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The exploration here intends to compensate for the traditional human motion recognition

(HMR) systems’ poor performance on large-scale datasets and micromotions. To

this end, improvement is designed for the HMR in sports competition based on

the deep learning (DL) algorithm. First, the background and research status of HMR

are introduced. Then, a new HMR algorithm is proposed based on kernel extreme

learning machine (KELM) multidimensional feature fusion (MFF). Afterward, a simulation

experiment is designed to evaluate the performance of the proposed KELM-MFF-based

HMR algorithm. The results showed that the recognition rate of the proposed

KELM-MFF-based HMR is higher than other algorithms. The recognition rate at 10 video

frame sampling points is ranked from high to low: the proposed KELM-MFF-based

HMR, support vector machine (SVM)-MFF-based HMR, convolutional neural network

(CNN) + optical flow (CNN-T)-based HMR, improved dense trajectory (IDT)-based

HMR, converse3D (C3D)-based HMR, and CNN-based HMR. Meanwhile, the feature

recognition rate of the proposed KELM-MFF-based HMR for the color dimension is higher

than the time dimension, by up to 24%. Besides, the proposed KELM-MFF-based HMR

algorithm’s recognition rate is 92.4% under early feature fusion and 92.1% under late

feature fusion, higher than 91.8 and 90.5% of the SVM-MFF-based HMR. Finally, the

proposed KELM-MFF-based HMR algorithm takes 30 and 15 s for training and testing.

Therefore, the algorithm designed here can be used to deal with large-scale datasets

and capture and recognize micromotions. The research content provides a reference for

applying extreme learning machine algorithms in sports competitions.

Keywords: deep learning, human motion recognition, sports, recognition rate, convolutional neural network, data

set

INTRODUCTION

With the further penetrating of computer technology (CT) into the sports fields, more
CT-empowered approaches are seeing applications in athletes’ training, saving the workforce
while sharing training experiences. Most commonly, CT can assist coaches and athletes in tactical
formulation through video content analysis (VCA) (Jiang et al., 2021). In particular, VCA can often
quickly identify the tactical information in the video, thereby improving the efficiency of analytical
work. VCA mainly uses image processing technology. Due to the huge amount of information in
competitive sports training and the high requirements for the processing ability of machines, the
human motion recognition (HMR) method combined with deep learning (DL) is used chiefly in
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sports VCA (Wang Q. Z. et al., 2021). In terms of human
detection, the research is abundant. Many methods have been
proposed to quickly and accurately detect people in video images.
However, only detecting people is far from enough due to the
rising and varying application demands. In many scenarios,
it is necessary to further perform motion recognition on the
detected people. Therefore, the accurate and real-time HMR in
the video image and positioning and motion analysis is vital
in real-life scenarios. Specifically, HMR-related technologies are
used in traffic scheduling, urban security, gymnastics rehearsal,
and stage scene analysis. There are many scenes where target
detection, positioning, and motion recognition can greatly
improve work efficiency and reduce human resources and
material consumption (Li et al., 2021). For example, in group
gymnastics rehearsal, it is possible to evaluate the performance
of individual members against given standards by detecting and
analyzing their positions and movement. Such can improve the
overall rehearsal efficiency. The athletes’ technical movements
are scored using HMR technologies in the Olympic gymnastics’
competition. In some interactive games, versatile HMR methods
are employed to present a better gaming experience for players.
Specifically, virtual reality (VR) games can analyze and recognize
the player’s movements and intelligently identify the player’s
instructions. With the introduction of DL’s concept, many
scholars have devoted themselves to DL research and have made
great progress and innovation.

