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Neural networks have played critical roles in many research fields. The recently proposed

adversarial training (AT) can improve the generalization ability of neural networks by

adding intentional perturbations in the training process, but sometimes still fail to

generate worst-case perturbations, thus resulting in limited improvement. Instead of

designing a specific smoothness function and seeking an approximate solution used

in existing AT methods, we propose a new training methodology, named Generative

AT (GAT) in this article, for supervised and semi-supervised learning. The key idea of

GAT is to formulate the learning task as a minimax game, in which the perturbation

generator aims to yield the worst-case perturbations that maximize the deviation of

output distribution, while the target classifier is to minimize the impact of this perturbation

and prediction error. To solve this minimax optimization problem, a new adversarial loss

function is constructed based on the cross-entropymeasure. As a result, the smoothness

and confidence of the model are both greatly improved. Moreover, we develop a

trajectory-preserving-based alternating update strategy to enable the stable training of

GAT. Numerous experiments conducted on benchmark datasets clearly demonstrate

that the proposed GAT significantly outperforms the state-of-the-art AT methods in terms

of supervised and semi-supervised learning tasks, especially when the number of labeled

examples is rather small in semi-supervised learning.

Keywords: neural networks, adversarial training, generative AT, worst-case perturbations, smoothness function,

trajectory-preserving-based alternating update strategy

1. INTRODUCTION

Neural networks have launched a profound reformation in various fields, such as intelligent driving
(Feng et al., 2021), neuro-inspired computing (Zhang et al., 2020; Deng et al., 2021b), smart
health (Khan et al., 2021), and human computer interaction (Deng et al., 2021a; Pustejovsky
and Krishnaswamy, 2021; Fang et al., 2022). However, in practical classification and regression
applications (Wu et al., 2021a), since the number of training examples is finite, the error rate
calculated by the training examples may be considerably deviated from the one by test examples.
This fact causes the overfitting problem (Wu et al., 2021b), which greatly impacts the generalization
performance of neural networks. In order to prevent the neural networks from overfitting, one
popular approach is to augment the loss function by introducing a regularization term, which
encourages the model to be less dependent on the empirical risk for the finite training examples.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.859610
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.859610&domain=pdf&date_stamp=2022-03-24
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lijing@gzhu.edu.cn
https://doi.org/10.3389/fnbot.2022.859610
https://www.frontiersin.org/articles/10.3389/fnbot.2022.859610/full


Wang et al. Generative Adversarial Training for Supervised and Semi-supervised Learning

Based on Bayesian theory, this regularization term can be
interpreted as a prior distribution reflecting the preconceived
notion of the model (Bishop and Nasser, 2006; Wu et al., 2020).
Accordingly, the prior distribution of a model is usually assumed
to be smooth. That is to say, the outputs of a naturally occurring
system tend to be smooth with respect to the spatial or temporal
inputs (Wahba, 1990). This assumption indicates that the data
points close to each other should be highly likely to infer the same
predictions. Unfortunately, recent studies show that most of the
neural networks suffer from misclassifying some data points that
have only small differences from the correctly classified data
points (Goodfellow et al., 2014b; Strauss et al., 2017; Yuan et al.,
2019). These misclassified data points are called the adversarial
examples, which are crafted by the addition of some imperceptive
perturbations to the natural examples in the input space.

To overcome the problem that the neural networks are
vulnerable to small but malicious perturbations, adversarial
training (AT) is proposed (Goodfellow et al., 2014b; Wang
et al., 2019; Cui et al., 2021; Zhang et al., 2022). AT aims to
smooth the model outputs by penalizing the deviations caused
by the adversarial perturbations. The major challenge of AT
is how to accurately estimate such perturbations that alter
the output distribution around the input data points. To this
end, several perturbation-based methods have been proposed by
solving an internal optimization problem at the current status
of the model. For instance, random AT (RAT) (Zheng et al.,
2016) improves the model smoothness by adding the randomly
generated perturbations to the input data. These perturbed data
points are encouraged to produce the same prediction given by
its corresponding unperturbed versions. Since the perturbations
around the input appear in random directions, RAT is referred
to as an isotropic smoothing approach. However, it is shown that
the isotropic smoothing makes the model particularly sensitive
to adversarial examples (Szegedy et al., 2013; Goodfellow et al.,
2014b). Based on this consideration, Goodfellow et al. (2014b)
proposed a standard AT (SAT). SAT is an anisotropic method
that smoothes the output distribution by making the model
robust against perturbations in a specific direction. This specific
direction in the input space is called the adversarial direction,
in which the output of the model is the most sensitive. To
identify the perturbations in the adversarial direction, SAT
first formulates an objective function based on the differences
between the prediction and correct labels and then solves this
function with an efficient Frank-Wolfe optimizer. SAT requires
the use of labels when calculating the adversarial perturbations.
Hence, SAT cannot be applied to the regime of semi-supervised
learning. Virtual AT (VAT) (Miyato et al., 2018) extends the
notion of SAT in the sense that it defines the adversarial direction
without label information, and thus can be applied to both
supervised and semi-supervised learning tasks. We observe that
in order to generate the adversarial perturbations, the existing
ATmethods explicitly define a smoothness function to regularize
the neural networks. This leads to two limitations. First, it is
extremely difficult to find a universal smoothness function due
to the various output patterns and distance metrics. Second,
there is no analytical solution to such a box-constrained function.
Consequently, a numerical method is generally used to seek an

