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Human–robot collaboration (HRC) has been widely utilized in industrial manufacturing

and requires a human to cooperate with a robot at the same workspace. However,

as HRC focuses on workspace sharing along with independent work, it is not a real

collaboration between a human and a robot and, thus, cannot guarantee a smooth

cooperation and synchronous operation. To this end, a cooperative shared control

scheme based on intention recognition is proposed in this study by sharing workspace

and time. In the proposed method, a classification algorithm based on three-dimensional

(3D) point cloud is utilized to recognize the human operation intention. Then, the robot can

select a suitable tool to match the human’s operation. A robot motion control algorithm is

developed to detect the obstacles in the HRC process. A cooperative control strategy is

introduced to achieve synchronous operation. A simple assembly task is also performed

to demonstrate the proposed scheme’s effectiveness. The proposed HRC method with

shared control can be extended to more complicated and delicate flexible tasks in

assembly manufacturing.

Keywords: cooperative shared control, intention recognition, obstacle avoidance, human-robot collaboration,

assembly task

INTRODUCTION

With the rapid development of robotics, robots are being widely utilized in industrial
manufacturing. In traditional manufacturing enterprises, a robot plays a significant role in
large-scale and smooth production (Su et al., 2020; Luo et al., 2021). This promotes a
robot’s application to replace a human’s monotonous, repetitive work. In this sense, a robot
brings advantages such as a higher production rate, lower production cost, and improved
economic efficiency into traditional production. However, given the flexible processes of
intelligent manufacturing and the complexity of a robot’s operating environment, traditional
production modes cannot meet the requirements of flexible manufacturing (Luo et al.,
2019a; Su et al., 2021). Thus, a production mode with human–robot interaction (PM-
HRI) is inevitable. It should be noted that PM-HRI does not replace humans; rather, it
is a new type of production based on human–robot collaboration (HRC). PM-HRI can be
divided into two types: sharing of workspace and sharing of workspace and time. Nowadays,
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sharing of workspace is primarily being used. It focuses
on the sharing of workspace along with independent work.
Compared with the traditional industrial production, robots
and the humans working in a shared space can ensure human
safety through collaboration, improve production efficiency, and
minimize errors, so that humans can focus on more valuable
work to achieve complementary advantages. PM-HRI has been
successfully applied to human–robot handling, human–robot
assembly, and other flexible operations. As mentioned before,
PM-HRI does not imply a real cooperation. It cannot guarantee
a smooth cooperation and synchronous operation between a
human and a robot in a shared workspace. Therefore, it is
essential to achieve a shared control between a human and a
robot through cooperation. To understand PM-HRI, we will
introduce the existing scenarios in terms of shared control
(Boessenkool et al., 2011; Jiang et al., 2016), intention recognition
(Khoramshahi and Billard, 2019; Jin and Pagilla, 2020), and
cooperative control (Pellegrinelli et al., 2016; Yu et al., 2019).

Compared with fully automatic assembly line, the robots are
cooperated with the human in a sharing workspace for HRC
tasks. It is essential to consider safety and how to allocate the
control stratagem between the robot and the human. For a HRC
task, it is difficult to enhance the efficiency of the task execution
and interaction. In this sense, knowing how to allocate roles
and human controls is essential to maximizing the advantages
of human involvement in flexible manufacturing (Luo et al.,
2019b). Shared control is a solution that enables the human and
the robot to work in a sharing workplace and to allocate the
control authority according to the interaction profile such that
to share the responsibilities of task. Yu et al. (2015) proposed
a shared control method to achieve the allocation of robot
autonomy and human assistance by fusing human intelligence.
Boessenkool et al. (2012) designed a human-in-the-loop control
method to improve transparency in terms of a human’s task
completion time, control effort, and operator cognitive workload.
Based on a demonstration, Pérez-del-Pulgar et al. (2016)
introduced a forced control method to provide guidance and
feedback during a peg-in-hole insertion task. Considering the
improved complexity in human management, Ramacciotti et al.
(2016) presented a shared control method to compensate and
couple human intelligence for industrial robots. In human–
robot cooperation, the robots cannot ignore the influence of
an obstacle and communication delay. To address this issue,
Storms et al. (2017) presented a new predictive model based on
shared control for teleoperating mobile robots. Van Oosterhout
et al. (2013) developed a haptic shared control algorithm to
improve the performance of hot-cell remote handling with
controller inaccuracies. To evaluate the user performance in
industrial manufacturing, Abi-Farraj et al. (2018) presented
a shared control architecture to provide a haptic feedback
for the feasibility of user control for evaluation. Additionally,
Amirshirzad et al. (2019) proposed a human adaptation approach
to instantiate the shared control method in a ball balancing HRC
task. O’Keeffe et al. (2016) developed a high level of shared
control to allocate authority to the robot and the human and
improve the task performance in a multirobot system. Further,
Fang et al. (2018) and Islam et al. (2018) presented optimization-

