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Biological agents can act in ways that express a sensitivity to context-dependent

relevance. So far it has proven difficult to engineer this capacity for context-dependent

sensitivity to relevance in artificial agents. We give this problem the label the “problem

of meaning”. The problem of meaning could be circumvented if artificial intelligence

researchers were to design agents based on the assumption of the continuity of life

and mind. In this paper, we focus on the proposal made by enactive cognitive scientists

to design artificial agents that possess sensorimotor autonomy—stable, self-sustaining

patterns of sensorimotor interaction that can ground values, norms and goals necessary

for encountering a meaningful environment. More specifically, we consider whether

the Free Energy Principle (FEP) can provide formal tools for modeling sensorimotor

autonomy. There is currently no consensus on how to understand the relationship

between enactive cognitive science and the FEP. However, a number of recent papers

have argued that the two frameworks are fundamentally incompatible. Some argue that

biological systems exhibit historical path-dependent learning that is absent from systems

that minimize free energy. Others have argued that a free energy minimizing system

would fail to satisfy a key condition for sensorimotor agency referred to as “interactional

asymmetry”. These critics question the claim we defend in this paper that the FEP can

be used to formally model autonomy and adaptivity. We will argue it is too soon to

conclude that the two frameworks are incompatible. There are undeniable conceptual

differences between the two frameworks but in our view each has something important

and necessary to offer. The FEP needs enactive cognitive science for the solution it

provides to the problem of meaning. Enactive cognitive science needs the FEP to formally

model the properties it argues to be constitutive of agency. Our conclusion will be that

active inference models based on the FEP provides a way by which scientists can think

about how to address the problems of engineering autonomy and adaptivity in artificial

agents in formal terms. In the end engaging more closely with this formalism and its

further developments will benefit those working within the enactive framework.
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INTRODUCTION

The problem of meaning has haunted artificial intelligence (AI)
more or less from its inception, and it still hasn’t been solved. It
goes by a variety of names: the symbol grounding problem; the
frame problem; and the relevance problem, and it stands behind
John Searle’s famous Chinese room thought experiment (Searle,
1980). In what follows we will take the problem to be how to
engineer artificial agents that are the source of their own values,
needs and goals. Such an agent will have its own perspective
relative to which its engagements with the world are imbued
with meaning.

We take as our starting point Froese and Ziemke’s (2009)
biological principles for the design of artificial agents. First they
argued for a shift in the design process toward engineering
the appropriate conditions for an agent to self-generate and
sustain its own identity as an individual agent under precarious
conditions—a property we refer to as “autonomy” (Thompson,
2007; Di Paolo and Thompson, 2014; Di Paolo et al., 2017).
Autonomy is a property of the organization of living systems
that is introduced to explain how such systems can be self-
individuating. Biological systems possess autonomy when the
processes that make up the system form an “operationally
closed” set of mutually enabling relations. The organization
of the system as a whole is constantly regenerated by the
activities of its constituent processes. In the absence of any of
the co-enabling relations among its constituent processes, the
organization of the system would break down, and is therefore
described as “precarious”.

The second design principle they proposed is that artificial
agents should exhibit “adaptivity”: the process by which
an autonomous system regulates its interaction with the
environment so as to avoid situations that would lead to a loss
of viability, were they to be encountered. Froese and Ziemke
argued that an agent that exhibits this dual profile of autonomy
and adaptivity would have its own point of view on the world.
Relative to this point of view, actions can be evaluated as good
or bad, adequate or inadequate, successful or unsuccessful for
maintaining the organism’s viability.

In practice, it has proven difficult to design artificial
agents that satisfy the first condition of being physically
self-individuating. An alternative strategy, first proposed by
Di Paolo (2003), has therefore been to design agents that
acquire regular, relatively stable, and self-sustaining patterns
of sensorimotor engagement with their environment (Egbert
and Barandiaran, 2014; Di Paolo et al., 2017; Ramírez-
Vizcaya and Froese, 2020). Instead of building robots that
instantiate metabolic processes that self-organize to form
autonomous networks, the strategy has been to build robots
whose sensorimotor processes self-organize to form autonomous
networks. Such stable, self-sustaining patterns of sensorimotor
interaction, are the basis for what we will call “sensorimotor
autonomy”. The organization of sensorimotor behavior
can ground the values, norms and goals necessary for an
artificial agent to encounter a meaningful environment
in much the same way as biological autonomy does in
living systems.

It is this strategy for solving the problem of meaning in
artificial agents that we take up in this paper. We will consider
whether the Free Energy Principle (FEP) might provide formal
tools for modeling the conditions required for an agent to acquire
sensorimotor autonomy. The FEP states that organisms act to
keep themselves in their expected phenotypic and ontogenetic
states, and they achieve this goal by minimizing an information-
theoretic quantity referred to as “free energy”. In this specific
sense, the FEP implies that all living systems can be modeled as if
they visit a bounded and limited set of states (but not necessarily
the exact same states) if they are to continue to exist (Friston,
2019). Active inference describes the process of selecting actions
that minimize free energy over time. Could active inference
models based on the FEP be used to mathematically model
sensorimotor autonomy?