approximate solution, which greatly affects the performance of
identifying the worst-case adversarial perturbations.

Different from previous methodologies, we propose a novel
AT methodology, named generative AT (GAT) in this article,
to improve the smoothness of output distribution of neural
networks for the supervised and semi-supervised learning tasks.
The objective of the proposed GAT is to train the target
classifier such that it not only achieve the minimum prediction
error but also has the best robustness against the adversarial
perturbations. To this aim, we formalize the regularizing
process as a minimax game. To be specific, we exploit the
cross entropy method to construct a new adversarial loss
function. Moreover, we develop an effective alternating update
strategy to optimize the challenging non-convex problems. The
experimental results tested on benchmark datasets show that
the proposed GAT obtains the empirical equilibrium point and
state-of-the-art performance.

The main contributions of this article are summarized as
follows:

• We formulate the regularizing for the learning task as
a minimax game according to the outputs of the target
classifier from the natural example and its adversarial version
derived by a perturbation generator. As the game approaches
the empirical equilibrium, the target classifier achieves the
best performance.

• A new adversarial loss function is constructed based on
the cross entropy method, which not only accurately reflects
the deviation caused by the perturbation but also efficiently
assesses the confidence of network output.

• An effective alternating update strategy based on trajectory
preserving is proposed to control the minimax optimization
training to be stable.

• The proposed GAT regularizes the model without label
information, hence it can be applied to the supervised and
semi-supervised learning tasks.

It is worth emphasizing that our method differs from any one
of the generative-model-based AT methods (Kingma et al., 2014;
Maaløe et al., 2016; Salimans et al., 2016; Dai et al., 2017).
This family of methods is considered to be an improvement
of Generative Adversarial Network (GAN), in the sense that
the target classifier in their frameworks is the extension of the
GAN’s discriminator serving for distinguishing the natural and
generated examples. For our method, the discriminator is not the
target classifier; instead, it is manually designed according to the
outputs of the target classifier over the natural example and its
adversarial version.

2. PROBLEM SETTING AND RELATED
WORKS

Without loss of generality, we consider the classification tasks in
a semi-supervised setting. Let x ∈ X = RI be the input vector
with I-dimension and y ∈ Y = ZK be the one-hot vector of

labels with K categories. Dl =

{

xl
(i), y

l
(i)|i = 1, ...,N l

}

and Dul =
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{

xul
(j)

|j = 1, ...,Nul
}

denote the labeled and unlabeled dataset,

where N l and Nul are the number of labeled and unlabeled
examples. AT regularizes the neural network such that both the
natural and perturbed examples output the intended predictions.
That is, we aim to learn amapping F :X → [0, 1]K parameterized
with θ ∈ 2 via solving the following optimization problem

min
{

LS

(

Dl, θ
)

+ λ · LR

(

Dl,Dul, θ
)}

. (1)

The symbol LS in Equation 1 represents the supervised loss over
the labeled dataset, which can be expanded as

LS = E(xl ,yl)∼DlŴ

(

yl, Fθ

(

xl
))

, (2)

where Fθ

(

xl
)

denotes the output distribution vector of the

neural network on the input xl given the model parameter θ , yl

is the one-hot vector of the true label for xl. The operator Ŵ (·, ·)
denotes the distance measure used to evaluate the similarity of
two distributions. A common choice of Ŵ for the supervised cost
LS is themeasure of cross entropy.LR is the adversarial loss, which
is served as a regularization term for promoting the smoothness
of the model. The adversarial loss plays an important role in
enhancing the generalization performance while the number of
labeled examples is small relative to the number of the whole
training examples (i.e., N l << Nul + N l). λ is a non-negative
value that controls the relative balance between the supervised loss
and the adversarial loss.

