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Rock drilling robots are able to greatly reduce labor intensity and improve efficiency

and quality in tunnel construction. However, due to the characteristics of the heavy

load, large span, and multi-joints of the robot manipulator, the errors are diverse and

non-linear, which pose challenges to the intelligent and high-precision control of the

robot manipulator. In order to enhance the control accuracy, a hybrid positional error

compensation method based on Radial Basis Function Network (RBFN) and Light

Gradient Boosting Decision Tree (LightGBM) is proposed for the rock drilling robot.

Firstly, the kinematics model of the robotic manipulator is established by applying MDH.

Then a parallel difference algorithm is designed to modify the kinematics parameters to

compensate for the geometric error. Afterward, non-geometric errors are analyzed and

compensated by applying RBFN and lightGBM including features and kinematics model.

Finally, the experiments of the error compensation by combing combining the geometric

and non-geometric errors verify the performance of the proposed method.

Keywords: rock drilling robot, error compensation, parameter identification, parallel differential evolution

algorithm, RBFN

1. INTRODUCTION

The tunnel construction machine has been playing an increasingly important role in the
development of the modern economy due to the continuous expansions of anthropogenic activity.
Moreover, the drilling and blasting method is the most practical and effective method for tunnel
engineering (Ocak and Bilgin, 2010). Rock drilling robots are one of an essential piece of tunnel
equipment used for drilling and blasting methods. They have been widely applied in the tunnel
construction due to its their advantages for reducing labor intensity. Robotic drilling can effectively
prevent overcutting and undercutting to improve the efficiency and quality of the tunnel. However,
due to the characteristics of the heavy load, large span, and multi-joints of the robotic manipulator,
the errors of the rock drilling robot are diverse and non-linear, which pose challenges to the
intelligent and high-precision control of the robotic manipulator.

Position accuracy is an important parameter for the robot (Chen D. et al., 2018; Qi et al.,
2021). High positioning accuracy is the a guarantee for complex robotic tasks. Especially for
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industrial robots and medical robots, the error compensation
method is important for efficiency and safety. Now robotic
surgery is gradually replacing manual surgery because of its
stability and convenience, and high precision is the most
important guarantee element needed for safety (Su et al., 2018,
2021). These electrical robots for the industry can achieve high
accuracy of up to a millimeter level with a high-precision
motor (Su et al., 2022). However, the accuracy of hydraulic
robots is limited by the underlying rigid actuationmechanisms of
the hydraulic actuators. With the improvement of accuracy, the
price of hydraulic components has also increased substantially.
Therefore, it is necessary to use error compensation methods for
the hydraulic robot utilizing conventional hydraulic actuators.

In general, considering the characteristics of nonlinear and
multi-coupling, the robotic error is very complex. With the
advancement of computer technology, numerous non-linear
fitting algorithms are proposed, such as Artificial Neural
Networks (ANN) (Zhang et al., 2021), Radial Basis Function
Network (RBFN) (Park and Sandberg, 1991), and extreme
learning machine (ELM) (Huang et al., 2004), etc. Huang
proposed a method to assess the critical parameters for short-
term wind generation forecasting by ANN (Sewdien et al., 2020).
Chen D. et al. (2019) proposed a positional error compensation
combing RBFN and error similarity. RBFN is used to estimate the
error of the target positions. Yuan et al. (2018) demonstrated that
a trained ELM method could guarantee high position accuracy
on the drilling robot and reduce the working time and workload.
Neural networks have a very wide application. However, it
needs many super-parameters to set and takes too long to train
the process.

Decision Tree (DT) is a supervised learning method that
is widely used to predict models based on a tree structure.
DT has higher decision-making efficiency in comparison with
other machine learning methods. In fact, many researchers have
improved DTmodels, and somemore optimized algorithms have
been proposed, such as Random Forest (RF) (Breiman, 2001;
Svetnik et al., 2003), Gradient Boosting Decision Tree (GBDT)
(Ke et al., 2017), eXtreme Gradient Boosting (XGBoost) (Naghibi
et al., 2020), and so on. The liquid crystalline behaviors are
successfully predicted using RF in Chen C. H. et al. (2018). Yao
et al. (2019) proposed a method for predicting line loss rate in
a low voltage distribution network based on GBDT method. By
analyzing and verifying the data, the GBDT method is accurate
and effective. Light-GBM is also an improved algorithm based on
GBDT, which was firstly proposed by Microsoft Research Asia in
2016 (Chen P. et al., 2019). Zhou et al. (2020) proposed a hybrid
reservoir permeability prediction method based on Light-GBM.
The results show that the method has excellent prediction ability.
Compared with the DT algorithm, Light-GBM can significantly
promote the training speed without decreasing the accuracy and
also occupy less memory during the training process.