Deep learning is a subcollection of machine learning (ML).
It is a new research direction that mimics the human brain
to enable machines to cluster data, learn features, and forecast
with incredible accuracy. Simply put, it makes computers
intelligent. DL is the representation and internal law of ML
sample data. Interpreting the information obtained in the
learning process help to realize the artificial intelligence (AI)
training. The collected information includes images, texts, and
sounds. In essence, DL is a kind of ML algorithm (Hsu
et al., 2021), which has seen applications in many fields,
including personalized technology and data mining (Sahu et al.,
2021). Because of the superior processing ability in image
understanding, DL algorithms are often used in the field of
VCA. As a typical DL model, a convolution neural network
(CNN) can realize a multiple-layer DL structure by convoluting
and sampling the original image (Khaydarova et al., 2021).
Thus, CNN has exerted excellent performance in visual target
recognition (Sarma K. V. et al., 2021). In particular, CNN
can extract complex patterns with high reference accuracy,
suitable for image processing with spatial relationships, such
as the DL applications in computer vision (CV) (Jin et al.,
2021). CV technology mainly uses computers and cameras
to capture, track, and measure the research object. Finally,
combined with an AI algorithm, CV realizes automatic motion
recognition of the research object. Meanwhile, CV technology
solvesmany shortcomings of traditional human body recognition
technology (Liang et al., 2021; Shen et al., 2021). The research
of HMR covers multi-disciplinary knowledge, including AI,
image processing, and pattern recognition (PR) (Zhang et al.,
2021). The HMR algorithm based on multi-feature fusion (MFF)
has become mainstream. So far, researchers have designed the

HMR algorithm based on the depth-image and obtained a
high computational efficiency. But the model performs poorly
on micromotion recognition. Then, others have proposed a
sequential deep belief network (SDBN)-based onlineHMRmodel
to extend the deep belief network (DBN) model’s recognition
ability over static image recognition. However, the SDBN model
also prolongs the training time and thus is less time-effective
on large-scale datasets. Therefore, HMR design should factor
in micromotion recognition performance apart from the time
efficiency on large-scale datasets.

The present work will study the application of the HMR
system in sports competitions. In particular, HMR in sports
competition is tracking and recording human motions through
some time-specific key motion points. Then, the key points are
expressed bymathematical methods. The application of theHMR
system is of great significance to developing competitive sports.
Based on the DL algorithm, the present work uses the HMR
system to analyze the sport’s tactics in sports competitions with
high efficiency and quality. Specifically, it introduces the research
background of HMR, designs the algorithm considering large-
scale datasets and micromotion recognition, and finally evaluates
the algorithm’s performance through simulation experiments.
The innovation of the present work is to apply HMR under DL to
the field of sports competition and design a sports video-oriented
HMR algorithm using kernel extreme learning machine (KELM)
multidimensional feature fusion (MFF) (hereafter, KELM-MFF-
based HMR algorithm). The research content provides a
reference for developing HMR in sports competition fields. The
organizational structure is shown in Figure 1. The Introduction
introduces the application background of DL in the field
of HMR and proposes the research questions. The literature
survey summarizes and analyzes the development of HMR. The
HMR algorithm of DL using KELM-MFF is applied to sports
competitions. Finally, the algorithm simulation is carried out.

LITERATURE SURVEY

The development of human body recognition technology began
in the 1990s, and the traditional research direction of HMR is
the identification, classification, and characterization of relevant
information in sports competitions (Chen and Lee, 2021). Sports
information representation includes the description of specific
movements of the human body, the detection of spatiotemporal
information points in videos, and the tracking and recognition
of motion-intense trajectory (IT) (Shieh et al., 2021). There
are many ways to characterize specific human motions, such
as combining multiple camera videos from different angles.
Accurate HMR can be achieved by estimating the motion
posture of the human body (Gao et al., 2022). HMR model can
be implemented by focusing on specific human parts’ motion
states. Then, motions can be positioned by the constraint of
the tree structure and specific motion information (Hu et al.,
2022). Meanwhile, the spatiotemporal and graphical models
can be combined to build an integrated HMR framework
(Low et al., 2022). Generally, detection tools must be used
to detect spatiotemporal information points in the video and
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FIGURE 1 | The organizational structure.

describe their features, such as filters and three-dimensional
detectors. Common feature descriptors for human motions in
VCA include optical flow histogram and directional gradient
histogram (Pardos et al., 2022). The first step of tracking and
recognizing the motion trajectory is to pre-process and sample
the video, then track the motion, and finally get multiple
data representation images (Sharif et al., 2022). Afterward, the
characterized human motion information needs to be identified
and classified. The traditional research of HMR is mainly based
on human skeleton information (Miao and Liu, 2021). Studies
have shown that motion history point cloud can also describe and
recognize actions.

