table 2. The results show
that there is little difference in the results obtained after repeated
training. It shows that the model presented in this article is stable.

Then test with the trained model, use the same data set,
and finally get a confusion matrix as shown in Figure 7. It
demonstrates that the model proposed in this article achieves
high accuracy in the classification of 11 categories of gestures, has
superiority in classification task of multi-class gesture.

This article demonstrates the ResNet-18 and LSTM
classification model for radar-based signals to classify 11
categories of gestures. The model can classify up to 11 different
millimeter-wave radar hand signals with an average accuracy of
92.55%. The result shows that the model proposed in this article
can also accurately distinguish gestures with small differences.
This allows the model to be easily generalized to a smaller
variety of gesture datasets. Finally, the model was compared with
the other two models: CNN+LSTM and RF. The result shows
that our model is better than the other radar-based solutions
reported in the literature (demonstrated in Table 3). The RF
method classifies only 4 categories of gestures, while the model
proposed in this article classifies 11 categories of gestures and

TABLE 3 | State-of-the-art radar-based gesture recognition.

Network Best accuracy (%) Dataset References Gestures

ResNet-18+LSTM 92.55 Soli this model 11

CNN+LSTM 87.17 Soli Wang et al., 2016 11

Random forest 92.1 Soli Lien et al., 2016 4

FIGURE 7 | Confusion matrix for the Soli 60–40% split for training and evaluation. (A) Confusion matrix for 11 categories of gestures of 10 users, (B) Normalized to

percentage confusion matrix for 11 categories of gestures of 10 users.
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achieves higher accuracy. The comparison shows the superiority
of ResNet-18 and LSTM.

5. CONCLUSION AND FUTURE STUDY

Amillimeter-wave radar gesture recognitionmodel was proposed
in this article which was based on ResNet-18 and LSTM. First, the
processed data set was put into the model. Second, the ResNet-18
was used to extract the spatial features of the data. Finally, the
LSTM was used to extract the temporal features, and the softmax
layer is used for classification. The model can recognize up to
11 different categories of gestures and achieve a high average
accuracy. The result shows that the average optimal accuracy is
92.55%. By conducting experiments, the result shows that the
model achieves higher accuracy than previous models due to its
characteristic of extracting temporal and spatial features, which
have a certain significance and value.

To sum up, the model proposed in the article is good
at dealing with radar data displayed in the form of Doppler
images. It shows the feasibility of this model in radar gesture
recognition and has wider application potential in many fields
such as pattern recognition. It can be easily generalized to
other applications.

In future research, how to improve the generalization of the
model is a key issue. The next step is to use millimeter-wave radar
to collect multiple samples of different categories of gestures,
and then create our own dataset and improve on the existing
model. The ultimate goal is to achieve higher accuracy and

fewer computing resources. After the above study is completed,
a variety of experiments would be conducted to analyze the
characteristics of the data and the model and determine which
features are important for gesture recognition and which type of
data is better for the model. This is especially important for more
accurate gesture recognition in the future.
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