There are two types of positional errors in robotic control.
The first error is a geometric error, which is generated by
the mechanical manufacturing error and assembling error of
the robot. To reduce the geometric errors, a parallel difference
algorithm is designed in this article to modify the kinematics
parameters (Praveen and Denis, 2018; Zhu et al., 2020). The

second error is generated by environmental factors, such as
temperature and gravity, etc., that have nothing to do with the
robot itself, which are defined as non-geometric errors (Zeng
et al., 2017; Jiang et al., 2021). These non-geometric errors are
usually difficult to analyze accurately because of their non-linear
characteristics. Specifically for the manipulators as long as 15
meters, the accuracy is affected by many factors such as elastic
deflection and hydraulic components. Nevertheless, Atlas Copco,
the world-leading rock drilling robot corporation, can achieve an
accuracy of up to 100 mm (Molfino et al., 2008).

In order to enhance the control accuracy, a hybrid positional
error compensation method based on Radial Basis Function
Network (RBFN) and Light Gradient Boosting Decision Tree
(LightGBM) is proposed for the rock drilling robot. Firstly,
the kinematics model of the robotic manipulator is established
by applying MDH. Then a parallel difference algorithm is
designed to modify the kinematics parameters to compensate
for the geometric error. Afterward, non-geometric errors are
analyzed and compensated by applying RBFN and lightGBM,
including features and the kinematics model. Finally, the
experiments of the error compensation by combing combining
the geometric and non-geometric errors verify the performance
of the proposed method.

The structure of the article is divided into five parts. The
first part is the introduction. The second part is the kinematic
model of the rock drilling robot. According to the structural
characteristics of the manipulator, the MDH method is applied
to establish the kinematics model of the manipulator. The
third part is methodology. By analyzing the parameters of the
geometric error compensation model, a parallel difference error
compensation algorithm is designed to identify the parameters.
Moreover, RBFN and lightGBM are applied to compensate
for the non-geometric errors. The fourth part is experimental
validation and results. The error compensation experiment is
carried out, and the effectiveness of the proposed method is
verified. The fifth part is the discussion and summary, which
discusses the advantages of the error compensation method.

2. KINEMATIC MODEL OF THE ROCK
DRILLING ROBOT

2.1. Mechanical Structure of the Rock
Drilling Robot
The rock drilling robot is mainly composed of the wingspan
platform, left and right drilling manipulator, as shown in
Figure 1. The wingspan platform Cw can be raised to enhance the
work area. The drilling manipulator, which is mounted at the end
of the wingspan, is the main working device of the rock drilling
robot. The drilling manipulator has three moving joints and six
rotating joints. The left and right manipulator oil cylinders Cd

are placed at the front end of the manipulator to form a double
triangle structure. At the same time, the left and right pitching
cylinders Cs form a small triangle structure and are connected
in series with the manipulator front support cylinder Cd to
realize parallel linkage at the rear end of the manipulator. The
extension of the manipulator telescopic cylinder Cb determines
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FIGURE 1 | The structure of a rock drilling robot, Cw, wingspan cylinder; Cd, large triangle left and right manipulator oil cylinder; Cb, telescopic oil cylinder; Cs, small

triangle left and right pitching oil cylinder; Cf , turnover hydraulic motor; Cq, tilt oil cylinder; Ct, compensation oil cylinder; Cz, drill rod oil cylinder.

the longitudinal working distance of the manipulator. The
hydraulic motorCf of the flip joint is used to control the propeller
around the axis Linear lateral rotation, with thruster tilt cylinder
Cq to achieve different drilling angles. Compensation cylinder Ct

pushes the bracket to move forward and backward to realize the
fine adjustment of the position and posture. Each of the joints is
actuated by hydraulic cylinders, which effectively serve as velocity
sources.