The CV-based method requires simple equipment and
is convenient to deploy. It is the main method to study
HMR at this stage. It is mainly divided into top–down and
bottom–up detection methods. The top–down detection method
directly uses the existing detector to estimate the posture of a
single person every time. Thus, the detection time is directly
proportional to the number of people detected. With the
increase of the target human in the image, the detection time
of each image also increases, wherein the bottom–up method
can separate the target human in the complex image. This
method does not directly use the correlation information of other
body parts and the global information of others in the image.
However, the efficiency is not significantly improved, and the
final local correlation needs large amounts of calculation. For
example, Chen et al. (2021b) proposed a bottom–up method
to associate some detection candidates with a single human
body. However, the final detection time was relatively long.
Liu (2022) combined the image-pairing score detection method
with ResNet, significantly improving the calculation efficiency.

However, it took minutes to detect each image, a far cry from
real-time detection (Liu, 2022). Detecting the joint points of
human posture is a single frame-oriented method. However,
motion recognition analyzes the sequential posture set, featuring
time-spatial characteristics. Thivel et al. (2022) believed that
superimposing and calculating the motion silhouette of the
human body could get the motion energy map and motion
history map. They matched the two feature maps with the
template to realize motion recognition (Thivel et al., 2022). Bu
et al. (2022) used scale-invariant feature transform (SIFT) feature
to describe motion trajectory. They then used hidden Markov
model (HMM) for HMR (Bu et al., 2022). There is also research
on the skeleton points-based HMR. These methods are relatively
simple with a relatively low recognition rate. Choi et al. (2022)
introduced the concept of “entropy.” They proposed an HMR
model based on motion energy using a dynamic time warping
algorithm to realize HMR (Choi et al., 2022).

As from the past studies, the DL algorithm helps improve
the HMR algorithm’s efficiency on large-scale datasets. However,
the micromotion-oriented HMR algorithm needs more in-
depth research to analyze sports tactics better. In particular,
the present work uses KELM to combine the manual features
of improved dense trajectory (IDT) with the DL features. As
such, the proposed KELM-MFF-based HMR algorithm has both
advantages of manual features and DL features and can interpret
human motion in sports videos from multiple angles.

TECHNICAL BACKGROUND AND DESIGN
OF THE PROPOSED KELM-MFF-BASED
HMR ALGORITHM

Development of HMR Technology
At present, the most popular HMR system is based on a two-
CNN structure (Wang and Feng, 2021), where two CNNs are
combined, one for cutting out the action image and the other
for inputting the original image. The two-CNN fusion structure
reduces the network parameters and accelerate the training speed
(Zhang X., 2021). Additionally, some research combines spatial
and temporal dimensions of CNNs for HMR. A total of two
parallel frames are used to build the CNN. Alternatively, a
professional camera is used to accurately recognize the human
motion in the video in combination with the long-term recurrent
convolutional network (LRCN) (Chen et al., 2021a). Figure 2
displays (Kim S. U. et al., 2021) the content of HMR based
on CNN.

Figure 2 implies that with the development of the 3D neural
network, 3D CNN sees applications in HMR. Research directions
in CNN-basedHMR include video frame number, time sequence,
region, and other influencing factors.

The proposed KELM-MFF-based HMR algorithm comprises
a display screen, power supply (PS), controller system, and
posture sensor. The system PS is a set of lithium batteries charged
by the management module. The voltage stabilizing module
provides appropriate PS voltage for the main controller and
peripherals. The posture sensor collects the original data and
sends them to the microcontroller unit (MCU). Afterward, the
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FIGURE 2 | Motion recognition based on CNN.