We argue first that the FEP can be applied to many systems
that do not satisfy the conditions for sensorimotor autonomy,
such as swinging pendulums and Watt governors (Kirchhoff
and Froese, 2017; Kirchhoff et al., 2018; Baltieri et al., 2020).
One can model such systems as inferring the hidden states
of their observations, and thereby treat them as if they were
engaged in updating their posterior distributions in accordance
with Bayesian inference. We go on to distinguish physical
systems like synchronizing pendulums that can be modeled
as engaging in “mere” active inference from systems that are
modeled as engaging in what we will call “adaptive active
inference”. Adaptive active inference refers to the process of
actively selecting actions that minimize expected free energy
associated with their future states (Kirchhoff et al., 2018). Mere
active inference allows one to give a description of coupled
systems (e.g., swinging pendulums) as inferring the hidden states
of one another, thus updating their posterior beliefs. However,
this is only a description. Moreover, in mere active inference,
the relevant systems cannot actively change their relation to their
environment. It is good to be able to update one’s beliefs about
the world; it is even better to be able to actively change one’s
relation to one’s environment. It is this crucial latter aspect that
is captured by shifting from mere active inference to adaptive
active inference. As an example of a model of adaptive active
inference, we describe a recent simulation of bacterial chemotaxis
(Tschantz et al., 2020). Chemotaxis is often given as a flagship
example of adaptivity. Tschantz et al. showed how their simulated
agent could learn to engage in chemotaxis by means of processes
of expected free-energy minimization. We go on to argue that
adaptive active inference may well provide formal tools for
modeling sensorimotor autonomy (drawing on previous work by
Kirchhoff et al., 2018; Ramstead et al., 2021; van Es and Kirchhoff,
2021).1

Our aim in this paper is to argue that the FEP could potentially
serve as a modeling technique for designing artificial agents

1Note that it remains an open question what the precise relation is between

the simulation-based chemical agent and actual chemical agents. There are good

reasons to think that in models of active inference agents, the similarity is

sufficiently tight to infer properties about actual chemical agents on the basis of

simulation-based models of chemical agents (see Kirchhoff et al., 2022 for further

defense of this claim).
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in accordance with enactive principles. We seek to use the
FEP to provide enactive cognitive science with formal tools for
modeling sensorimotor autonomy. Such a research programme
must however confront a number of significant challenges that
have emerged in the recent literature. We take up two in
what follows.

First, it has recently been argued that biological systems
are not well described as state-determined systems that over
time are attracted toward non-equilibrium steady-states (Froese
and Taguchi, 2019; Aguilera et al., 2021; Di Paolo et al.,
2022). These authors have argued that organisms (perhaps
in contrast to FEP-based models of agency) have a natural
history that is characterized by open-ended, unpredictable
transitions to qualitatively new regimes of order. Di Paolo
et al. (2022, p. 21) give as examples “embryogenesis, life-cycle
patterns, epigenetic variability, metamorphosis, and symbiosis.”
They argue furthermore that qualitative transformations can be
observed in the structure of behavior in the learning of skills, and
in the soft assembly of task-specific systems in tool use (Anderson
et al., 2012; Di Paolo et al., 2017). These critics have argued that
processes of historical change are essential to adaptivity but such
history-dependent processes cannot be captured in the terms of
the FEP. Once a system returns to a non-equilibrium steady-
state its history is forgotten. If these critics are correct, there
are therefore essential differences between systems that engage
in adaptive active inference, and biological agents that exhibit
sensorimotor autonomy.

Second, Aguilera et al. (2021) have argued that a free energy
minimizing system would fail to satisfy a key condition for
sensorimotor agency referred to as “interactional asymmetry”.
They show how the mathematical assumptions the FEP rests
upon only apply to systems whose interactions with the
environment are symmetrical. If Aguilera et al. are correct,
the mathematics of the FEP is not well suited for modeling
sensorimotor autonomy. The FEP doesn’t take us any further
forward in understanding the formal properties of systems that
are the source of their own values, needs and goals.

