AUTHOR=Wang Huan TITLE=Green Supply Chain Optimization Based on BP Neural Network JOURNAL=Frontiers in Neurorobotics VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.865693 DOI=10.3389/fnbot.2022.865693 ISSN=1662-5218 ABSTRACT=

With the emergence and development of the Back Propagation neural network (BPNN), its unique learning, generalization, and non-linear characteristics have been gradually excavated and fully applied in the field of prediction. To improve the economic and green benefits of enterprises, the BPNN algorithm is applied to the green supply chain assisted by intelligent logistics robots. The BPNN algorithm can be used to output the characteristics of different information and optimize the green supply chain according to the input parameters and the influencing factors in the network. Firstly, an evaluation index system is established for selecting suppliers, which includes 4 first-level indicators: operational indicators, economic indicators, green indicators, social indicators, and 14 corresponding secondary indicators. Secondly, the evaluation indicator system is modeled through the BPNN. Finally, using the BPNN model, a supply chain enterprise's selection of cooperative enterprises in Xi'an is taken as the research object and simulation. Finally, the output results of the five alternative enterprises are 0.77, 0.75, 0.68, 0.72, and 0.65, respectively. The enterprise with the highest output results is selected as the cooperative enterprise and the enterprise with the second highest output results as an alternate. The green supply chain model based on the proposed BPNN is scientific and effective through specific simulation experiments. It has certain reference significance for the relevant issues related to subsequent optimization of the green supply chain.