FIGURE 3 | HMR system.

MCU sends the processed data results to the screen. The specific
process is profiled in Figure 3.

Design of HMR Algorithm Under DL
The single hidden-layer feedforward neural network (FNN) can
be solved by extreme learning machine (ELM) theory, which
is more straightforward than other theories. Therefore, the
present work selects the ELM to design the HMR algorithm
(Hao et al., 2022). Next, the ELM model classifies a certain
number of training samples (Su et al., 2021) and outputs as
the minimization. The ultimate purpose is to minimize the
training error.

Combined with the literature knowledge, Equation (1) gives
the compatible expression of KELM.

f
(

xj
)

= [P
(

xj, x1
)

. . .P
(

xj, xn
)

]
T
(
I

C
+ P)

−1

T (1)

In Equation (1), C, xj, and T are the regularization parameter,
the training error vector, and the real motion classification. P
indicates the kernel function, j= 1, . . . , n. Equation (1) calculates
the significance of the classification attribute of the analyzed
motion training video.

Dong et al. (2022) found that information fusion helped to
improve the algorithm’s performance. Based on this, Figure 4
divides the KELM into two parts for analysis.

In Figure 4, KELM first fuses the manual feature kernel and
the DL feature kernel and predicts the manual, DL, and fusion
feature kernels’ score vectors (scores). Then, a neural network-
trained classifier classifies the scores.

Equation (2) (Kang et al., 2021) shows the manual and DL
features fusion process.

P
(

xi, xj
)

= b(xi)b
T(xj) (2)
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FIGURE 4 | KELM structure.

Equation (2) expresses the common manual and DL features
in the video, where P(xi, xj) are the different elements of p.
The manual and DL feature scores are averaged as the fusion
feature scores. Then, scores of fusion, manual, and DL features
are estimated.

Subsequently, the three kernel score vectors are used for the
fusion operation. The neural network structure calculates the
kernel matrix based on the feature scores. Equation (3) is used
to estimate the feature scores (Sedmidubsky et al., 2021).

P
(

qi, qj
)

= exp(−

∥

∥qi − q
∥

∥

2

σ 2
) (3)

Equation (3) is a square exponential kernel expression, where
q means the video prediction score, p stands for the Gaussian
element, and σ denotes the free parameter.

Further, the proposed KELM-feature fusion-based HMR
algorithm is implemented using CNN and manual features. The
manual features are coded by the IDT descriptor, including
absolute motion features of pixels, description of static features,
relative motion features of pixels, and trajectory (Lang et al.,
2021). The IDT descriptor uses the Fisher vector and involves a
huge amount of data (Kim T. et al., 2021).

Against training data spillover, this section proposes a new
mechanism using the principal component analysis (PCA) for the
IDT descriptor. The PCA-based new mechanism sets Gaussian

element P to 256 to train the model and trains the dataset to
25,600 subsets randomly sampled. Finally, the Fisher vector of
the IDT descriptor is obtained. Here, the linear kernel of the
descriptor is designed independently, and the descriptive kernel
of manual features is solved by Equation (4) (Sarma M. et al.,
2021).

Pb =
1

nd

∑

nd
i=1Pi (4)

Equation (4) expresses the kernel matrix of manual features,
where nd denotes a descriptor set to 4 types. They are pixel
absolute motion features, descriptive static features, relative
motion features, and trajectory.

The design of DL features is completed by organizing and
processing descriptors. The descriptors of DL features are set
to 4,096-dimensional video descriptors, and finally, the kernel
matrix PD is obtained by processing (Liu and Ji, 2021).

Equation (5) calculates fusing manual features and
DL features.

P =
Pd + Pb

2
(5)

Equation (5) is mainly expressed by fusing the average values.

Characteristics of DL in the Field of Sports
Competition
In this section, DL is introduced in the fuzzy judgment
of micromotion in sports videos. Figure 5 illustrates the
main structure.