and impedance-based shared control methods to facilitate the
interaction between robots in a multirobot system. In addition,
cooperative control methods, such as learning-based hierarchical
control (Deng et al., 2018), forced control (Al-Yacoub et al.,
2021), and neuroadaptive cooperative control (Zhang et al.,
2018), have been utilized in HRC manipulation. Some research
achievements showed that the allocation of control authority
can be summarized as a game issue and it can use game-
theoretical theory to be addressed. Musić and Hirche (2020)
proposed a differential game-theoretic approach with shared
control to perform HRC haptic task based on Nash equilibrium
optimal solution. In order to provide a systematic methodology
to achieve the versatile behaviors between the contact robots
and the humans, Li et al. (2016, 2019) developed an interactive
controller based on differential game theory and observer.
In addition, it is a key to recognize the human’s intentions
in order to achieve effective HRC. It has been demonstrated
that a robot can recognize the human operation intention for
synchronous working (Jain and Argall, 2018; Yang et al., 2018).
With the development of artificial intelligence, neural networks
have been utilized to recognize the human intention in HRC,
which include long short-term memory (Yan et al., 2019), radial
basis function neural networks (Liu et al., 2019), and recurrent
neural networks (Zhang et al., 2020). Jain and Argall (2018)
presented a recursive Bayesian filtering algorithm to model the
human agents behavior with multiple nonverbal observations.
Tanwani and Calinon (2017) learned a generative model to
capture the human intention and provide assistance through
shared control or autonomous control algorithms. Owing to
their favorable performance, researchers have proposed the
hidden Markov model (HMM)-based algorithms to estimate the
human intention for assembly task (Berg et al., 2018), pick-
and-place task (Fuchs and Belardinelli, 2021), and a safe and
flexible robotized warehouse (Petković et al., 2019). Guaranteeing
the efficiency and safety of HRC by accurately estimating the
human control intention is critical for PM-HRI. Liu et al.
(2019) developed a deep learning method to predict the human
motion intention with context awareness of the manufacturing
process. Generally, electromyography (EMG) signals can be
utilized to profile the interactions between a human and a
robot, which, in a sense, reflect the human operation intention
(Peternel et al., 2018). For example, Sirintuna et al. (2020) utilized
EMG signals to detect human motion by collaborating with a
KUKA LBR cobot. Detecting the human intention in cooperative
telemanipulation is challenging and an augmentation algorithm
of haptic intention was presented by Panzirsch et al. (2017) to
help the human operators in a cooperation task. Further, new
collaborative system designs based on HMM and augmented
reality have been developed to predict the assembly intention
of humans in manufacturing. Additionally, the learning-from-
demonstration-based control methods are utilized to achieve
seamlessly interaction in the unstructured environments by
considering new situations with different positions of objects
or poses of users (Rozo et al., 2016). What is more, some
researchers learn shared control through the HRC task level.
For example, Jin and Pagilla (2021) developed a method based
on subgoal identification and adjustment to finish the shared
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control task in the dynamically changing environments. The
abovementioned algorithms are feasible and can successfully
recognize a human intention. However, they can only achieve
cooperative work through a sharing of workspace and not
through a sharing of workspace and time. Furthermore, it is a
challenge to achieve active interaction and collaboration in the
sharing space and time.

Considering the abovementioned analyses, cooperative work
through the sharing of workspace and time between humans and
robots is difficult. To this end, this study develops a new HRC
scheme for human motion recognition and shared control. In
the developed algorithm, the robot can recognize the human
operation intention through a classifier and employ a shared
control based on an obstacle avoidance strategy to improve the
cooperative control performance. The experimental results of an
assembly task verify our proposed scheme’s effectiveness. The
proposed method presents a single collaboration framework to
achieve cooperative work under sharing the workspace and time
by combining shared control and intention recognition.

The remainder of this article is organized as follows.
Section Methods presents the proposed algorithms in terms of
the robot system description, integrated framework, intention
recognition, and cooperative shared control. Section Results
describes the experimental results of the assembly task. The
discussion and conclusion are given in Sections Discussion and
Conclusion, respectively.

METHODS

Description of the Robot System
To achieve a safe and effective interaction between a robot
and a human in flexible assembly manufacturing, a hierarchical
structure is developed for the robot. Figure 1 shows the
hierarchical structure. There are three layers in this structure: a
perception layer, a control layer, and a planning layer.

For the perception layer, multiple sensors, such as force
sensors and position sensors, are utilized to capture the human–
robot interaction information. Then, the robot updates the
motion output according to the controller in the control
layer, respectively. Additionally, to improve the cooperative
performance, an obstacle avoidance method and a trajectory
adjustment strategy are developed in the planning layer.

Integrated Framework
The outline of the proposed scheme is given in Figure 2. It
shows that the proposed approach contains three parts: intention
recognition, collaboration and cooperative shared control. They
are detailed in the following subsections.

In this article, the computer vision is to identify the operation
intention of people through three-dimensional (3D) point cloud
and then the robot can identify and judge which kind of screws
according to 3D vision, so as to understand the next action of
people, such as what tools to take and which kind of screw cap to
take. Therefore, the robot can select a suitable tool to cooperate
with the human.