We finish up by offering reasons why the door should remain
open to a synthesis of the FEP and enactive cognitive science
we propose in our paper. First, we argue that the FEP is highly
general, applying to both systems that implement mere active
inference as well as to systems that are able to perform adaptive
active inference. We suggest this generality is an advantage of
the FEP allowing it to approximately represent a wide range
of different systems including, if the arguments of our paper
hold up, systems that fall in the region of those possessing
sensorimotor autonomy. Second, we will argue that systems that
implement adaptive active inference will tend to exhibit transient
or metastable dynamics in which there is a recurring creation
and destruction of large-scale coordination dynamics. Although
metastable systems can be described as on average revisiting their
attracting states they will avoid ever settling into any of these
attracting states. Metastable systems exhibit the kind of historical,
path-dependent learning required for acquiring a sensorimotor
identity, and becoming an agent. Thus the key question for the
FEP is whether adaptive active inference can be used to model
systems with metastable dynamics. We will provide reasons for

returning a positive answer to this question; though the work
of building such formal models, so far as we know, remains to
be done.

We conclude that the two frameworks need each other.
Enactive cognitive science needs the FEP to formally model the
properties it argues to be constitutive of agency. The FEP needs
enactive cognitive science for the solution it provides to the
problem of meaning. In the end engaging more closely with
this formalism and its further developments will benefit those
working within the enactive framework.

The Enactive Approach to the Problem of

Meaning in Artificial Intelligence
Biological agents are able to act in ways that express a sensitivity
to context-dependent relevance. Organisms engage with an
environment that is structured by their practical involvements,
cares and concerns. Minimally, organisms have a concern for
their own continued existence and their manners of living.
Organisms must for instance engage in a continuous struggle to
stave off death. Human agents are of course concerned withmuch
more than meeting basic biological needs required for survival.
Their activities are animated and driven by a variety of desires
they strive to satisfy, many of which stem from distinctively
human, sociocultural ways of living.

The problem of meaning arose in artificial intelligence in
attempting to design artificial agents that are able to act adaptively
and flexibly in dynamic complex and open-ended real-world
situations. A popular approach in artificial intelligence research
has been to build systems that learn an internal model of their
environment and that make inferences and plans on the basis of
this internal model (e.g., Lake et al., 2017). The sensitivity to what
is relevant in a perceived situation has however proved resistant
to specification in ways that could allow for this sensitivity to
be captured in an internal model. To act adaptively and flexibly
in dynamic complex environments such a system will need to
determine from its internal model what is actually relevant under
conditions of continuous change. Everything the system knows is
of possible relevance. How then does the system determine what
is of actual relevance without engaging in an exhaustive search of
everything it knows (Dennett, 1984; Dreyfus, 1992; Fodor, 2000;
Wheeler, 2005; Samuels, 2010; Vervaeke et al., 2012; Vervaeke
and Ferraro, 2013; Danks, 2014; Shanahan, 2016)? The problem
could perhaps be solved if artificial intelligence researchers could
find a way to make an internal model that represents all possible
contexts in terms of their determinate properties. However, the
environment that living beings encounter in perception is not
an environment made up of objects and properties that stand in
determinate logical relations. As we began this section by noting,
organisms perceive an environment that is structured by their
needs, cares and concerns.

In what follows we will take the problem of meaning
to be equivalent to what is sometimes called the “relevance
problem.” Thus, we will use the terms “meaning” and “relevance”
interchangeably in what follows. Meaning and relevance should
be distinguished from information which we take to refer to
statistical correlation between states of two systems (e.g., an
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organism and its environment). We take it to be uncontroversial
that statistical correlation does not suffice to make it the case
that the states of a system are meaningful for the system (Hutto
and Myin, 2013). In living systems what makes a state the bearer
of meaning is the history, dynamics and structure of the system
(Varela, 1979; Oyama, 2000; Thompson, 2007). The history and
structure of the living organism serve as the basis for needs, goals
and values that move the organism to act in its environment.
Meaning is determined by the organism’s history, dynamics and
structure. We identify meaning with relevance because we take
meaning to be brought forth by the agent through a history of
engagement with an environment that is relevant to the agent
because it is structured by the agent’s needs, concerns and values.

Froese and Ziemke (2009) argued that the problem ofmeaning
could be circumvented if artificial intelligence researchers were
to design agents based on the assumption of the continuity
of life and mind. The core idea behind life-mind continuity
is that intelligence depends upon its biological embodiment,
where embodiment is to be understood in terms of the
organizational properties of autonomy and adaptivity. The idea
of continuity is therefore that the concepts and principles
required for understanding and explaining features of mind
such as subjectivity, agency and individual identity, are also the
principles and concepts employed to explain the phenomenon of
life (Kirchhoff and Froese, 2017; Di Paolo, 2018: p.74). Agents
that are biologically embodied are the source of their own norms,
values and goals. They escape the problem of working out from
everything they know, what is relevant to their current and future
contexts of activity. Relevance is not an extra ingredient that
has to be added to what the agent already knows but is instead
intrinsic to what is perceived. To see how this follows, we must
further unpack the key concepts of biological autonomy and
adaptivity briefly encountered in our introduction.