2.2. Forward Kinematics Based on MDH
Model
DH method is a standard method to realize the transformation
between joint variables and Cartesian coordinates and learn the
kinematics modeling of the robot. However, when the joint
axes between adjacent links are close to parallel, the position of
the actual normal will deviate significantly from the theoretical
normal due to the slight deviation of parallelism, which will affect
the kinematic calculation.

Therefore, the MDH method is adopted to describe the
conversion relationship of parallel joint axis systems. Its
characteristic role is to add the rotation change Rot (yi, βi) around
the y axis on the original DH model and set the initial value of βi

of adjacent joints to 0.
According to the structural characteristics of the rock drilling

manipulator, the coordinate system transformation between links
is designed, and the kinematic model of the manipulator is
established, as shown in Figure 2.

2.3. Forward Kinematics Model With MDH
When the coordinate systems of the manipulator 1, 2, 4, and 5
are parallel, the forward kinematics model of the rock drilling
robot is established according to MDH method as shown in
Table 1, and the homogeneous transformation matrix Ti−1

i
between adjacent link coordinate systems is obtained, as shown
in Equation (1):

Ti−1
i

(

αi−1, ai−1, di, θi,βi

)

= Trans (x, ai−1)Rot (x,αi−1)

Trans
(

z, di
)

Rot (z, θi)Rot
(

y,βi

)

=









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1









(1)

where m11 = cθicβi, m12 = −sθi, m13 = cθisβi, m14 =

ai−1, m21 = sθicαi−1cβi + sαi−1sβi, m22 = cθicαi−1, m23 =

sθicαi−1sβi − sαi−1cβi, m24 = −disαi−1, m31 = sθisαi−1cβi −

cαi−1sβi, m32 = cθisαi−1, m33 = sθisαi−1sβi + cαi−1cβi, m34 =

dicαi−1. s presents the sine function while c is the cosine function.
When the coordinate systems of two adjacent joints are not

parallel, βi = 0, and the second transformation Ti−1
i between

the links of two adjacent non-parallel joints is defined in
Equation (2):

Ti−1
i

(

αi−1, ai−1, di, θi
)

= Rot (x,αi−1)Trans (x, ai−1)Rot (z, θi)Trans
(

z, di
)

=









cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1

sθisαi−1 cθisαi−1 cαi−1 dicαi−1

0 0 0 1









(2)

Substituting the parameters of each joint into the homogeneous
transformation matrix, the transformation matrix of the robot
manipulator end actuator relative to the base is obtained, as
shown in Equation (3):

T0
10 =









nx ox ax Px
ny oy ay Py
nz oz az Pz
0 0 0 1









=

[

R P
0 1

]

(3)
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3. METHODOLOGY

3.1. Parameter Identification of Geometric
Error Compensation Model
The geometric error mainly refers to the error between the

ideal kinematic model parameters and the parameters of the

actual MDH modeling (Khan and Chen, 2011; Cui et al., 2012).

Therefore, the geometric errors are composed of measurement

errors of length and angles during modeling, the calibration
errors of the sensor, the manufacturing errors, and assembly
errors. For positive kinematics parameters, ai represents the
distance between the joint axes of two adjacent joints, and the
main error caused by ai is the actual machining error. The symbol
αi represents the relative rotation angle of the two connected
joints, and its main error comes from the coaxiality error in
the assembly. di represents the relative distance between the two

joints on the common joint axis, which ismainly derived from the
measurement error during modeling. θi represents the rotation
angle of two adjacent joints around the common axis; the error
mainly comes from the observation error of the sensors.

The key role of the MDH method is to determine the axis of
each joint. Therefore, by tracking and recording the trajectory
of each joint’s movement, the actual joint axis position of the
robot can be established in the MDH model. The kinematic
parameters of the manipulator are defined by error computation
or estimation applying the posture measurement and position
data of the end effector. In this article, the kinematic parameters
are estimated by applying a differential evolution algorithm.
The identified kinematics error parameters 1α,1a,1d,1θ ,1β

are defined as: Kinematic parameters are estimated applying
differential evolution algorithm. The identified kinematics error
parameters 1α,1a,1d,1θ ,1β are defined as:

FIGURE 2 | Kinematics of rock drilling manipulator. Joint 1, wingspan rotation joint; Joint 2, wingspan parallel joint; Joint 3, left and right rotation joint of big triangle;

Joint 4, pitch joint of big triangle; Joint 5, pitch joint of small triangle; Joint 6, left and right rotation joint of small triangle; Joint 7, turning joint; Joint 8, tilt joint; Joint 9,

front end of compensation joint; Joint 10, end of compensation joint; L1, span support oil cylinder; L2, telescopic oil cylinder of large manipulator; L3, compensation

propulsion cylinder.