The position sensor only generates accumulated errors in a
single operation cycle. In this operation cycle, the 3D visual

sensor is used to perceive the position of the workpiece in real
environment in order to eliminate the accumulated errors of
the position sensor. The accumulative error of torque sensor
is generated after long time load operation or collision. We
eliminate the accumulative error by regular correction. Similarly,
we eliminate the accumulated errors of the visual sensors by
regular calibration.

Intention Recognition
We will introduce the recognition of human operation intention
through a classification algorithm. The robot can recognize the
objects with different accessories and tools in human’s hand such
as inner hexagon, outer hexagon, and square accessories. By
recognizing the objects in the hand, the robot can understand the
human intention (i.e., the next planned work of the operator) and
then select appropriate tools according to the human intention
to help the human carry out the next work procedure. If the
operator picks up the outer hexagon screw, the robot can identify
it as the outer hexagon screw through 3D point cloud. After
the robot identifies the item, according to the process of logic
requirements, the operator will read the next step to tighten the
outer hexagonal screws and the robot will automatically select the
appropriate tool to match the outer hexagonal screws. During the
shared time period that the operator picks up the outer hexagon
screw and places it in the assembly hole, the robot also prepares
the matching tool. The entire process of intention recognition is
as follows.

Acquisition and Preprocessing of Point Cloud
Coordinates of an object

(

x, y, z
)

can be obtained through
a 3D camera, which includes three matrices: X0, Y0, andZ0.
The coordinates represent the positions of the object in X, Y,
and Z axes.

We can evaluate the position of the object in the basal
coordinates of the robot through a transformation of the
coordinates of the camera to control the robot’s movement
toward the target position.

Considering the impact of illumination, there will be several
outliers and noise in the measured point cloud. Generally,
this negatively influences the measurement of the object.
Therefore, removing such outliers and noise from the point cloud
is necessary.

To remove noise and to maintain the edge details of the point
cloud, a median filter (MF) is utilized in this section. MF is an
optimal filter based on the rule of minimum absolute error. The
details of MF are presented in a study by Chen et al. (2018).

Binarization
To simplify the complexity of point cloud registration, we use
binarization in this study. The registration process of the 3D
point cloud can be translated to a registration process in a two-
dimensional (2D) space through binarization processing (Zou
et al., 2018). The detailed process can be observed in Figure 3.

In Figure 3, the 3D point cloud can be translated to a 2D point
cloud in the X–Y space and a position along the Z-axis through
projection and binarization, respectively.
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FIGURE 1 | Hierarchical structure of the robot system.

FIGURE 2 | Outline of the proposed scheme.

Template Matching
In this study, an error method D

(

i, j
)

is used to estimate the
comparability between the template (the trained image sample
set) T (m, n) and an untested template Si,j (m, n) (the test image
sample set). It can be presented as:

D(i, j) =
∑M

m=1

∑M

n=1
|Si,j(m, n)− T(m, n)|, (1)

where the minimum of D
(

i, j
)

is the matching position for the
template. It should be noted that the larger the D

(

i, j
)

, the slower
the matching speed and vice versa.

We use the following function to define the comparability of
different templates:

Kte(i, j) = (1−
D(i, j)

m · n
)× 100%, (2)

where Kte(i, j) represents the comparability of a template.
Considering the difference between the untested point cloud

and the templates, we need to set a threshold to check whether
the point cloud is correct. The check equation can be defined
as follows:

K0 =

{

1, Kte(i, j) ≥ Kte(i0, j0)
0, Kte(i, j) < Kte(i0, j0)

, (3)
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FIGURE 3 | Processing of three-dimensional (3D) point cloud.

FIGURE 4 | Trajectory generator based on obstacle avoidance for the robot.

FIGURE 5 | Velocity control of the robot.

where K0 represents the point cloud’s correctness. When
Kte

(

i, j
)

≥ Kte

(

i0, j0
)

, K0 = 1 implies the point cloud is correct
and vice versa.

Based on the abovementioned method, the robot can
recognize the objects in the human operator’s hand and then can
choose a suitable tool to match an object according to the tasks.
In this manner, the robot can recognize the human operation
intention at the beginning of a mission.

Cooperative Control
Pose Control
Regarding the physical human–robot interaction in
a cooperative task, we develop a pose control law to
update the robot’s trajectory for a safe and effective
interaction (Figure 4).

x∗d = xd + µ1x, (4)
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FIGURE 6 | Cooperative assembly task in the experiment.

where xd is the predefined trajectory, 1x denotes the adjustment
displacement when the robot is affected by the obstacles, and x∗

d
is the desired trajectory after adjustment.

It is noted that the obstacle avoidance method adopts the
collision point detection to achieve obstacle avoidance. When
the cooperative robot approaches the workpiece, if it collides with
the workpiece, the torque of the robot will get a threshold value
and the robot stops working at the same time, then the position
of the collision point and the direction of force are recorded and
defined as the obstacle point. According to the position of the
collision point and the direction of force, the robot takes the
reverse movement around the collision point. When the robot
avoids obstacles, it needs to utilize the information about position
of obstacles, the direction of force, the trajectory of movement,
the rhythm of workers’ operation, and other factors. Redundant
safety components are used to ensure human safety such as
position sensor, moment sensor, vision sensor, and safety grating.