To possess biological autonomy a system must first of all be
operationally closed. That is to say it must be organized so as
to produce “a network of precarious processes in which each
process enables at least one other process in the system and is,
in turn, enabled by at least one other process in the system”
(Di Paolo et al., 2017: p.113). The operationally closed network
has a precarious existence insofar as the constituent parts that
make up the network as a whole, are processes that stand in
co-enabling relations. Each process would break down were it
not causally enabled by the other processes in the network.
The component processes are co-enabling insofar as they work
together to produce the larger network as a whole. The self-
production of the network as a whole is a task that needs to be
continually accomplished if decay, disintegration and death are
to be avoided. The system can therefore be said to be biologically
autonomous in the sense that it is the operation of the processes
that make up the system that enable its continued self-production
and its self-distinction from its surroundings.

Systems that are biologically autonomous constitute or
produce themselves as individuals – they are self-individuating.2

2Maturana and Varela’s (1980) concept of autopoiesis is a paradigm example

of biological autonomy. An autopoietic system is composed of co-enabling

processes that form an operationally closed network, and that dynamically produce

This process of self-individuation serves as the basis for agency
– the organism is able to distinguish and actively regulate
flows of energy and matter that contribute positively to its
self-individuation, and avoid those that potentially interfere
with its biological autonomy (Varela, 1991; Di Paolo, 2005;
Thompson, 2007). The organism’s coupling with its environment
is inherently risky because of the precariousness of the processes
that produce and sustain the organism’s continued existence.
To succeed in its goal of continuously realizing processes
of self-production, the organism must be selectively open to
energetic exchanges with the environment that contribute to the
conditions of its self-production, and closed to exchanges that
threaten its self-distinction (Di Paolo, 2018: p.84). Autonomy
thus underwrites a basic biological form of normativity – the
capacity to differentiate between, and thereby regulate, flows of
matter and energy based on how well or badly they contribute
to the organism’s goal of maintaining its precarious identity.
The classic example of biological normativity, and one we will
return to later, is chemotactic behavior in which a bacterium will
move toward metabolisable compounds and move away from
metabolic inhibitors.

The biological normativity that is intrinsic to autonomy is
not dependent on the observer’s perspective on the organism’s
behavior. It is a capacity that is intrinsic to the organism’s
biological organization. The organism’s capacity to regulate and
modulate its relation to the environment is dependent on a
sensitivity to dynamical trajectories, gradients, and tendencies Di
Paolo has labeled “adaptivity”. Adaptivity is agentive in the sense
that it is a capacity the system actively exercises in changing the
parameters and conditions of the agent-environment relation in
for instance seeking out food when energy is anticipated to be
needed. This active modulation introduces an asymmetry into
the organism’s coupling with its environment, referred to in the
literature as “interactional asymmetry” (Barandiaran et al., 2009;
Di Paolo et al., 2017, §5.2.2). The organismmodulates its relation
to the environment based on its sense of whether environmental
events are good or bad for its continued existence.

Di Paolo (2005) defines adaptivity as:
“A system’s capacity, in some circumstances, to regulate its

states and its relation to the environment with the result that, if
the states are sufficiently close to the boundary of viability,

1. Tendencies are distinguished and acted upon depending on
whether the states will approach or recede from the boundary
and, as a consequence,

2. Tendencies of the first kind are moved closer to or
transformed into tendencies of the second and so future states
are prevented from reaching the boundary with an outward
velocity.” (Di Paolo, 2005: p. 438)

The reason this is important is because it implies that the
organism need not passively respond to environmental events
in a state-determined manner based only on its previous state.
The organism’s operating conditions can undergo change over

the system’s own material boundary. It should be noted that systems can be

autonomous while lacking a material boundary. This is the case for insect colonies

for instance that form autonomous social networks (Thompson, 2007: p.44).
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time based instead upon its history of interactions with its
environment. The organism can in this way have a plastic identity
that is given shape by its history of acting, and being acted
upon by its environment. Meaning can thus be understood as
actively generated or brought forth by the organism based on
the history of sensorimotor interaction with its environment
that has become sedimented in its biological organization. So
conceived, meaning does not need to be somehow added to
what the organism knows because the environment the organism
relates to is always already imbued with meaning based on the
organism’s past history of interaction.3