TABLE 1 | DH parameter of the rock drilling robot.

i Variable Variable range αi−1/(
◦) ai−1/mm di/mm θi/(

◦) βi/(
◦)

1 θ1 −15 to 60◦ 90◦ 200 250 θ1 0

2 θ2 15 to 60◦ 0 1,382 0 −θ1 0

3 θ3 30 to 150◦ −90◦ 0 2,500 θ3 0

4 θ4 −15 to 60◦ −90◦ 0 θ4 0 0

5 L2,θ5 0∼2,168 mm, −30 to 30◦ 0 5,000+L2 0 θ5 0

6 θ6 −75 to −125◦ 90◦ 145 0 θ6 0

7 θ7 −25 to −175◦ −90◦ 0 900 θ7 0

8 θ8 15 to −20◦ 90◦ 240 580 θ8 0

9 L3 0 to 1,778 mm −90◦ 0 2,230+L3 0 0
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F(1α,1a,1d,1θ ,1β) =
∑

(

e2d + e2δ
)

(4)

where ed denotes the error of the end position, which indicates
the distance deviation between the predicted position of the
model and the actual position. The symbol eδ is the error of
the end attitude, which indicates the predicted rotation angle
deviation between the model and the actual attitude on the x,
y, and z axes. The observation prisms “r” and “s” are set at
the front and end of the manipulator’s compensation cylinder.
The displacement from the deflection deformation and other
nonlinear factors are ignored in the geometric compensation.
Then the attitude error at the end of the robotic manipulator
[

er
d
erδ

]

can be obtained from the position error of the

two observation
[

er
d
es
d

]

. The geometric error model can be
expressed as:

F(1α,1a,1d,1θ ,1β) =
∑

(

erd
2
+ esd

2
)

(5)

3.2. Parallel Differential Evolution
The differential evolution algorithm is a heuristic algorithm
that can be applied to solve the optimization problem through
competition and cross-mutation. In order to identify the
parameters of the rock drilling robot, the common differential
evolution algorithm is proposed as the following five steps:
Step 1 Initialization

The initial population is generated by randomly sampling
the feasible search space defined by joint bounds, as shown in
Equation (6):

xij(0) = Lj + randij(0, 1)
(

Uj − Lj
)

(6)

Let n be the individual dimension, expressed as the value of the
first individual of the generation population in the dimension,
and the individual randomly generates an initial value that meets
the constraints in each dimension:

xij(0) = Lj + randij(0, 1)
(

Uj − Lj
)

(7)

In Equation (6), Uj and Lj represent the upper and lower bounds
of the individual on the dimension and randij(0, 1) represents a
random number between [0, 1] that obeys a uniform distribution.
Step 2Mutation

There are multiple solutions for the parameter identification
of the rock drilling robot error model, the robust DE/rand/1/bin
evolution model is used to preserve the diversity of the search
population (Mlakar et al., 2015). The specific operation is to
select an individual with the highest fitness from the current
population, randomly select three different individuals, and
scale the difference between the two vectors and add it to
another individual vector to obtain a new variable Individual
(Pavelski et al., 2016):

vi(t) = xp1(t)+ F
(

xp2 − xp3
)

(8)

where F is the scaling factor of DE, the value range is [0, 1].
Step 3 Boundary constraint

The individual vector after themutation operationmay exceed
the boundary of the search solution space, and the infeasible
solution is converted to generate a new vector (Tian et al., 2020):

vij(t) =

{

min
{

Uj, 2Lj − vij(t)
}

, if vij < Lj
max

{

Lj, 2Uj − vij(t)
}

, if vij > Uj
(9)

Step 4 Crossover
The differential evolution algorithm crosses the reference

vector and mutation vector to increase the diversity of the next
generation population. The specific operations are as follows:

hij(t + 1) =

{

vij(t + 1), if rand j[0, 1] < Cr or j = jrand
xij(t), Otherwise

(10)