Velocity Control
For a safe interaction, a velocity control method based on a
proportional–integral–derivative (PID) controller is proposed. It
should be noted that velocity control cannot change the robot’s
trajectory. Additionally, it is necessary to set a scaling parameter
to regulate the robot’s speed.

As observed in Figure 5, a dual control loop method is
proposed to control the joint angle and joint angular velocity.

For the joint angle, an outer control algorithm based on a PID
controller is developed as:

qi = Kqp

(

qd − qi
)

+ Kqi

∫

dqi + Kqd
dqi

dt
, (5)

whereKqp,Kqi, andKqd denote the control parameters of the joint
angle and qd and qi are the desired joint angle and the actual joint
angle, respectively.

For the joint angular velocity, the controller is designed as:

wi = Kwp (wd − wi) + Kwi

∫

dwi + Kwd
dwi

dt
, (6)

where Kwp, Kwi, and Kwd denote the control parameters of the
joint angular velocity and wd and wi are the desired joint angular
velocity and the actual joint angular velocity, respectively.

Considering the impact of the robot’s speed, such as insecurity,
we propose a scaling parameter to regulate the joint angle and
joint angular velocity as follows:

qcontrol = (1− ε) qi, (7)

wcontrol = (1− ε)wi, (8)

where qcontrol and wcontrol are the control joint angle and control
joint angular velocity after regulation, respectively, and ε ∈ [0, 1]
is a scaling factor.

Force Control
The dynamic model of the robot can be given as:

MẌ + BẊ = u+ Fset + Fd, (9)

whereM is the positive definite inertia matrix and B denotes the
positive definite damping matrix. Fd is the disturbance force, u
represents the robot’s control variable, and Fset is the setting force
of the robot applied to the tools. In Equation (9), u is a control
force of the robot; it is utilized in task/motion space and can
be transformed into the torque in the joint space based on the
robot kinematics.

For torque control, the value of u is limited within [0, Fset].
In this study, the robot controller is designed as:

u = MẌd + BẊd. (10)

It is clear that the stability of force control can be guaranteed.
During the cooperative control period, the robot realizes space

and time sharing with the operator by adjusting the control
parameters such as position, speed, and torque. The actions
of the operator include: holding spare parts (screws), placing
screws, selecting remaining parts (gaskets, screw caps), installing
remaining parts, selecting tools, tightening operations, putting
back tools, and putting back truck parts. The actions of the
robot include: moving to the starting point, taking photos,
identifying intentions, selecting tools, calculating the assembly
point, running to the assembly point, fixing screws, maintaining
torque, detecting rotation direction and torque, returning to the
shooting point, and returning to the starting point.

In the cooperation between the robot and the operator, the
robot is responsible for controlling the fixing and rotating torque
of one end of the screw with its precise position control and
torque control. The operator is responsible for loosening or
tightening the other end of the screw. The operator’s release
feedback to the end-degree of freedom of the robot is the
counterclockwise torque of rotation. The operator’s tightening
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FIGURE 7 | Flowchart of the experiment.
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FIGURE 8 | Multipurpose tool installed at the robot’s end effector.

FIGURE 9 | Modeling of the assembly environment. (A,B) Are the actual picture and 3D point cloud picture of truck parts respectively. (C,D) Are the actual picture and

3D point cloud picture of screws respectively.
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FIGURE 10 | Human operation intention recognition. (A) Indicates that the robot reads the instruction and starts. (B) Means to understand the intention of the

operator. (C) Indicates the selection of qualified workpiece. (D) Represents collaborative assembly.

operation feedback to the end-degree of freedom of the robot is
the clockwise rotation moment. The robot can identify whether
the operator is tightening or loosening the operation by the
direction of the end torque. In practical applications, when there
are multiple screws of the same size to be assembled, the robot
works one by one according to the origin of the image collected
by the 3D camera. If there are some screws that do not need to
be operated, the operator can block some screws with his hand
or other objects during the positioning stage of the robot’s image
collection and the robot will operate one by one according to
the screws revealed in the image collection. Therefore, the safety
components for robot and operator cooperation are redundant.

RESULTS

To verify the performance of the proposed method, a cooperative
assembly task for flexible manufacturing is performed. In this
experiment, we will examine the intention recognition algorithm,
obstacle avoidance, and cooperative control.

Experimental Setup
In this article, a composite robot is used; it is a new robot
category composed ofmobile robot and cooperativemanipulator,
combined with our 3D camera, which installed at the end of a
6-DOF cooperative robot. Therefore, it can perform variety of

functions such as the human hand (robot arm), foot (mobile
robot), and eye (3D camera). In HRC, its advantages include:
(a) to choose a more suitable stopping point for HRC; (b)
breaking through the limitation of the arm span size of the
mechanical arm, expanding the scope of operation; (c) planning
the operation trajectory in HRC; (d) identify the parts to be
assembled accurately; (e) understanding of human intentions; (f)
collision perception and control during human–robot operation;
and (g) meet the safety standards of human–robot cooperation.

As shown in Figure 6, a human operator and a collaborative
robot are used to perform the flexible assembly task of
truck fitting.

The flowchart of the cooperation process is given in Figure 7.
In this experiment, the robot uses a 3D camera to create a 3D
point cloud model of the workpiece to be assembled in the
application scene. First, the operator picks up an assembly part
such as a square screw. At the same time, the robot moves
to the starting point and begins to classify and identify the
size of the assembly part in the hand. The robot identifies
the specific specifications of the parts through the classification
algorithm and then combines with the requirements of the
assembly process to identify the operation intention of the
operator (i.e., the operator plans to carry out the next work).
The robot automatically selects the appropriate tools matching
the parts and screws together with the operator. It should
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FIGURE 11 | Robot’s obstacle avoidance process. (A–C) Present Normal operation track. (D–H) Present Collision track.

be noted that there are three different tools to match the
screws (Figure 8).

The shared time between the operator picking up the part
(screw) and placing the screw in the target position of the
truck part. The robot performs three tasks successively such as
identifying spare parts, understanding the operator’s intention,
and selecting matching tools. From the moment, the operator
places the screw at the target position of the truck fitting, the
robot sets the screw with the appropriate tool, and compacts it
and maintains the set torque of rotation. The robot senses the
rotating force in the opposite direction by the terminal degree
of freedom and determines whether the worker is tightening
or loosening the work by the direction of the rotating force
in the opposite direction. Determine whether the screws are
tightened by the amount of the counterrotating force. At the
same time, the operator selects the remaining parts of the
task (such as gasket, screw cap) to tighten the other end
of the screw. In the shared time and space of cooperative
tightening operation, the cooperative robot exerts two forces on
the assembly workpiece: one robot is the pressing force of fixed
action and another robot is the rotating force of tightening action.
In the process of screw tightening, the rotating force generated
by the worker is transmitted to the cooperative robot through

the screw column and the cooperative robot can judge whether
the screw is tightened by perceiving the rotating force in the
opposite direction.

It should be noted that using obstacle avoidance algorithm
and cooperative control method, the robot needs to adjust the
trajectory to cooperate with the operator. In actual assembly
operations, in order to select a comfortable operation behavior
(such as arms close, arms crossed, and single-arm full bend),
the operator’s two arms may be on the trajectory of the robot.
At this time, the robot will choose to avoid obstacles and
circumnavigate according to the direction and magnitude of the
impact torque on the robot end effector. The robot then chooses
the trajectory in the opposite direction to circumnavigate to the
target point.

Results Analysis
Human Operation Intention Recognition
Figure 9 shows the assembly task’s work environment modeling.
Figures 9A,C show the actual truck fitting and the screws,
respectively. Based on the 3D point cloud technology, we can
model the virtual environment of truck fitting and screws,
as shown in Figures 9B,D, respectively. The white circle is
the assembly position for the truck fitting task. Through
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FIGURE 12 | Simulation process of cooperative assembly. (A,B) Represent the initial position. (C,D) Represent robot photo pose. (E,F) Represent collaborative

assembly pose.
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FIGURE 13 | Desired trajectory of the robot in the assembly task. (A–D) Presents the trajectories of robot starting, photographing, assembling and returning to the

starting point respectively.

the 3D camera, the robot collects the point cloud of the
assembly parts (three types of screws) and matches it with
the standard three types of point cloud template (outer
hexagon, inner hexagon, and square). It senses what parts the
operator is holding and the specifications of the parts and
then understands the operator’s next work plan based on the
assembly process.

In Figure 10, the robot can recognize the human operation
intention based on a classification algorithm.We can observe that
the robot classifies the screw in the human operator’s hand when
the assembly task is executed and then selects a suitable tool to
help the human operator.

Obstacle Avoidance
Figure 11 presents the entire obstacle avoidance process.
Figures 11A–C present the robot movements for truck fitting.
When the robot is close to the truck fitting, it will regulate
its speed and trajectory to avoid the truck fitting location.
In Figures 11D–H, when the robot encounters the human, it
will stop moving and then update its trajectory based on a
predefined trajectory. It should be noted that the maximum
speeds of the robot are set to 0.45, 0.3, and 0.15 m/s,
respectively. The robot can regulate its speed according to the
different conditions.

Cooperative Assembly

Simulation
In order to guarantee the performance of cooperative assembly,
a simulation is performed. As shown in Figures 12A,C,E are
3D model of the cooperative robot and (Figures 12B,D,F) are
parameters model of the cooperative robot.

Figures 12A,B are the initial state of the robot. In this stage,
before the beginning of the collaborative assembly, the process
includes the preparation of 3D camera and the completion of
initial information monitoring of the collaborative assembly.

In Figures 12C,D, after receiving the operator’s hands to
assembly screws information for the robot, the robot runs from
the starting position to take photos position and then through
the 3D camera’s perception on the screw assembly area; if the
operator has place the screws on the artifacts, 3D camera further
recognizes the specifications of the screw and identifies the
specifications of the screw. Then, the robot selects the suitable
tool to match the screw according to the operator’s intention.

Figures 12E,F represent the pose of human intention
recognition with perception and the pose of collaborative
assembly, respectively.

Figure 13 shows desired trajectory of the robot in the
assembly task. Figures 13A,D represent the initial position and
ending position, respectively. It is noted that there is the same
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FIGURE 14 | Actual trajectory of the robot in the assembly task in 3D space.

place for the initial position and the ending position. Figure 13B
denotes the position to take a picture for the 3D camera.
Figure 13C is the assembly pose for the robot.

Experiment
Figure 14 denotes the actual trajectory of the robot in the
assembly task in the 3D space. Figure 15 shows actual trajectory
of the robot in the assembly task in X, Y, and Z axes. It can be seen
that green curve is the desired trajectory and the red and the blue
are the actual trajectories for two assembly experiments.

The expected trajectory of the robot end effector is a trajectory
connected by starting point, camera point, assembly point, and
end point, assuming that there is enough space for the robot
to run above the workpiece. The robot runs from the starting
point to the shooting point, then to the assembly point, and
then back to the shooting point and the ending point. The
starting point and the ending point are the same position,
which refer to the position where the mobile robot is parked

beside the station. According to the size of the workpiece,
different spatial positions and poses are set for the photo point.
The setting is based on the normal direction perpendicular
to the workpiece working surface, 350mm away from the
workpiece working surface. According to the data collected
by the 3D camera, the robot determines the coordinates of
the workpiece relative to the starting point of the robot and
the position of the robot end effector corresponding to the
modified coordinates is the coordinate of the assembly point in
the trajectory.

Figures 16, 17 describe the cooperative process between the
robot and the human operator for the assembly task. Based on the
human operation intention recognition and obstacle avoidance,
the robot selects a suitable tool to help the human finish the
assembly task. It can be observed that the robot holds one end
of the screwwhen the humanworks in Figures 13A–D, 14. When
the human finishes the task and the applied force is equal to Fset ,
the robot will move to the starting point.
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FIGURE 15 | Actual trajectory of the robot in the assembly task in X-Y-Z axes.
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FIGURE 16 | Human–robot cooperative assembly. (A) Indicates Selection of adaptation tools. (B) Indicates pressure. (C) Indicates the assembly. (D) Indicates

Induction torque. (E) Indicates end. (F) Indicates back to the starting point.

FIGURE 17 | Detailed process of human–robot cooperative assembly. (A) Indicates that adaptation tools are selected. (B) Represents assembly. (C) Stands for

induced torsion.

According to the track line in Figure 15, the actual track at the
starting point and the photo point overlapped with the expected
track point and there was a distance between the actual track and
the expected track at the assembly point because in the actual
tightening screw assembly, the screw would have some rotation
and translation movements.

Figure 18 shows the joint trajectories of the robot in
cooperative assembly task. It can be seen that the robot performs
the task with the human in the first 10–30 s.

Statistical Analysis
In order to further verify the performance of proposed
cooperative shared control method, we perform the experiments
under two different experimental situations: cooperative
assembly with or without cooperative shared control.

In Table 1, we have performed 10 times cooperative assembly
under the condition of without cooperative shared control.
Although robots and workers work in the shared space, they are
relatively independent and work according to their own beats.
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FIGURE 18 | Joint trajectories of the robot in cooperative assembly task.

The main functional modules are trajectory planning, speed
planning, collision detection, visual positioning, safety detection,
and so on. The identification of workpiece, the understanding
of human intention, and the collaborative assembly in space
and time have not been solved. It can be seen that only two
times are successful to complete the task. The assembly period
requires a fixed time of at least 17.5 s for successful manipulation,
which is the limit of operation. If the time of operators is

compressed, the assembly will fail due to insufficient time.
Additionally, if the running time of the cooperative robot is
compressed, it will collide with people and the task will be failed.

In this sense, it is essential to utilize the cooperative control

strategy such as cooperative shared control for the human–robot
cooperation tasks.

Table 2 shows the performance of cooperative assembly with

cooperative shared control. It can be seen that there are no failure

for the cooperative assembly task by using the cooperative shared

control method. The assembly time was not fixed and the average
time after multiple tests was 18.9 s. In comparison, although

there is a little longer than without cooperative shared control,

the success rate is reaching 100%. In addition, the running
speed of the robot can be improved; the operation time of the
cooperative robot also can be compressed, so the entire assembly
time can be reduced. By using the cooperative shared control
method, increasing the speed of the cooperative robot will not
lead to collision.

TABLE 1 | Cooperative assembly without cooperative shared control.

Time for the

camera (s)

Time for the

human

operator (s)

Time for the

robot (s)

Task is

successful

or not?