So far our treatment of the concepts of biological autonomy
and adaptivity has focused on processes that the organism
depends upon for its continued viability. However, the norms
relative to which the organism regulates its interactions with
the environment do not only concern its continued existence
in the here and now. The significance of sensory perturbations
for the organism go beyond their immediate bearing upon the
organism’s operationally closed organization.4 The processes that
constitute and produce the organism as an agent, include its
regular and relatively stable patterns of sensorimotor behavior.
These patterns of sensorimotor behavior have been argued to
also exhibit the key properties of autonomy—they depend upon
operationally closed sensorimotor networks made up of co-
enabling bodily and environmental processes (Di Paolo, 2005;
Barandiaran, 2008; Egbert and Barandiaran, 2014; Di Paolo et al.,
2017; Ramírez-Vizcaya and Froese, 2020). Think for example of
habits like smoking cigarettes or drinking coffee when you wake
up in the morning. These are sensorimotor patterns of behavior
that are self-sustaining, but that do not positively contribute to
maintaining the organism’s biological viability, and may even
be harmful to the organism. A pattern of behavior becomes a
self-sustaining habit when the processes that enable it—neural,
muscular and environmental—depend for their stability and
organization on the regular performance or enactment of the
pattern of behavior (Di Paolo et al., 2017: p.144; also see Egbert
and Barandiaran, 2014). Thus these processes come to form
operationally closed sensorimotor networks in much the same
way asmetabolic processes do. At the same time, the organization
of the sensorimotor network is precarious because it is at risk of
extinction if the pattern of behavior is not regularly enacted.

It has recently been proposed that sensorimotor autonomy
could serve as a design principle for artificial agents that
would allow researchers to avoid the difficult problem of
engineering systems that metabolically self-produce. Di Paolo
(2003) suggested for instance that robots could be built with

3Von Uexküll (1957) introduced the idea of a sensorimotor world (an Umwelt)

to characterize this meaningful environment. The Umwelt is the world as it is

perceived by an organism given its sensorimotor repertoire.
4Di Paolo et al. (2017) refer to Margaret Donaldson’s distinction between four

modes of human thinking about the world, which she distinguished based on the

degree of decentering from the agent’s point of view on the world in the here

and now. Humans can for instance plan for future events, and they can detach

themselves entirely from their own concerns in thinking about moral and political

values. Di Paolo et al. appeal to what they call “virtual actions” to account for the

development of these decentered modes of thinking out of sensorimotor agency

(see also Kiverstein and Rietveld, 2018). It is beyond the scope of our paper to

discuss their account of virtual actions in further detail.

mechanisms “for acquiring a way of life, that is, with habits”
(p.31). Designing agents that can acquire self-sustaining habits
will have the consequence that such agents will engage with
the world based on norms, goals and values that relate to the
sustaining of their habits. They will differentially evaluate the
situations they encounter in terms of their relevance for the
realization of processes upon which the sustaining of their habits
depend. Such an agent doesn’t relate to an action-neutral world
that stands in need of representation. It will not need to work out
from all possible responses, which responses are actually relevant
to its current situation. Instead agent and environment will form
a single system that is continuously reconfigured in ways that
allow for the sustaining of the sensorimotor autonomy of the
agent. This is, in a nutshell, the enactive proposal for how to solve
the problem of meaning in artificial intelligence.

Still a question remains of how to model sensorimotor
autonomy. The question we take up in the rest of our paper
is: could the free energy principle (FEP) provide a formal
description of the conditions for the design of an artificial agent
that possesses sensorimotor autonomy?

The Free Energy Principle: A Brief

Introduction
The FEP purports to describe the organizational properties a
system must instantiate if it is to preserve its organization over
time in its interaction with a dynamic environment. The FEP
has been argued to apply to “any biological system. . . from single-
celled organisms to social networks” Friston and Stephan (2007).
It claims that all complex adaptive systems that are able to resist
a tendency to disorder must minimize an information-theoretic
quantity known as “free energy”. Friston (2010) for instance
formulates the FEP as follows:

“The free-energy principle. . . says that any self organizing system

that is at equilibrium with its environment must minimize its free

energy. The principle is essentially a mathematical formulation

of how adaptive systems (that is, biological agents, like animals

or brains) resist a natural tendency to disorder.” (Friston,

2010: p.127).

The FEP is sometimes described as a tool the scientist employs
purely for modeling purposes. Raja et al. (2021) for instance
formulate the FEP as claiming: “Any ergodic random dynamical
system with an attractor and a Markov blanket behaves as if
it were minimizing the variational free energy of its particular
states” (p.3, our emphasis). The “as if ” qualifier here is used
to indicate that the behavior of complex adaptive systems is
modeled on the assumption that adaptive systems minimize
variational free energy. It doesn’t matter for modeling purposes
if this assumption is true. A number of papers argue on this
basis that strictly speaking the FEP has nothing to say about
the organizational properties of the complex adaptive systems it
purports to model (Ramstead et al., 2020b; van Es and Hipólito,
2020; van Es, 2021). These authors argue the FEP should be
understood in purely instrumental terms as a scientific tool
for predicting the observable behavior of adaptive systems. Our
paper is premised on the assumption that such an instrumentalist
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reading of the FEP is incorrect [for further discussion see
Andrews, 2021; Kirchhoff et al., 2022; Kiverstein and Kirchhoff,
2022]. Our aim in this paper is to consider whether the FEP
can be used to formally model sensorimotor autonomy. We take
sensorimotor autonomy to be a real organizational property that
tells us what it is for a system to be an agent. Our aim is to
consider if models based on the FEP can be taken to truthfully
represent a real organizational property of agents.