Where: rand[0,1] represents the uniformly distributed random
number on the jth dimension, Cr represents the crossover
probability in the range of [0,1], jrand represents a random
number in 1,2,. . . ,n.
Step 5 Selection

Based on the greedy selection mechanism, it compares the
fitness of the mutated and cross-generated individual with the
original individual and retains the highly adaptive individual
as the next-generation population individual. The specific
expression is as follows:

Xi(t + 1) =

{

Hi(t + 1), if f
(

Hi(t + 1)
)

> f
(

Xi(t)
)

Xi(t), if f
(

Hi(t + 1)
)

< f
(

Xi(t)
) (11)

where f is the fitness function.
Since the rock drilling robot has three moving joints

and six rotating joints, the dimension numbers of the error
compensation model is 38. The high-dimensional solution
requires a high number of populations and evolutionary algebra,
which poses challenges to computer performance, algorithm
model convergence, and computing speed. In order to accelerate
the model convergence and increase the calculation speed under
the same computing power input, a parallel structure of the
differential evolution algorithm is proposed. The computing
performance of the CPU can be enhanced by applying a

FIGURE 3 | The structure of the RBFN network.
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FIGURE 4 | One of the regression tree of lightGBM.

parallel differential evolution algorithm to calculate independent
individual populations. Specifically, due to the independence
of the sub-populations, multiple processes can be allocated
through different computing cores of the CPU to calculate
the fitness of multiple sub-populations parallel. The structure
of the parallel differential evolution algorithm is shown in
Figures 2–6. Set the kinematic parameter error compensation
vector 1α,1a,1d,1θ ,1β to be the population individual in
the differential evolution algorithm. The sum of squared errors
between the trajectory of the end of the robotic manipulator and
the observation trajectory in the population is F.

3.3. Non-geometric Error Analysis
Due to the heavy load, large span, redundant joints, and hydraulic
character of the rock drilling robot, the error shows a high
degree of non-linearity. After geometric error compensation is
performed on the positive kinematics model, there are still errors
due to the non-linearity. The non-geometric errors are composed
of regular errors and irregular errors. Regular errors refer to
predictable errors, including elastic deformation due to changes
in load, frictional force direction, structural changes, and the
cumulative error caused by the transducer. The irregular errors
mainly come from observation errors and system errors. The
observation errors are related to the dynamic position capture
accuracy of the total station, the observation elevation angle,
and the measurement accuracy of the optical sensor; the system
errors mainly come from the command error of the encoder and
the signal transmission communication delay, vibration errors
caused by kinetic energy changes, etc. Regular non-geometric
errors are related to the time and space of the robot arm
movement. Take the compensation joint L3 as an example.
Moreover, changes in the relative speed and direction of joint
motion affect themagnitude and direction of frictional resistance,
and thereby the position error is changed.

Features are important conditions that affects the machine
learning models. Important features are extracted from the
original data for the use of algorithms and models (Yu
et al., 2017; Wen et al., 2021). Different algorithms have
different feature selections during supervised learning training
due to their training methods and structural characteristics.
To perform supervised learning training on non-geometric
error compensation of rock drilling robots, various features are
extracted according to different input feature vectors. The feature
types are divided into three types:

(1) Feature of the joint: The value of each joint sensor is applied
as a feature vector.

(2) Feature of positive kinematics model: The positive
kinematics of the robotic manipulator can project the
posture of each joint from the sensor to the Cartesian three-
dimensional coordinate, including the motion state, spatial
changes, and transformations of the non-geometric errors.

(3) Feature of control system: The feature of the control
system refers to the signal to control the electro-hydraulic
proportional valve, and the direction of joint, movement
speed, and stroke distance. The hydraulic control is affected
by the temperature, pressure, external load, and external
environment of the hydraulic system.

3.4. RBFN
RBFNN is a three-layer neural network that can quickly
approximate the nonlinear function to overcome local
minimums. There are three layers in RBFN, namely including
an input layer, a hidden layer, and an output layer, as shown
in Figure 3.