Many approaches are presented to construct LR based on the
smoothness assumption, which can be generally represented in a
framework as

LR = Ex∼DŴ
(

Fθ (x; ξ) , F̃θ ′
(

x; ξ ′
))

, (3)

where x is sampled from the dataset D which consists of both
labeled and unlabel examples. Ŵ

(

Fθ (x; ξ) , F̃θ ′
(

x; ξ ′
))

is termed
as the smoothness function, which is comprised of a teacher
model Fθ (x; ξ) and a student model F̃θ ′

(

x; ξ ′
)

. The teacher
model is parameterized with parameter θ and perturbation ξ ,
while the student model is parameterized with parameter θ ′

and perturbation ξ ′. The goal of LR is to improve the model’s
smoothness by forcing the student model to follow the teacher
model. That is to say, the output distributions yielded by F̃ is
supported to be consistent with the outputs derived by F. To this
end, the teacher model, student model, and similarity measure
are required to be carefully crafted for formulating an appropriate
smoothness function against the perturbation of the input and
the variance of the parameters. Based on the implementations
of this smoothness function, some typical AT approaches can be
explicitly defined.

Random Adversarial Training: In RAT, random noises are
introduced in the student model instead of the teacher model,
and the parameters of the student model are shared with the
teacher model. Moreover, L2 distance is used to measure the
similarity of the output distributions derived by F̃ and F on the
whole training examples. That is, θ ′ = θ , ξ ′ ∼ N (0, 1), ξ = 0,
and D = Dul

⋃

Dl for Equation 3.

Adversarial TrainingWith5-Model: In contrast to RAT, 5-
model introduces random noises to both the teacher model and
student model, i.e., ξ ′, ξ ∼ N (0, 1). The reason for this is based
on the assumption that predictions yielded by natural example
may itself be an outlier, hence it is reasonable to make two noisy
predictions learn from each other. In this case, optimizing the
smoothness function for 5-model is equivalent to minimizing
the prediction variance of the classifier (Luo et al., 2018).

Standard Adversarial Training: Instead of adding random
noises to the teacher/student model, the perturbation adopted
in SAT is some imperceptible noise that is carefully designed to
fool the neural network. The adversarial loss Lsat

R of SAT can be
written as

Lsat
R = E(xl ,yl)∼DlKL

(

yl||F̃θ

(

xl; ξadv

))

s.t. ξadv = argmax
ξ ;‖ξ‖≤ε

KL
(

yl||F̃θ

(

xl; ξ
))

,
(4)

where the operator KL (·||·) denotes the similarity measure
of Kullback-Leibler (K-L) divergence. ξadv denotes adversarial
perturbation which is added into xl to make the output
distribution of the student model most greatly deviate yl. ε is
a prior constant that controls the perturbation strength. Note
that the teacher model, in this case, is degenerated into the
one-hot vector of the true label. Generally, we cannot obtain
the exact adversarial direction of ξadv in a closed form. Hence,
a linear approximation of this objective function is applied to
approximate the adversarial perturbation. For ℓ∞ norm, the
adversarial perturbation ξadv can be efficiently approximated by
using the famous fast gradient signmethod (FGSM) (Madry et al.,
2017). That is,

ξadv ≈ ε · sign
(

∇xlKL
(

yl||F̃θ

(

xl; ξ
)))

. (5)

Some alternative invariants such as the iterative gradient sign
method (IGSM) (Tramèr et al., 2017) and the momentum IGSM
(M-IGSM) (Dong et al., 2018) are available to solve the objective
function. By adding adversarial perturbations to the student
model, SAT obtains better generalization performance than
RAT and 5-model. Unfortunately, SAT can only be applied in
supervised learning tasks since it has to use the labeled examples
to compute the adversarial loss.

Virtual Adversarial Training: Different from SAT, the key
idea of VAT is to define the adversarial loss based on the output
distribution inferred on the unlabeled examples. In this regard,
the adversarial loss Lvat

R of VAT can be written as

Lvat
R = Ex∼Dl∪DulKL

(

Fθ (x) ||F̃θ (x; ξadv)
)

s.t. ξadv = argmax
ξ ;‖ξ‖≤ε

KL
(

Fθ (x) ||F̃θ (x; ξ)
)

. (6)

To obtain the adversarial perturbation εadv, Miyato et al. (2018)
proposed to approximate the objective function with a second-
order Taylor’s expansion at ε = 0. That is,

ξadv ≈ argmax
ξ ;‖ξ‖≤ε

1

2
ξTH (x, θ) ξ , (7)
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where H is a Hessian matrix which is defined by H (x, θ) =

∇∇ξKL
(

Fθ (x) ||F̃θ (x; ξ)
)

. This binomial optimization is an
eigenvalue problem that can be solved using power iteration
algorithm. Since VAT acquires the adversarial perturbation in the
absence of label information, this method is applicable to both
supervised and semi-supervised learning.