The FEP, as we will understand it, employs the mathematical
formalism of non-equilibrium steady-state (NESS) systems to
model the properties a complex adaptive system must instantiate
if it is to preserve its organization over time (Friston, 2012,
2013, 2019). Any biological system will be able to maintain
order within a boundary (modeled as a “Markov blanket,” more
on which below), separating the internal states of this system
from the external states of its environment. The FEP claims
that to maintain order within this boundary, the system must
(on average, and over time) revisit a set of sensory states
when it is perturbed by the environment. We will refer to the
set of sensory states that the system is modeled as repeatedly
revisiting over time as the “attracting set” for a given biological
system. We can think of the attracting set as a model of the
system’s extended phenotype since it will include variables for
morphological states as well as behavioral patterns that relate
to the niche the agent constructs (Friston, 2011; Kirchhoff and
Froese, 2017; Bruineberg et al., 2018; Kirchhoff and Kiverstein,
2019). A system’s attracting set will include physiological states
such as blood oxygen concentration and pressure levels and
body temperature that must be maintained within a certain
range of values if the organism is to survive. Other sensory
states belonging to a system’s attracting set relate to its niche -
fish frequent aquatic environments, while humans tend to live
on land and only occasionally find themselves underwater. The
states belonging to the system’s attracting set will therefore be
the subset of all possible states the system can occupy that are
highly probable given the system’s phenotype and the niche it
inhabits. States that fall outside the attracting set are potentially
threatening to the maintenance of order within the system
because they lead to an increase in disorder or entropy within
the system. States that lead to an increase in disorder will be
surprising or improbable for a NESS system that tends toward
an ordered set of states over time in its exchanges with the
environment. The states belonging to the system’s attracting set
are states the system expects to occupy over time.When the states
of the system fall outside of its attracting set this is therefore
surprising because the probability of finding the system in such
states is low. (“Surprise” is to be understood as the improbability
of a particular sensory state, and is not to be confused with
agent-level surprise, which occurs in response to an unexpected
conscious sensation).

The system has no tractable way of calculating whether a given
sensory state is surprising or not. This is because the probability
of a sensory state is calculated relative to a state of the possible
influences of external states of the environment on the internal
states of the system. The state space is however potentially
infinite, thus computing the probability of each sensory state by
searching through this state space will prove intractable. This

is where free energy can help, since free energy is a quantity
that can act as an upper bound on surprise. Free energy more
technically is a function of the function of sensory states that
is parameterized by the internal states of a system. Since free
energy is a function of the sensory and internal states of the
system, it is in principle computable (Friston and Ao, 2012).
Moreover, it is a quantity over which the organism has (indirect)
control since it maps onto the organism’s sensory states that it can
control through action, and internal states that admit of a certain
degree of plastic reorganization through learning. Minimizing
free energy will guarantee that sensory states remain in a high-
probability area in the system’s state space. So long as the NESS
system can keep the free energy associated with its sensory states
to a minimum, it will succeed in remaining in states that belong
to its attracting set.

The FEP states that all quantities that can change in a NESS
system will change to minimize free energy (Friston and Stephan,
2007). Free energy quantifies the mismatch between the sensory
states the system expects to sample through its actions, and
those it actually samples. The notion of “expectation” should be
understood in relation to a model that is entailed by the internal
dynamics that form in the system’s coupling with its niche. The
function of this model is to anticipate sensory perturbations
originating in the environment external to the system, allowing
the system to proactively adapt its actions to those perturbations.

The FEP models complex adaptive systems as random
dynamical systems that are attracted toward a non-equilibrium
steady-state (a NESS). The FEP assumes adaptive systems will
tend to exhibit certain dynamical flows of states over time
determined by, amongst other things, their phenotypic states,
body morphology, and their ecological niche. Generative models
are used to describe the statistics of these flows (Ramstead
et al., 2020a). For a system to tend to flow toward a NESS
by minimizing free energy is for the system to minimize the
discrepancy between the variational density (also sometimes
called the “recognitional density”) the organism instantiates in
its internal dynamics, and the true posterior or the external
dynamics in the environment. Free energy can thus be thought
of as quantifying mathematically the mismatch between the
organism’s internal dynamics and the external dynamics of its
environment (Bruineberg et al., 2018).