The relationship of the RBFN from vector input to output is
described as:

yi = fi(x) =

m
∑

k=1

ωikφk (x, ck) =

m
∑

k=1

ωikφk (θ ‖x− ck‖) (12)

where x is the input vector, ω is the output layer connection
weight, φ is the hidden layer basis function, and ck is the basis
function center of the kth neuron node

The radial basis kernel function is defined as Gaussian radial
basis function:

φk (‖θ (x− ck)‖) = exp

[

(x− ck)
T · θ · (x− ck)

2σ 2
k

]

(13)

where σk is the expansion width of the radial basis function of the
first neuron in the hidden layer.

Features are composed of the joint sensor value and the three-
dimensional coordinates calculated through positive kinematics.
In this article, the input of the RBFN model is normalized “joint
sensor value (9-dimensional)” and “positive kinematics model
parameters (27-dimensional)” which is 36-dimensional in total,
and the output is the predicted three-dimensional coordinates.
When k = 100 and σ = 0.05, it is validated that the model shows
the best result through experiments.

3.5. LightGBM
LightGBM is a fast, distributed, and high-performing framework
based on gradient boosting decision tree (GBDT), which has
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wide applications in for decades for due to its superior predictive
performance. Combining gradient boosting and decision tree,
lightGBMhas a strong expressive ability, good training effect, and
can effectively prevent overfitting by controlling the growth of the
tree. It can solve continuous and discrete values flexibly and is
robust to outliers. The process is mainly composed of three steps,
outlined as below:
Step 1 The training data set is given as: P =
{(

x1, y1
)

, . . . ,
(

x2, y2
)}

, let the loss function be L(y, γ ), the
learner is initialized:

f0 (x) = argminγ

N
∑

i−1

L(yi, γ ) (14)

Step 2M base learners are iteratively generated
The negative gradient of each samples i = 1, 2, . . . ,N is

calculated as:

rmi = −

[

∂L(yi, f (xi)

∂f (xi)

]

f (x)=fm−1(x)

(15)

(xi, rmi) (i = 1, 2, . . . ,N) is utilized as the training data for the
next regression tree. The leaf node area R(jm) of the m-th tree
fm (x), j = 1, 2, . . . , J,J is the number of leaf nodes of the
regression tree. The best fit is calculated as

γjm = argmin
∑

xiǫRjm

L(yi, fm−1(xi)+ γ ) (16)

Step 3 The strong learner is generated as:

f (x) = fM (x) = f0(x)+

M
∑

m=1

J
∑

j=1

γjmI(xǫRjm) (17)

The endpoint error compensation is used as the training label
for supervised learning; its training features have a total of 66
dimensions, which are “feature of the joint (9 dimensions)” +
“feature of positive kinematicsmodel (27 dimensions)” + “feature
of control system (30 dimensions).” K-fold cross-validation
method is applied. The test data D is divided into k parts in
equal proportions. One of the parts is applied as the verification
set. The other K − 1 parts of data are used as the training
data. After performing K times of training, the average result
of the K training experiments is used as the final result. When
the model stability is low, increasing the value of K can achieve
better results.

4. EXPERIMENTAL VALIDATION AND
RESULTS

4.1. Experimental Set-Up
In order to achieve accurate position compensation for the rock
drilling robot, the error compensation experiment is performed.
In this experiment, the SWDT82 rock drilling robot developed
by Sunward Intelligent Co., Ltd, as shown in Figure 5, has
a maximum manipulator length of 12.8 m and a wingspan

FIGURE 5 | SWDT82 rock drilling robot.

FIGURE 6 | The sensors applied in the rock drilling robot, (A) a joint angle

sensor, (B) is a length transducer.

FIGURE 7 | Experiment of the rock drilling robot.

of 5.2 m. The maximum coverage section width of the dual-
manipulator rock drilling robot is 17.65 m, the maximum
coverage section height is 13.38 m, and the maximum invert
depth is 3.31 m.
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The rock drilling robot is equipped with a three length
transducer and seven angle sensors as shown in Figure 6.
The angle sensors are the rotary encoder of POSITAL’s model
IXARC, and its theoretical measurement error is 0.1◦; the
length transducer is TRANSTRONIC’s model 022441, and the
theoretical error of measurement linearity of this sensor is 0.1%
mm. The observation instrument in the experiment is a Topcon
laser total station, which has functions such as motor tracking,
automatic sighting, and Bluetooth transmission.