Completion

time (s)

3 7.8 6.5 Yes 17.3

3 6.8 6.5 No 16.3

3 7.4 6.5 No 16.9

3 7.2 6.5 No 16.7

3 7.5 6.5 No 17

3 7 6.5 No 16.5

3 7.3 6.5 No 16.8

3 7.5 6.5 No 17

3 8.2 6.5 Yes 17.7

3 7.1 6.5 No 16.6

DISCUSSION

Traditionally, the robot works with the humans in a same
workspace with noninterference with each other. Based on
sharing a workspace, the sharing of workspace and time needs
to consider the task allocation and collaboration according to
the assembly technology. In order to improve the efficiency
of task execution and natural interaction for the HRC tasks,
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TABLE 2 | Cooperative assembly with cooperative shared control.

Time for the

camera (s)

Time for the

human

operator (s)

Time for the

robot (s)

Task is

successful

or not?

Completion

time (s)

2 10.5 6.5 Yes 19

1.5 11 6.5 Yes 19

2.5 12 6.5 Yes 21

2.6 10.3 6.5 Yes 19.4

2.4 9.8 6.5 Yes 18.7

2.2 10.2 6.5 Yes 18.9

2.7 9.7 6.5 Yes 18.9

1.8 9.5 6.5 Yes 17.8

1.8 10.2 6.5 Yes 18.5

2.1 10 6.5 Yes 18.6

shared control is proposed. In this study, a cooperative
shared control scheme based on intention recognition is
developed for flexible assembly manufacturing. For a smooth
interaction and synchronous operation, we propose a robot
motion control method to deal with obstacle avoidance
and cooperative operation. Additionally, a human intention
algorithm is proposed for the robot to match the human’s
operation through the sharing of workspace and time. To
verify the developed approach, a simple assembly task of truck
fitting is performed. Indeed, shared control approach is suitable
to utilize in multiple HRC working scenarios. In the design
of shared control, the versatility and scalability should be
taken into consideration, especially in unstructured interaction
environment. Based on actual application scenarios, this solution
can be applied to other scenarios such as product quality
detection and coronavirus disease 2019 (COVID-19) sample
collection. For example, in product quality testing, collaborative
robots and cameras are necessary components and sensors
related to qualified indicators need to be added. The sensor data
of qualified index is an important reference for the robot to judge
the product quality, which affects the content and process of the
robot’s subsequent operation. In the future, we will test human
operation intentions in multiple working scenarios in order to
evaluate the effectiveness and generality of shared control such
as the applicability of the scheme in product size measurement,
reliability testing, finished product packaging, and other practical
scenarios. Additionally, we will actively consider the humanoid
control and put the human stiffness transfer into the robot to
enhance the performance.

CONCLUSION

This article proposed a scheme based on cooperative control
and intention recognition and provides a feasible solution for
flexible assembly manufacturing. It should be noted that there
are multiple algorithms to recognize human operation intention
such as from human EMG signals. However, this method makes
it difficult to accurately estimate the human control intention.
Our approach is based on robot vision and can be extended to
other operational areas. Furthermore, we proposed a cooperative
shared control algorithm to solve the issue of workspace and time
sharing between a robot and a human. Although we only tested a
simple assembly task, the proposed scheme provides an example
for flexible manufacturing. One weakness of our developed
approach is in terms of estimating the human arm’s stiffness
in the cooperation process owing to the difficulty in accurately
calculating it. Furthermore, the shared control method may
limit the flexibility of cooperative control for more complicated
assembly tasks. In the future, we will consider stiffness control
for HRC.
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Petković, T., Puljiz, D., Marković, I., and Hein, B. (2019). Human intention

estimation based on hidden Markov model motion validation for safe

flexible robotized warehouses. Robot. Comput. Integr. Manuf. 57, 182–196.

doi: 10.1016/j.rcim.2018.11.004

Ramacciotti, M., Milazzo, M., Leoni, F., Roccella, S., and Stefanini, C. (2016). A

novel shared control algorithm for industrial robots. Int. J. Adv. Rob. Syst. 13,

1729881416682701. doi: 10.1177/1729881416682701

Rozo, L., Silvério, J., Calinon, S., and Caldwell, D. G. (2016). Learning controllers

for reactive and proactive behaviors in human–robot collaboration. Front.

Robot. AI 3, 30. doi: 10.3389/frobt.2016.00030

Sirintuna, D., Ozdamar, I., Aydin, Y., and Basdogan, C. (2020). “Detecting human

motion intention during pHRI using artificial neural networks trained by EMG

signals,” in 2020 29th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN) (Naples: IEEE), 1280–1287.

Storms, J., Chen, K., and Tilbury, D. (2017). A shared control method for obstacle

avoidance with mobile robots and its interaction with communication delay.

Int. J. Rob. Res. 36, 820–839. doi: 10.1177/0278364917693690

Su, H., Mariani, A., Ovur, S. E., Menciassi, A., Ferrigno, G., and De

Momi, E. (2021). Toward teaching by demonstration for robot-assisted

minimally invasive surgery. IEEE Trans. Automat. Sci. Eng. 18, 484–494.

doi: 10.1109/TASE.2020.3045655

Su, H., Qi, W., Hu, Y., Karimi, H. R., Ferrigno, G., and De Momi, E. (2020).