Friston (2013) has proposed that a living system does not have
a model of its environment but it is a model of its environment,
which highlights that the notion of “model” the FEP is premised
upon is implicit in the living system’s internal dynamics. In this
sense, there is no distinct system inside of the central nervous
system of the agent that uses a model to engage in inference. For
Friston, inference just is a description of the flow of the internal
dynamics of the living system. Friston takes the generative model
to be organized around the organism’s belief in its own continued
existence. All of the actions the organism undertakes aim at
sampling sensory states that maximize the evidence for this belief
in its continued existence, a belief Allen and Tsakiris (2018)
have referred to as the “first prior”. To minimize free energy is
at one and the same time to maximize evidence for this belief
in the living system’s continued existence. Hohwy (2016) refers
to this property of living systems whereby they act to sample
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evidence that confirms the belief in their own continued existence
as “self-evidencing”.

Free energy can be minimized in two intimately related ways
referred to as “perceptual” and “active inference”. In perceptual
inference free energy is reduced by changing the dynamics
internal to the system (Friston, 2010; Hohwy, 2013). The
internal dynamics of the system embody a model of the agent’s
econiche by means of which it can steer its actions (Friston,
2011). Perceptual inference involves plastically restructuring the
internal dynamics in such a way that the agent is better able
to accommodate external sensory perturbations arising from
the changes in its niche in the future (Friston et al., 2016).
Free energy is kept to a minimum in part by generating and
modifying an internal dynamics that closely approximates the
external environmental dynamics. We said that perceptual and
active inference are intimately related (Hohwy, 2013). This
intimate relation follows from what we have just referred to as
self-evidencing (Hohwy, 2016): the internal dynamics that are
adjusted in perceptual inference are organized around sampling
sensory evidence that confirms the agent’s belief in its own
continued existence (Fotopoulou and Tsakiris, 2017; Allen and
Tsakiris, 2018; Seth and Tsakiris, 2018).

In active inference the agent acts to sample sensory states
belonging to its attracting set (Friston et al., 2017a,b). The sensory
states that are expected given the first-prior are those that relate
to the agent’s needs, goals and intentions (Allen and Tsakiris,
2018). The agent’s continued existence will for example depend
on its meeting its biological needs for warmth, nourishment, and
attachment (Fotopoulou and Tsakiris, 2017). If the agent is to
sample sensory states that maximize the evidence for the first
prior, this will require the agent to act in ways that satisfy such
basic needs. A simple example is eating when hungry. Hunger
indicates a potential breach of essential variables relating to blood
glucose levels (i.e., a deviation from the system’s attracting set).
The action of eating helps to correct this potential breach before
it arises. With this brief summary in place we turn next to
the question of whether the FEP provides a formal description
of the conditions required for an artificial agent to possess
sensorimotor autonomy.

The Free Energy Principle: A Minimal

Condition for Sensorimotor Autonomy?
Recall our proposal is to use sensorimotor autonomy as a
biologically-based design principle for building artificial agents
(Barandiaran, 2008; Egbert and Barandiaran, 2014; Di Paolo
et al., 2017; Ramírez-Vizcaya and Froese, 2020). The idea is that
habits are self-sustaining patterns of activity that constitute a
systemic identity for the agent relative to a sensorimotor domain.
Relevance arises out of the needs, goals and interests the agent
has in sustaining its habits. Situations and activities “become
meaningful not only in virtue of their contribution to biological
survival, but also in virtue of their contribution to the stability
and coherence of a sensorimotor repertoire” (Di Paolo et al., 2017,
p.39). An agent that has sensorimotor autonomywill have its own
point of view relative to which evaluations of action possibilities
can be made in terms of their relevance for the agent. Does the

FEP provide a set of mathematical tools that can be used tomodel
sensorimotor autonomy? Is free energy minimization sufficient
for sensorimotor autonomy? The payoff for a positive answer
to this question will be formal tools that allow us to connect
meaning and relevance to a system’s intrinsic dynamics.5

The FEP is broad in terms of the systems to which it applies.
Swinging pendulums, Watt governors and pebbles have all been
argued to count as systems that can be described as minimizing
free energy in their dynamic coupling with the environment
(Kirchhoff and Froese, 2017; Kirchhoff et al., 2018; Baltieri et al.,
2020; van Es and Kirchhoff, 2021). Two coupled pendulums A
and B can, for example, be described as modeling each other’s
motion. Given the internal states of pendulum A, and the effects
of its velocity and motion on the beam from which it is hanging,
pendulum A can be said to infer the motion of pendulum B.
This is possible because the motion of pendulum A, through its
effects on the beam, enslaves the motion of pendulum B, and vice
versa. When the two pendulums come to swing in synchrony
the coupling of the two pendulums can therefore be described
in terms of free energy minimization (Bruineberg et al., 2018;
Kirchhoff et al., 2018). In line with our earlier work, we describe
this process of free energy minimization that can be observed in
non-living, and non-cognitive systems as “mere active inference”
(Kirchhoff et al., 2018). Each pendulum infers through its own
motion and the effects of its motion on the beam, the motion of
the other pendulum.