4.2. Experimental Results
To compensate for the geometric error of the rock drilling
robot, the motion of a single joint is carried out. The position
and posture of the rock drilling robot are collected through
Topcon total station transmitting to the master computer using
Bluetooth as shown in Figure 7. The data of the angle sensors
and length transducers are transmitted to the master computer
w, b, r, and s corresponding to the joint 3, the joint 5, the front
of the compensation cylinder 9, and the end position of the
compensation cylinder 10, as shown in Figure 8. Moreover, the
end posture of the rock drilling manipulator is determined by the
position of observation point r and s.

So as to identify the geometric error of the manipulator,
single-joint motion of the manipulator is carried out. After
substituting each observation point, obtained from sensors,
into the forward kinematics model for calculation, the absolute
errors can be obtained. The absolute average error of each
observation point is ¯er0: ¯es0: ¯eb0: ¯ew0 = 323.59: 477.53: 895.52:
930.88 (mm).

Afterwards, the multi-joint motion experiment is carried out.
Trajectory data of the observation points of rock drilling robot
motion r, s, b, w is applied for error analysis. In the multi-joint
movement, the absolute average error of each observation

point data set ¯er0: ¯es0: ¯eb0: ¯ew0 = 355.61: 783.17: 1085.32:
1288.916 (mm).

In order to identify the forward kinematics of themanipulator,
the differential evolution method is applied to compensate for
the geometric error. This experiment not only explores the error
compensation effect of the error model method but also explores
the influence of the amount of data on the convergence of the
parameter identification of the error model method. Due to the
high-dimension of the model, the population of the differential
evolution algorithm is set to 30,000. To avoid premature
convergence of parameter optimization, the differential cross
recombination probability Cr is set to 1, the scaling factor F =

0.5, and the number of evolutions is set to 400. To improve the
performance of the model, the data set is shuffled and substituted
into the model multiple times to obtain the optimal solution.
To optimize the error model, the joint constraints are increased.
Set the end trajectory of each observation point as L′w, L

′
b
, L′s,

L′r , the trajectory observation point set is P′ and the model
prediction point set are (X′,Y ′,Z′, Then the position error of each
observation position are edw, e

d
b
, eds , e

d
r . The average absolute error

F of the optimal error model with ideal multi-joint constraints at
each observation point is expressed as:
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2
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)

Fb = min
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2

b

)

FS = min
(

ed
2

S

)

Fr = min
(

ed
2

r

)

(18)

The solutions of Fw, Fb, Fs, and Fr are difficult to satisfy
simultaneously, and the reduction of the error of some joint
clusters requires the degradation of the error fitting effect of
the other joint clusters, resulting in the Pareto solution. And
new observation errors are introduced by adding trajectory

FIGURE 8 | Schematic diagram of observation point.
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constraints, which reduce the overall accuracy of the model. In
order to solve the above problems, an equal amount of data in
the model calculation are applied for each joint. Moreover, a
weight coefficient is assigned to each joint, and the functions are
obtained by linearly combining the multi-objective functions:

F(1α,1a,1d,1θ ,1β) =
µre

d2
r

nr
+

µse
d2
s

ns
+

µbe
d2

b

nb
+

µwe
d2
w

nw
(19)

where µr ,µs,µb, and µw are the weight coefficients of the multi-
objective error constraint, andnr , ns, nb, and nw are the numbers

TABLE 2 | Parameters of positive kinematics compensation.

i 1αi−1/(
◦) 1ai−1/mm 1di−1/mm 1θi−1/(

◦) 1βi − 1/(◦)

1 3.5932 266.49 −37.92 3.9988 0

2 0.3292 −91.55 85.62 2.3400 5.3136

3 5.9856 90.88 96.04 2.9599 0

4 −5.7576 95.11 369.38 5.1696 −2.9444

5 −3.1405 123.58 230.58 1.1894 0

6 −0.5786 −253.95 −33.82 −0.5875 0

7 1.0460 269.17 225.12 4.6678 0

8 −1.0995 376.07 24.36 2.8406 0

9 3.5932 266.49 −37.92 3.9988 0

TABLE 3 | The mean absolute error of each experiment.

ēr (mm) ēs (mm) ēb (mm) ēw (mm)

Single

joint
382.58 396.04 466.92 263.21

Multi

joint
389.08 334.58 290.45 44.83

Optimal

method
306.82 320.12 298.69 70.37

of each data set. The parameters of forward kinematics of the
optimal method are obtained shown in as Table 2.

The average absolute error can be calculated from the
compensated positive kinematics. A parallel differential
evolution algorithm is applied to move a single joint as
the first experiment. Then, a parallel differential evolution
algorithm is applied for moving multi-joints applying as
the second experiment. Ultimately, the optimal differential
evolution algorithm is applied as the third experiment.
Consequently, the distribution of errors is shown in
Table 3.

Applying the optimal method of parallel differential evolution,
the errors of the end effectors are compensated, and the best
performance is achieved compared to the parallel differential
evolution algorithm.

The overall control flowchart is shown in Figure 9. Firstly,
the modified positive kinematics is obtained through an
optimal parallel differential evolution algorithm to compensate
for the geometric error. Afterward, the features are applied
to train RBFN. The estimated position and features are
combined to train light GBM. The non-geometric errors
are compensated through RBFN and light GBM. The top
10 features are shown in Figure 10. X_i, Y_i,Z_i (i=1, 2..)
are the Cartesian coordinates of the joint i, orient3 is the
control current of the hydraulic valve, Propeller_Flip_Angle
is the sensor of the flip joint, Z_dabi,Y_dabi denote the Z
coordinate and Y coordinate of the big manipulator separately,
Y coordinate. The hydraulic valve current control ranks
7th in feature importance as a system feature, indicating
that the system feature has an important contribution for
the model.

The absolute error of the endpoint is obtained for multiple
experiments in Figure 11. All of the experiments are carried
out by applying the same positive kinematics from the optimal
parallel differential evolution. The average error of the RBFN
is 41.5 mm, while the standard error of the RBFN is 33.5 mm.

FIGURE 9 | Control flowchart of the rock drilling robot’s error compensation.
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FIGURE 10 | Top 10 features of lightGBM.

FIGURE 11 | The absolute error of the end point.

Moreover, the average error of the lightGBM is 41.0 mm, while
the standard error of the RBFN is 28.5mm.Moreover, the average
error of the hybrid method is 30.5 mm, while the standard error
of the hybrid method is 17.4 mm. It can be concluded that the
hybrid method can achieve a good performance.

A validation experiment is carried out to verify the
effectiveness of the proposedmethod as shown in Figure 12. Two
hundred points collected along the trajectory are analyzed in
two error compensation methods. The blue line is the absolute
error before compensation. The yellow line is the absolute
error applying the parallel difference algorithm for geometric
compensation. The green line is the absolute error applying
RBFN combined with light GBM for geometric compensation

FIGURE 12 | The absolute error before compensation (blue line), the absolute

error applying geometric compensation (yellow line), the absolute error

applying geometric compensation and non-geometric compensation (green

line).

and non-geometric compensation. It can be concluded that
the error of the rock drilling robot is compensated effectively
by applying the proposed method, which meets the practical
application needs of rock drilling robots.

5. DISCUSSION AND SUMMARY

Geometric error compensation and non-geometric error
compensation methods are combined in this article. Firstly,
the positive kinematics model of the rock drilling robot is
established by the MDH method. Then, a parallel differential
evolution algorithm is designed to identify the forward kinematic
parameters to compensate for the geometric error. Single joint
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and multi-joint experiments are carried out to analyze the
error. By analyzing non-geometric error through experimental
trajectories, non-geometric error compensation based on RBF
neural network and lightGBM is proposed. Moreover, feature
engineering for the rock drilling robot is analyzed based on
the robotic kinematics model to achieve the optimization of
the non-geometric error compensation model. Finally, the
experiment is carried out to validate the performance of the
proposed method, which meets the precision requirements of
rock drilling robots. This article has shown that the addition
of positive kinematic parameters and control signal parameters
as feature engineering can greatly improve the learning ability
of machine learning. Therefore, features such as speed, oil
pressure, and artificial deflection calculation can be considered
in the research of machine learning to further improve the
learning ability and generalization of the model. And the
deflection deformation of the manipulators can be modeled
and analyzed in the field of mechanical materials to enhance
positional accuracy.
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