3. THE PROPOSED METHOD

Adversarial training methods regularize the neural network via
forcing the output distribution to be robust against adversarial
examples. To obtain intentional perturbations, the existing AT
methods require to explicitly define a smoothness function to
compute the perturbations. Due to the non-convex characteristic
of the smoothness function, the existing AT methods usually fail
to generate worst-case perturbation by approximation analysis.
To tackle this problem, we propose a novel AT framework termed
GAT for improving the smoothness of the neural network,
where the worst-case perturbation of the input is generated by a
generator. In the following sections, we construct our framework
by answering two central questions: (1) how to formulate the
loss function with the perturbation generator and target classifier
and (2) how to effectively optimize this loss function during the
training process.

3.1. GAT Loss Based on Minimax Game
In our framework, two neural networks are considered, i.e., the
target classifier Tθ (x) parameterized with θ and the perturbation
generator Gϕ (x) parameterized with ϕ. In our framework, the
target classifier is the optimization objective that will be required
eventually. The perturbation generator is constructed by an
auto-encoder-like neural network. Specifically, the perturbation
generator can be defined as a mapping Gϕ :X → X , which
takes a natural example in X and then transforms it into an
imperceptible perturbation in the same space X . For ℓ∞ norm,
such constraints can be represented as

∀x,
∥

∥Gϕ (x)
∥

∥

∞
≤ ε, (8)

where ε is the perturbation bounds that controls the adversarial
strength. To implement the constraints indicated by Equation 8,
the activation function of the last layer in Gϕ is particularly
defined as ε · tanh (·). Then, the generated perturbation is
added into the corresponding natural example to composite an
adversarial example.

The goal of Gϕ is to find a perturbation that most deviates the
current inferred output of the target classifier from the status quo,
while Tθ (x) is to minimize the prediction error for the natural
example as well as the deviation caused by such perturbation.
This problem can be formulated as a minimax game and the loss
function of which can be formulated as

min
θ

max
ϕ

E(xl ,yl)∼DlŴS

(

yl,Tθ

(

xl
))

+ λ · Ex∼Dl∪DulŴR

(

Tθ (x) ,Tθ

(

Gϕ (x) + x
))

.
(9)

Equation 9 is referred to as the GAT loss, which is comprised
of a supervised loss LS and an adversarial loss LR . LS is

determined by labeled examples, while LR is independent of the
labels and served as a regularization term smoothing the model.
The parameter λ controls the balance of LS and LR. For the
maximization and minimization loop of the minimax game, ϕ

and θ are the parameters required to be optimized. Since LR

is defined over the whole data set, our method is applicable
to semi-supervised learning. Note that for the adversarial loss,
the target classifier Tθ (x) is considered as the teacher model,
while the compound function of Tθ

(

Gϕ (x) + x
)

is served as the
student model.

In addition, the operatorŴS (·, ·) andŴR (·, ·) are the similarity
measures for LS and LR, respectively. Here, ŴR is crucial
for the construction of adversarial loss. Instead of using K-L
divergence to define the adversarial loss as VAT/SAT does, we
exploit cross entropy measures to formulate the adversarial loss
function. There are two beneficial effects for this implementation.
First, cross entropy overcomes the problem of zero avoiding, an
inward nature for the K-L divergence(Bishop and Nasser, 2006).
Second, since cross entropy can be represented as the sum of
K-L divergence and information entropy, LR not only implies
the deviation of the output distributions, but also signifies the
confidence of the prediction of the target classifier. In particular,
by substituting ŴR with cross entropy in Equation 9, LR in GAT
loss can be rewritten as

CE
(

Tθ (x) ,Tθ

(

Gϕ (x) + x
))

= KL
(

Tθ (x) ||Tθ

(

Gϕ (x) + x
))

+H (Tθ (x)) ,
(10)

where the operator CE (·, ·) and H (·) denote cross
entropy and information entropy. In Equation 10,
KL

(

Tθ (x) ||Tθ

(

Gϕ (x) + x
))

is termed as smoothness term,
which reflects the deviation of the output distributions, while
H (Tθ (x)) is termed as confidence term, which indicates the
confidence of the output distribution. Moreover, we observed
that the confidence term is independent with parameter ϕ.
Hence, for the maximization loop of the minimax game,
maximizing LR requires to maximize the smoothness term only.
Whereas, for the minimization loop, minimizing LR requires
to minimize both the smoothness term and confidence term.
Note that minimizing the confidence term facilitates boosting
of the prediction confidence of the neural network. Thus, our
adversarial loss has the effect of entropy minimization proposed
in Grandvalet and Bengio (2004) and Sajjadi et al. (2016).