Mere active inference is qualitatively different from the
process of free energy minimization that occurs in living and
cognitive systems (Kirchhoff, 2018). Living systems are able to
sample among different options, and select the option that has
the least expected free energy.6 While the pendulums enslave
each other’s motion, living systems are able to free themselves
from their proximal conditions by selecting temporally extended
sequences of actions that minimize expected free energy
associated with future states. We have used the term “adaptive
active inference” to describe what living systems are able to
do that is missing in systems that engage only in mere active
inference (Kirchhoff et al., 2018). In adaptive active inference
sequences of actions are selected that minimize the cumulative

5Kolchinsky and Wolpert (2018) have recently explored a strikingly similar

proposal. They begin their paper by noting the difference between what they

call “semantic information” and Shannon information as a measure of statistical

correlation between two systems. They seek to provide formal tools that describe

how semantic information could be intrinsic to the dynamics of a system in a

given environment. Central to their proposal is a viability function which they

define as “the negative Shannon entropy of the distribution over the states of the

system X” (p.2). They use Shannon entropy as an upper bound on the probability

that the system occupies states belonging to its viability set in a similar fashion

to how Friston uses variational free energy in relation to a system’s NESS. An

important difference is that Shannon entropy is not computationally tractable

for the agent, whereas variational free energy represents a quantity an agent can

control through its actions. We will postpone exploring further the similarities

and differences in our proposals. What we wish to emphasize for now is that both

our proposals aim to formalize meaning (Kolchinsky and Wolpert use the term

“semantic information”) in terms of a quantitative measure of viability - in our

case variational free energy.
6The distinction between mere and adaptive active inference is formally grounded.

For discussion see Millidge et al. (2021), though they do not use our terminology

of “mere” and “adaptive” active inference.
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sum of free energy over time, a quantity referred to as “expected
free energy” (Friston et al., 2017a,b).

Adaptive active inference is distinguished from mere active
inference in aiming at the selection of actions whose sensory
effects minimize expected free energy. (Expected free energy is
the free energy expected upon executing a temporally-extended
sequence of actions.) Expected free energy is a function of
two quantities referred to as instrumental and epistemic value.7

To minimize expected free energy an agent must select action
policies (sequences of actions) that maximize both instrumental
and epistemic value. Instrumental value is maximized when
the sensory observations an agent expects to sample match its
preferred outcomes (its needs, goals and desires). Thus, acting
to maximize instrumental value can be thought of as equivalent
to goal-directed behavior. Epistemic value quantifies information
gain or the reduction of uncertainty about the hidden states
of the environment. An agent maximizes epistemic value by
maximizing the information that is gained through exploratory
actions of the environment. An active inference agent that acts
to minimize expected free energy will continuously be balancing
instrumental actions that aim at bringing about preferred
outcomes with epistemic actions that aim at uncertainty
reduction. Crucially, while this kind of epistemic (or information
seeking) foraging should on average result in the minimization
of uncertainty, there will nevertheless be short-term peaks of
uncertainty given an organism’s exploration of its surroundings.
The aim is thus to strike the right balance between the reduction
of entropy and temporarily increasing entropy. The pay-off
for finding this right balance (what is sometimes called the
“exploitation-exploration trade-off”) is that the agent will avoid
getting trapped in any local minima. They will be able to make
continuous progress and improvements in learning in ways
that are conducive to long-term free energy minimization. (For
further discussion see Kiverstein et al., 2019).

There are other points of importance to note about adaptive
active inference. First, the generative model is biased toward
sampling sensory observations thatmatch the agent’s preferences,
goals and desires (Bruineberg et al., 2018; Tschantz et al., 2020).
Second, and relatedly, epistemic actions will work in the service
of tinkering with a model that is biased toward the control of
certain sensory outcomes. As Tschantz et al. have noted, an active
inference agent will tend to forage for information in parts of the
environment expected to maximize instrumental value (Tschantz
et al., 2020: p.7). That is to say, the improvement in themodel that
epistemic actions make possible are ultimately improvements in
the service of the agent’s goals.

To minimize expected free energy the agent has to select
from among action policies, the policy that is expected to lead
to preferred outcomes and goals (Friston et al., 2017a,b; Pezzulo
et al., 2018). This might be thought to lead the active inference
agent to encounter the relevance problem once again.8 The

7For mathematical details of how epistemic and instrumental value are computed

we refer the reader to Tschantz et al. (2020, pp.25–26), and Friston et al. (2017a).

For discussion of the relation between variational and expected free energy see

Millidge et al. (2021).
8Our thanks to an anonymous reviewer for raising this objection.

agent will always be faced with an open-ended range of possible
action policies but can only search a narrow area within this
space. How then does the agent constrain the search space
to only action policies of relevance (i.e., those expected to
minimize free energy? