AUTHOR=Peng Fang , Li Ming , Zhao Su-na , Xu Qinyi , Xu Jiajun , Wu Haozhen TITLE=Control of a Robotic Arm With an Optimized Common Template-Based CCA Method for SSVEP-Based BCI JOURNAL=Frontiers in Neurorobotics VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.855825 DOI=10.3389/fnbot.2022.855825 ISSN=1662-5218 ABSTRACT=

Recently, the robotic arm control system based on a brain-computer interface (BCI) has been employed to help the disabilities to improve their interaction abilities without body movement. However, it's the main challenge to implement the desired task by a robotic arm in a three-dimensional (3D) space because of the instability of electroencephalogram (EEG) signals and the interference by the spontaneous EEG activities. Moreover, the free motion control of a manipulator in 3D space is a complicated operation that requires more output commands and higher accuracy for brain activity recognition. Based on the above, a steady-state visual evoked potential (SSVEP)-based synchronous BCI system with six stimulus targets was designed to realize the motion control function of the seven degrees of freedom (7-DOF) robotic arm. Meanwhile, a novel template-based method, which builds the optimized common templates (OCTs) from various subjects and learns spatial filters from the common templates and the multichannel EEG signal, was applied to enhance the SSVEP recognition accuracy, called OCT-based canonical correlation analysis (OCT-CCA). The comparison results of offline experimental based on a public benchmark dataset indicated that the proposed OCT-CCA method achieved significant improvement of detection accuracy in contrast to CCA and individual template-based CCA (IT-CCA), especially using a short data length. In the end, online experiments with five healthy subjects were implemented for achieving the manipulator real-time control system. The results showed that all five subjects can accomplish the tasks of controlling the manipulator to reach the designated position in the 3D space independently.