Figure 5 indicates that the DL feature extraction is carried
out through two dimensions of video: time and red–green–blue
(RGB) channels, which will be described later.

Here, the video’s time template is used for HMR, the weighted
harmonic value of motion information difference, and statistical
data at different frames. Equation (6) (Zhang X. Q., 2021)
illustrates the specific expression.

TT = (
1

250
)
∑

n
i=2v1 · r(i) (6)

The weighted harmonic value in Equation (6) varies between 0
and 250. v means the weight value, n stands for the number
of video frames, and r denotes the motion information of
each frame.

Equation (7) is obtained by transforming Equation (6).

TT =

∑

n
i=2(

v1

255
) · r(i) (7)

Equation (7) is transformed with fuzzy membership function
(MF) to generate Equation (8) (Wang et al., 2021b).

TT =

∑

n
i=2λ(i) · r(i) (8)

In Equation (8), λ denotes a fuzzy MF, and λ ǫ (0-1). Equation
(8) expresses that the weight and fuzzy MF directly affect the

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 860981

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang Human Motion Recognition System

FIGURE 5 | DL in the field of sports competition.

TABLE 1 | DL parameter settings.

DL Specific parameters

CNN 2 × 2 feature kernels in the pooling layer and 5 × 5 feature

kernels in the convolution layer

Tri-color channel RGB mode

significance of sports information. Equations (9–12) display the
fuzzy MFs designed here.

λ1 (i) = 1 (9)

λ2 (i) =
i

n
(10)

λ3 (i) = 1−
i

n
(11)

λ4 (i) =

{

2i
n , 0i ≤

n
2

2− 2i
n ,

n
2 i ≤ n

(12)

In Equations (9–11), i ǫ (0, n).
Notably, the membership degree (MD) of the four fuzzy MFs

is given in the Section Results.
The CNN is used to describe the DL features of motion

information. As mentioned above, CNN is used to learn
information features based on time templates. Table 1 lists the
parameters of the DL algorithm set.

Table 1 signifies that the architecture of the CNN adopted
is 5C-2s-5c-2s, where 2s indicates that the number of feature
kernels under the maximum pooling layer is 2 × 2. 5c indicates
the number of feature kernels under the convolution layer, which
is 5 × 5. Tri-color channel mode refers to RGB mode, applied to
SVM to recognize competitive sports motions (Chen K. Y. et al.,
2021).

Simulation Experiment of the Proposed
KELM-MFF-Based HMR Algorithm
Subsequently, this section evaluates the proposed KELM-
MFF-based HMR algorithm. The experimental sample adopts
two kinds of video datasets. The first dataset contains large
amounts of low-resolution data, which is used to test the
proposed algorithm’s large-scale data processing ability. The
second dataset has high-resolution micromotion samples. It tests
the proposed algorithm’s micromotion recognition ability. In
this way, sports micromotions in competitive sports can be
accurately identified.

Experimental Dataset
The datasets used include the (University of Central Florida
(UCF) 101 and NATOPS datasets. UCF 101 dataset is
collected on the Internet, with high complexity and obvious
background clutter. UCF 101 contains 13,320 video clips
with 101 action categories. At the same time, this article
determines three training set-test set partition schemes. The test
dataset selects seven video sequences from 25 groups for each
partition scheme. The other 18 video sequences are selected
for training.

NATOPS video dataset contains high-resolution images. The
motion recognition accuracy of the algorithm designed in this
article is evaluated by small hand movements in 24 sports
fields. Some gesture movements also include handshape changes.
The dataset can be used to evaluate the recognition rate of
the action recognition algorithm. The video dataset has a high
resolution of 320 × 240; overall, 20 categories are designed.
Each category includes 24 small hand movements and 24 ×

20 actions altogether. Then, the first five categories are selected
to test the algorithm. The last 10 categories are used to train
the algorithm.
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FIGURE 6 | Training mode of large-scale data processing ability algorithm.

FIGURE 7 | The proposed KELM-MFF-based HMR algorithm’s training mode

of micromotion processing ability.