3.2. Alternating Update Process Based on
Trajectory Preserving
Figure 1 depicts the framework of GAT, in which two neural
networks are required to be optimized, i.e., the target classifier
T and the perturbation generator G. G takes natural example x
from the full dataset comprising of both the labeled and unlabeled
examples and generates a perturbation Gϕ (x). Then, Gϕ (x) is
appended into x to composite an adversarial example. Both the
adversarial example and its corresponding natural example are
fed into T for constructing the adversarial loss LR. Meanwhile,
labeled example xl sampled from the labeled dataset is input to T

for formulating the supervised loss LS.
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FIGURE 1 | The overall framework of Generative AT (GAT).

The objective of our framework is to find stable θ and
ϕ such that G maximizes the GAT loss for the given fixed
θ , while T minimizes the GAT loss for the given fixed ϕ.
Due to the non-linear constraint of the perturbation and
non-convex properties of the loss function, this optimization
problem is very challenging. Inspired by the training pattern
of GAN (Goodfellow et al., 2014a) and some common tricks
in reinforcement learning (Mnih et al., 2015), we propose to
optimize the GAT loss by an alternative updating procedure and
stabilize this procedure based on trajectory preserving.
First, we decompose the minimax optimization problem into the
inner loop and outer loop. The inner loop aims to derive an
optimal ϕ for maximizing the loss, while the outer loop aims to
obtain an optimal θ for minimizing the loss. Due to the fact that
the parameter ϕ in the inner loop is independent of the supervised
loss during the maximizing procedure, then the optimal ϕ of G
under the fixed θ can be written as Equation 11. Meanwhile,
the optimal θ of T under the given fixed ϕ can be represented
as Equation 12.

ϕ = argmax
ϕ

Ex∼Dl∪DulCE
(

Tθ (x) ,Tθ

(

x+ Gϕ (x)
))

, (11)

θ = argmin
θ

E(xl ,yl)∼DlCE
(

yl,Tθ

(

xl
))

+

λ · Ex∼Dl∪DulCE
(

Tθ (x) ,Tθ

(

x+ Gϕ (x)
))

.
(12)

Second, since the perturbation generator and the target classifier
are assumed to be neural networks, the parameters θ and ϕ in
Equations 11 and 12 can be calculated by stochastic-gradient-
based methods (Liu et al., 2021; Jin et al., 2022). A traditional
solution to this minimax problem is to alternatively update ϕ by
gradient ascent over the full dataset and update θ by gradient
descent over the labeled dataset. However, since the number

Algorithm 1: Trajectory preserving training process.

1 Initialize randomly θ

2 for epoch = 1 : E do

3 Create empty list L
4 Initialize randomly ϕ0

5 for t = 0 : T do

6 Sample batch
{

x
(t)
i

}

of sizeM from Dul ∪Dl

7 Store
({

x
(t)
i

}

,ϕ(t)
)

into the list L

8 Update ϕ(t+1) by gradient ascent (Equation 13)

9 end

10 for t = 0 : T do

11 Retrieve
({

x
(t)
i

}

,ϕ(t)
)

from the list L

12 Pseudo-update ϕ′ by gradient ascent (Equation 14)

13 Sample batch
{(

xlj, y
l
j

)}

of size N from Dl

14 Update θ by gradient descent (Equation 15)

15 end

16 end

17 return θ

of labeled training examples is small, both ϕ and θ are not
easy to converge in practice. We develop a trajectory preserving
strategy to tackle this problem. In our method, for each epoch
of alternating, we update ϕ using gradient ascent and record the
update trajectories of ϕ. Then, based on these trajectories, we
retrieve the intermediate parameter ϕ′ by executing a pseudo-
update procedure for ϕ. Finally, we update θ by gradient descent
under the given ϕ′.

The implementation details of the proposed trajectory
preserving training procedure are illustrated in Algorithm 1,
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where E is the number of training epochs, T is the maximum
iterations in each epochs. Equations 13 and 14 represent
the updating and pseudo-updating for ϕ by gradient ascent.
Equation 15 describes the updating process for θ by gradient
descent. αg and αt are the learning rate for the perturbation
generator and target classifier, respectively.

ϕ(t+1) = ϕ(t) + αg∇ϕ(t)
1

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

, Tθ

(

x
(t)
i + G

ϕ(t)

(

x
(t)
i

)))

(13)

ϕ′ = ϕ(t) + αg∇ϕ(t)
1

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

, Tθ

(

x
(t)
i + G

ϕ(t)

(

x
(t)
i

)))

(14)

θ =θ − αt∇θ







1

N

N
∑

j=1

CE
(

ylj,Tθ

(

xlj

))

+
λ

M

M
∑

i=1

CE
(

Tθ

(

x
(t)
i

)

,

Tθ

(

x
(t)
i + Gϕ′

(

x
(t)
i

)))}

.

(15)

4. EXPERIMENTS

To validate the performance of our method on supervised and
semi-supervised task, we carried out experiments on synthetic
datasets and practical benchmarks by comparing with various
strong competitors.

4.1. Supervised Learning on a Synthetic
Dataset
This section tests the supervised learning performance of our
method for binary classification problems using two well-known
synthetic datasets, i.e., the “Moons” dataset (termed as M-
dataset) and the “Circles” dataset (termed as C-dataset). The
data points in the two datasets are sampled uniformly from two
trajectories over the space of R2 and embedded linearly into
100-dimension vector space. Each dataset contains 16 training
data points and 1,000 testing points. Figures 4, 5 provide the
visualizations forM-dataset and N-dataset, where the red circles
and blue triangles separately stand for the training examples with
labels 1 and 0. The target classifier used in this experiment is a

neural network with one hidden layer comprised of 100 hidden
units, where ReLU and softmax activation function are applied
to the hidden units and output units. We compare our method
with some popular AT methods, such as SAT (Goodfellow et al.,
2014b), RAT (Zheng et al., 2016), and VAT (Miyato et al., 2018).
These AT methods and the proposed GAT are conducted under
the setting of λ = 1 and ǫ = 0.2. Particularly, the perturbation
generator in our method has three hidden layers with the unit
number 128, 64, and 128, respectively.

Since the number of the training examples is extremely small
compared to the input dimension, the target classifier for binary
classification is very vulnerable to the problem of overfitting.
Figures 2A,B depict the transitions of the accuracy rates for the
target classifier with the GAT regularization and without this
regularization (termed as Plain NN). It can be observed that
the training accuracy of Plain NN and GAT achieved 100% for
the two datasets. Nevertheless, the test accuracy rate of GAT is
noticeably higher than that of Plain NN. Although our method
suffers from some fluctuations with the accuracy rate at the
initial stage of the training process, the test accuracy rate of
our method finally achieves a stable value after a few iterations,
thanks to the trajectory preserving training strategy. Figure 3
visualizes the output distributions of the trained target classifier
on the M-dataset and C-dataset with our method and Plain
NN. We can observe that compared to plain NN, GAT provides
more flat regions for the landscape of the output distribution.
This phenomenon indicates that our method is conducive to the
smoothness of the model in the sense that flat surfaces of the
landscape imply small deviations of the output.

Moreover, we plot the contours of the target classifier’s
predictions for label 1 on the two synthetic datasets by various
regularization methods. As shown in Figures 4, 5, the black line
in each plot stands for the contour of value 0.5, which is usually
used as the decision boundary for the binary classification tasks.
From these figures, we can see that the L2 regularization method
fails to acquire correct decision boundary on both theM-dataset
and C-dataset, hence, many false predictions are produced by
this method. RAT obtains convincing decision boundary for
M-dataset, but it generates an unreasonable decision boundary
for C-dataset. Among these methods, only SAT, VAT, and

FIGURE 2 | The transition curves of accuracy rates by Plain NN and the proposed GAT on M-dataset and C-dataset. (A) Plots the results for M-dataset, (B) plots the

results for C-dataset.
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FIGURE 3 | The visualization of model distributions of GAT and Plain NN on the synthetic datasets. (A,B) Show the distribution surface on M-dataset, (C,D) show the

distribution surface on C-dataset, where flat surface regions implicate small output deviations.

FIGURE 4 | The contour of output confidences for label 1 on M-dataset with various regularization methods. The red circles and blue triangles represent the data

points with labels 1 and 0, respectively. The decision boundaries with different confidences are plotted with different colored contours. Note that the black line

represents the contour of probability value 0.5, which is usually served as the decision boundary for the binary classification task. The accuracy rate of each method

for the test examples is displayed above the panel.

FIGURE 5 | The contour of output confidence for label 1 on C-dataset with various regularization methods. The detailed illustrations for this figure can be referred to

the caption of Figure 4.

our method yield applicable decision boundary for both the
M-dataset and C-dataset, because these methods employ an
anisotropic way to smooth the classifier. Compared to RAT and
VAT, the decision boundaries of our method for different contour
values are more compact. This phenomenon illustrates that our
method can provide more confidence predictions for the new
instances, thanks to the cross entropymeasure for the adversarial
loss. Our method also achieves the highest test accuracy rate
against its competitors on both theM-dataset and C-dataset.

4.2. Supervised Learning on the
Benchmark Dataset
In this section, we evaluate the performance of our methods on
the MNIST dataset for a supervised learning scenario. The origin
60,000 training examples are split into 50,000 training examples
and 10,000 test examples. The target classifier is made up of four
hidden dense layers, whose unit numbers are 1200, 600, 300, and
150, respectively. The input dimension of the target classifier is
784 and the output dimension is 10. For each method, we use the
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setting of hyper-parameters that exhibits the best performance on
the test dataset to train the neural network and record their test
errors. The perturbation generator in our method is comprised
of hidden layers whose unit numbers are 1200, 600, 300, and
600, respectively. The control parameters of the methods by our
implementations are set λ = 1 and ǫ = 0.2. We compare our
method with some typical AT methods on the MNIST dataset for
supervised learning task. To verify the capability of the trajectory
preserving strategy, we also conducted an ablation experiment
for GAT-woTP, a method using the proposed GAT framework
but Without Trajectory Preserving strategy during the training.
The test error rates of these methods are reported in Table 1.
The experimental results demonstrate that our method surpasses
the previous state-of-the-art AT methods by a large margin.
Moreover, our method also outperforms advanced generation-
based algorithms such as Ladder network and CatGAN. Besides,
note that the error rate obtained by our method is much lower
than that acquired by GAT-woTP. This is because the trajectory
preserving strategy is benefit to ensure the stability of the training
process. Without this strategy, GAT is usually difficult to achieve
a favorable convergent point during the training.

4.3. Semi-supervised Learning on
Benchmark Dataset
This section validates the effectiveness of our method for semi-
supervised learning tasks on three popular benchmarks of
MNIST, SVHN, and CIFAR-10. According to the experimental
setups inMiyato et al. (2018), we take a test dataset with fixed size
1,000 from the training examples and train the classifier under
four sizes of the labeled dataset, i.e., Nl = {100, 600, 1000, 3000},
where Nl is size of the dataset. The rest instances of the training
examples are served as unlabeled examples. Then, we record
the test errors under different values of Nl. For our method,
we use a mini-batch of size 64 to calculate the supervised loss

TABLE 1 | Test error rates of various regularization methods for supervised

learning task on MNIST dataset.

Method Test error rate (%)

SVM (gaussian kernel) 1.40

Dropout 1.05

Maxout networks 0.94

DBM 0.79

Ladder network† 0.57

Conv-CatGAN† 0.48

Plain NN (Baseline) 1.15

RAT 0.85

SAT (L∞) 0.78

VAT 0.66

GAT-woTP 0.65

GAT (Our method) 0.45

The upper panel refers to the experimental results reported in prior work, the error

rates in the bottom panel are derived by our implementations. †Represents the

generation-based methods.

in Equation 11 and a mini-batch of size 256 to calculate the
adversarial loss in Equation 12. The control parameters of the
methods by our implementations are set at λ = 1 and ǫ = 0.2.
To test the performance of the trajectory preserving strategy for
semi-supervised learning, we make several ablation experiments
for GAT-woTP which is described in Section 4.2. For the reason
that SAT can only be applied to supervised learning task, the
results of SAT have not been reported in these experiments.

TABLE 2 | Test error rates of semi-supervised learning methods on MNIST

datasets.

Method Test error rate (%)

Nl = 100 Nl = 600 Nl = 1, 000 Nl = 3, 000

SVM 23.44 8.85 7.77 4.21

EmbedNN 16.9 5.97 5.73 3.59

PEA 10.79 2.44 2.23 1.91

Conv-CatGAN† 1.93 (±0.01) 1.86 (±0.11) 1.73 (±0.18) 1.67 (±0.12)

Ladder networks† 1.06 (±0.37) 0.93 (±0.07) 0.84 (±0.08) 0.79 (±0.09)

Auxiliary DGM† 0.96 (±0.02) 0.90 (±0.05) 0.86 (±0.13) 0.78 (±0.05)

RAT 6.62 (±1.02) 3.75 (±0.14) 1.61 (±0.09) 1.51 (±0.08)

VAT 2.38 (±0.11) 1.38 (±0.08) 1.35 (±0.12) 1.28 (±0.07)

GAT-woTP 1.97 (±0.87) 1.66 (±0.85) 1.58 (±0.96) 1.32 (±0.65)

GAT (Our method) 0.90 (±0.11) 0.85 (±0.09) 0.83 (±0.17) 0.75 (±0.08)

Nl denotes the number of labeled examples for the training dataset.

The results in the upper panel are referred to the reports in prior work, the error rates in

the bottom panel are derived by our implementations. †Represents the generation-based

methods.

TABLE 3 | Test error rates (%) of semi-supervised learning methods on SVHN and

CIFAR-10 datasets.

Method SVHN CIFAR-10

Nl = 1, 000 Nl = 4, 000

5-model 5.43 (±0.25) 16.55 (±0.29)

Mean teacher 5.21 (±0.21) 17.74 (±0.30)

ALI 7.41 (±0.65) 17.99 (±1.62)

Ban GAN† 4.25 (±0.03) 14.41 (±0.30)

Tripple GAN† 5.77 (±0.17) 16.99 (±0.36)

Improved GAN† 4.39 (±1.20) 16.20 (±1.60)

TNAR-LGAN (Small)† 4.25 (±0.09) 12.97 (±0.31)

TNAR-LGAN (Large)† 4.03 (±0.13) 12.76 (±0.04)

RAT (Small) 8.42 (±0.22) 18.58 (±0.26)

RAT (Large) 8.36 (±0.22) 18.23 (±0.16)

VAT (Small) 6.83 (±0.24) 14.87 (±0.13)

VAT (Large) 5.77 (±0.32) 14.18 (±0.38)

GAT-woTP (Small) 6.53 (±0.95) 14.36 (±1.03)

GAT-woTP (Large) 5.26 (±0.92) 14.02 (±0.88)

GAT (Our method, Small) 4.27 (±0.14) 12.96 (±0.15)

GAT (Our method, Large) 4.01 (±0.11) 12.81 (±0.13)

Nl represents the number of labeled examples in the training dataset. The results in the

upper panel are referred to the reports in prior work, the results in the bottom panel are

derived from our implementations. †Stands for the generation-based methods.
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For the MNIST dataset, the structures of the target classifier
and perturbation generator are identical to the structures
employed in Section 4.2. Table 2 lists the test error rates of
the comparing semi-supervised learning methods for different
values of Nl on MNIST. The experimental results show that our
method achieves the lowest error rates among all the methods
for different numbers of labeled examples. Moreover, our method
significantly outperforms the state-of-the-art AT methods when
the number of labeled examples is small. For the experiments on
SVHN and CIFAR-10, two type of convolution neural networks
(CNNs), named “Small” (Salimans et al., 2016) and “Large”
(Laine and Aila, 2018), are employed as the target classifiers.
More details about the settings and structures of the two CNNs
can be referred to (Miyato et al., 2018). The structure of the
perturbation generator in this experiment is the same as the
one applied in the experiment for the MNIST dataset. The
performance of various comparing methods for SVHN and
CIFAR-10 is reported in Table 3. From the table, we can find
that GAT obtains the best generalization capability for the SVHN
dataset and achieves comparable performance to the state-of-the-
art generation-based method such as TNAR-VAE for the CIFAR-
10 dataset. In addition, GAT reaches lower error rates compared
to GAT-woTP for all the three benchmarks, which verifies the
favorable performance of the trajectory preserving strategy for
stabilizing the training for our proposal.

5. CONCLUSION

In this article, a novel GAT framework has been proposed
to improve the generalization performance of neural networks
for both the supervised and semi-supervised learning tasks.
In the proposed framework, the target classifier is regularized
by letting the perturbation generator watch and move against

the target classifier in a minimax game. We exploit the cross
entropy to evaluate the output deviation for the regularization
term such that the prediction of the target classifier can be
reinforced. Furthermore, an effective alternating update method
is developed to stably train the target classifier and perturbation
generator. Numerous experiments are conducted on synthetic
and real datasets and their results demonstrate the effectiveness
of our proposal.
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