An incremental learning framework for human-like redundancy optimization

of anthropomorphic manipulators. IEEE Trans. Ind. Inf. 18, 1864–1872.

doi: 10.1109/TII.2020.3036693

Tanwani, A. K., and Calinon, S. (2017). “A generative model for intention

recognition and manipulation assistance in teleoperation,” In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Vancouver,

BC: IEEE), 43–50

Van Oosterhout, J., Abbink, D. A., Koning, J. F., Boessenkool, H., Wildenbeest, J.

G. W., and Heemskerk, C. J. M. (2013). Haptic shared control improves hot

cell remote handling despite controller inaccuracies. Fusion Eng. Design 88,

2119–2122. doi: 10.1016/j.fusengdes.2012.11.006

Yan, L., Gao, X., Zhang, X., and Chang, S. (2019). “Human-robot collaboration

by intention recognition using deep LSTM neural network,” in 2019 IEEE 8th

International Conference on Fluid Power and Mechatronics (FPM) (Wuhan:

IEEE), 1390–1396.

Yang, C., Luo, J., Liu, C., Li, M., and Dai, S. L. (2018). Haptics electromyography

perception and learning enhanced intelligence for teleoperated robot.

IEEE Trans. Automat. Sci. Eng. 16, 1512–1521. doi: 10.1109/TASE.2018.28

74454

Yu, N., Wang, K., Li, Y., Xu, C., and Liu, J. (2015). “A haptic shared control

algorithm for flexible human assistance to semi-autonomous robots,” in 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Hamburg: IEEE), 5241–5246.

Yu, X., Zhang, S., Sun, L., Wang, Y., Xue, C., and Li, B. (2019). Cooperative control

of dual-arm robots in different human-robot collaborative tasks. Assembly

Automat. 40, 95–104. doi: 10.1108/AA-12-2018-0264

Zhang, J., Liu, H., Chang, Q., Wang, L., and Gao, R. X. (2020). Recurrent

neural network for motion trajectory prediction in human-robot

Frontiers in Neurorobotics | www.frontiersin.org 18 March 2022 | Volume 16 | Article 850211

https://doi.org/10.1109/TOH.2012.22
https://doi.org/10.1088/1361-6501/aacd6e
https://doi.org/10.1109/TCYB.2018.2864784
https://doi.org/10.1007/s11432-017-9263-6
https://doi.org/10.3389/fnbot.2021.647930
https://doi.org/10.1109/TIE.2018.2793178
https://doi.org/10.1109/TCST.2016.2528890
https://doi.org/10.1109/TCST.2021.3064801
https://doi.org/10.1007/s10514-018-9764-z
https://doi.org/10.1038/s42256-018-0010-3
https://doi.org/10.1109/TRO.2016.2597322
https://doi.org/10.1016/j.procir.2019.04.080
https://doi.org/10.1109/TASE.2021.3111678
https://doi.org/10.1109/LRA.2019.2959442
https://doi.org/10.1080/00207721.2018.1562128
https://doi.org/10.1016/j.ifacol.2020.12.2751
https://doi.org/10.1016/j.cirp.2016.04.035
https://doi.org/10.1007/s10514-017-9678-1
https://doi.org/10.1016/j.rcim.2018.11.004
https://doi.org/10.1177/1729881416682701
https://doi.org/10.3389/frobt.2016.00030
https://doi.org/10.1177/0278364917693690
https://doi.org/10.1109/TASE.2020.3045655
https://doi.org/10.1109/TII.2020.3036693
https://doi.org/10.1016/j.fusengdes.2012.11.006
https://doi.org/10.1109/TASE.2018.2874454
https://doi.org/10.1108/AA-12-2018-0264
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. A Cooperative Shared Control Scheme

collaborative assembly. CIRP Ann. 69, 9–12. doi: 10.1016/j.cirp.2020.

04.077

Zhang, Z., Song, Y., and Zhao, K. (2018). Neuroadaptive cooperative

control without velocity measurement for multiple humanoid robots

under full-state constraints. IEEE Trans. Ind. Electron. 66, 2956–2964.

doi: 10.1109/TIE.2018.2844791

Zou, Y., Wang, X., Zhang, T., Liang, B., Song, J., and Liu, H. (2018). BRoPH: an

efficient and compact binary descriptor for 3D point clouds. Pattern Recognit.

76, 522–536. doi: 10.1016/j.patcog.2017.11.029

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhou, Luo, Xu and Zhang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 19 March 2022 | Volume 16 | Article 850211

https://doi.org/10.1016/j.cirp.2020.04.077
https://doi.org/10.1109/TIE.2018.2844791
https://doi.org/10.1016/j.patcog.2017.11.029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	A Cooperative Shared Control Scheme Based on Intention Recognition for Flexible Assembly Manufacturing
	Introduction
	Methods
	Description of the Robot System
	Integrated Framework
	Intention Recognition
	Acquisition and Preprocessing of Point Cloud
	Binarization
	Template Matching

	Cooperative Control
	Pose Control
	Velocity Control
	Force Control


	Results
	Experimental Setup
	Results Analysis
	Human Operation Intention Recognition
	Obstacle Avoidance
	Cooperative Assembly
	Simulation
	Experiment
	Statistical Analysis



	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