In the first dataset, the recognition performance of the
proposed algorithm is evaluated by comparing it with
other algorithms. The algorithms involved include an
action recognition algorithm in the context of Converse3D
(C3D), an action recognition algorithm in the context of the
combination of motion information and SVM (SVM-MFF),
an action recognition algorithm in the context of CNN, an
action recognition algorithm in the context of IDT, and action
recognition algorithm in the context of CNN + optical flow
(CNN-T). The algorithm recognition performance evaluation
under the second dataset selects 64 × 48 frames as the
time template. It extracts the features of the four fuzzy FM
functions in Equations (9–12) and then compares them with
other algorithms. A total of 6 microhand motion recognition
algorithms are involved in this experiment.

Recognition Rate of the Proposed KELM-MFF-Based

HMR Algorithm
The general training framework of the proposed KELM-MFF-
based HMR algorithm on the large-scale dataset is outlined in
Figure 6.

As signified in Figure 6, the large-scale data processing ability
of the proposed KELM-MFF-based HMR algorithm is mainly
studied through the motions of jogging, walking, cycling, and
stretching legs.

The general training framework of the proposed KELM-MFF-
based HMR algorithm on the second dataset is portrayed in
Figure 7.

As in Figure 7, the second dataset aims to train the
micromotion processing ability of the proposed KELM-
MFF-based HMR algorithm and focus on hand motions.
Therefore, the experiment selects the videos of professional
basketball and volleyball games, which both have specific
requirements for players’ ball-handling skills and thus involve
many microhand motions.

Algorithm Feature Fusion Strategy
The feature fusion strategy is divided into two parts: early feature
fusion and late feature fusion. The first dataset is mainly used
for experimental analysis. Figure 8 displays the main flow of
feature fusion.

From Figure 8, the early fusion means feature fusion
before classifier, and the later fusion is the feature fusion
after classifier. More precisely, the early fusion strategy fuses
the feature kernel before the classifier classifies the features.
By comparison, the late fusion strategy first fuses the score
vectors of each feature. It then classifies the score vector to
achieve motion classification. Then, the influence of different
feature fusion strategies on the performance of the HMR
algorithm is evaluated on the UCF101 dataset. The proposed
KELM-MFF-based HMR algorithm is compared with other
kernel-based MFF HRM algorithms. Notably, the experiment
mainly compares the performance of the proposed KELM-
MFF-based HMR algorithm with the SVM-MFF-based HMR
algorithm in terms of recognition rate under different feature
fusion strategies.

Finally, the time efficiency of the proposed KELM-MFF-
based HMR algorithm is evaluated on the UCF 101 dataset
with the SVM-MFF-based HMR algorithm. The experimental
environment is configured with an Intel i7 3.3 GHz CPU and
16GB RAM.
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FIGURE 8 | Block diagram of feature fusion.

FIGURE 9 | MD of fuzzy MF.

ANALYSIS OF SIMULATION RESULTS

Comparison of Results of Recognition
Rate of Different Algorithms
The MD of the fuzzy MF in the previous section is counted in
Figure 9.

Figure 9 implies that λ2, λ3, and λ4 represent the beginning,
middle, and end regions of sports competitive video in the time
dimension. λ1 will not change with the change of video frame.
λ1 is mainly used to calculate the energy in sports competitions,
which is not affected by time and space. λ2 increases linearly
with the change of video frame, which is mainly used to calculate
the historical image of sports competitions and is significantly
related to the number of video frames. λ3 and λ2 change in
opposite directions, and λ3 is significantly correlated with the

FIGURE 10 | Comparison of large-scale data processing capabilities of

different algorithms.

number of video frames. λ4 assigns the highest significance in
the middle area.

Next, the performance of several HMR algorithms on large-
scale data is comparatively analyzed, including the C3D-based
HMR, SVM-MFF-based HMR, CNN-based HMR, IDT-based
HMR, and CNN + optical flow (CNN-T) HMR. The results are
signaled in Figure 10. The present work has not considered the
hyperparametric adjustment and only sets the learning rate to
0.01 for all algorithms.

Figure 10 implies that different algorithms have different
recognition rates on different superimposed motions. The
recognition rate of the proposed KELM-MFF-based HMR
algorithm is higher than that of the other five algorithms. The
recognition rates of other algorithms at 10 sampling points are
sorted from high to low as SVM-MFF-based HMR, CNN-T,
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FIGURE 11 | Comparison of micromotion processing capabilities of different

algorithms.

IDT, C3D, and CNN. Probably, it is because SVM-MFF-based
HMR and CNN-T are MFF algorithms. By comparison, IDT,
C3D, and CNN are single feature recognition. The conclusion
can be drawn that the recognition ability of the MFF algorithm
is better than that of a single feature recognition algorithm.
The recognition ability of SVM-MFF-based HMR is not much
different from the proposed KELM-MFF-based HMR algorithm.
Presumably, the reason is that the SVM-MFF-based HMR
algorithm adds a sports information mechanism using a time
template to the SVM algorithm, improving the recognition rate.
So far, numerous pieces of the literature have shown the MFF
algorithm’s advantages. Additionally, the present work results are
consistent with Tanaka et al. (2022) latest research results. The
recognition ability of MFF is stronger than that of a single feature
recognition algorithm. The difference is that many comparison
models are used in the present work (Tanaka et al., 2022).

Figure 11 denotes the recognition of different dimension
features by fuzzy MF.

Figure 11 illustrates that the feature recognition rate of RGB
features is higher than that of the time feature, by up to 24%.
The recognition rate of the time dimension is low because the
microhand motions are easy to overlap in movement. The first
fuzzy MF has a lower recognition rate. The second, third, and
fourth MFs have a better recognition rate because they represent
the significance of the beginning, middle, and end of the video
sequence. Overall, the accuracy of the RGB color feature is better
than that of the time feature because microhuman motions are
more likely to overlap. In this case, the recognition of color
feature is higher. In the human body recognition research on
the phenomenon of human body overlap, the recognition rate
of the proposal of Santos et al. (2022) is consistent with the
present work.

FIGURE 12 | Comparison of accuracy of micromotion recognition with

different algorithms.

Afterward, the last three fuzzy MFs are fused. The comparison
is made between the proposed KELM-MFF-based HMR
algorithm and the SVM-MFF-based HMR algorithm in
recognizing micromotions, as sketched in Figure 12.

As Figure 12 displays, the proposed KELM-MFF-based HMR
algorithm has the highest recognition rate of the other five
algorithms. The proposed KELM-MFF-based HMR algorithm
fuses motion information with RGB features. It has more
advantages in capturing micromotion than the other five
algorithms. Hidden Markov algorithm (HMM), algorithm 1, and
conditional random field (CRF) belong to a single recognition
algorithm, so the recognition rate is low. By comparison, the
hidden conditional random field (HCRF) and the continuous
hidden conditional random field (C-HCRF) use video sequences.
They have a higher recognition rate because they belong to
multidimensional recognition. Apparently, the proposed KELM-
MFF-basedHMR algorithm can be used to deal withmicro-HMR
in sports videos. Compared with the latest research results of
Varshney et al. (2022), the experimental accuracy of the present
work is higher, indicating the superiority of fusing motion
information and color features. However, the analysis of color
fusion in the literature is more in-depth than the present work,
so the result findings are more convincing than the present work.
Thus, the present work will also do more in-depth research on
color fusion in the future.

Comparison of Feature Fusion Strategies
of Different Algorithms
Figure 13 compares the recognition rate between different fusion
strategies of the SVM-MFF-based HMR and the proposed
KELM-MFF-based HMR.
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FIGURE 13 | Comparison of recognition rate under different algorithm feature

fusion strategies.

Figure 13 signifies the recognition rate. Apparently, the
proposed KELM-MFF-based HMR algorithm is higher than
the SVM-MFF-based HMR algorithm in both the early and
late feature fusion stages, reaching 92.4 and 92.1%. The SVM-
MFF-based HMR algorithm has reached 91.8 and 90.5%. The
conclusion draws that the recognition rate is higher when
features are fused earlier than later under both algorithms.

Comparison of Time Efficiency of Different
Algorithms
The time efficiency of the proposed KELM-MFF-based HMR
algorithm is compared with that of the SVM-MFF-based HMR
algorithm, as plotted in Figure 14.

Figure 14 signifies that the proposed KELM-MFF-basedHMR
algorithm takes a shorter time to train and test than the SVM-
MFF-based HMR, only 30 and 15 s for training and testing.
By comparison, the SVM-MFF-based HMR algorithm takes 125
and 25 s. Thus, the time efficiency of the proposed KELM-MFF-
based HMR algorithm is much higher than that of the SVM-
MFF-based HMR algorithm. Therefore, the proposed KELM-
MFF-based HMR algorithm can be used to deal with large-scale
datasets. Bhatia et al. (2022) also have observed that the KELM
is suitable for processing large-scale datasets. At present, there
are few researches on large-scale dataset processing in sports.
The advantage of the present work is applying the proposed
KELM-MFF-based HMR algorithm to the field of sports.

DISCUSSION

In improving HMR, the recognition rate of the proposed
algorithm on large-scale data is more than 86%, higher than that
of the SVM, CNN-T, IDT, C3D algorithm, and CNN algorithms.
The recognition rate of the CNN-T algorithm is also high,

FIGURE 14 | Comparison of time efficiency of different algorithms.

which intuitively shows the superiority of the MFF algorithm.
With the rapid development of science and technology, the
combinatorial algorithm has become the first choice of current
researchers. The MFF algorithm can improve the performance
of a single algorithm and make up for the limitations of a single
algorithm. The latest research by Kyaw et al. (2022) shows that
the MFF algorithm is a critical way to solve practical problems.
HMR is inseparable from color recognition. The accuracy of
color recognition of the proposed algorithm is affected by the
phenomenon of human action overlap. It is hoped to strengthen
the research on improving the recognition rate of action overlap
in the future. For HMR, the proposed KELM-MFF-based HMR
has the highest accuracy among the five comparison algorithms,
mainly because this algorithm integrates RGB color features
and motion information. The research of Yang and Zou (2022)
suggests that the integration of RGB color features plays a vital
role in recognition algorithms. The present work verifies that the
ELM is suitable for processing large-scale video datasets through
the time efficiency comparison of different algorithms. The
finding provides data support for applying the ELM algorithm
in video recognition fields.

CONCLUSION

Following a review of the HMR system using the DL algorithm,
the present work studies the application of HMR systems in
sports competitions. After background introduction, a KELM-
MFF-based HMR algorithm is designed to improve traditional
algorithms’ poor performance against large-scale data and
micromotions in sports videos. Then, a simulation experiment
is designed to evaluate the performance of the proposed KELM-
MFF-based HMR algorithm. The research findings corroborated
that the proposed KELM-MFF-based HMR algorithm can be
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used to solve two problems in the current algorithm. (1) The DL
features of human motions in the video sequence are analyzed
through the time template to assign different significance to
different time domains of the motion information. (2) The time
template of the video sequence is inputted into the CNN to
learn the feature set of sports motions. The manual and DL
features are complementary and describe the human motions
in videos from different angles. The research content provides a
reference for applying the DL algorithm in sports competitions.
There are still some deficiencies in the article. The second
experimental dataset (NATOPS video dataset) only involves the
professional motions in basketball and volleyball without adding
other sports. Meanwhile, the analysis of color characteristics
is not deep enough. The present work does not optimize the
hyperparameters of the model. The follow-up research can
combine the common sports actions into a new dataset for amore
comprehensive analysis. There is a need to deepen the research on
color characteristics and increase the hyperparameter setting and
recognition rate of human actions for more convincing research
results. After further improvement, it is expected to be applied to
college sports events.
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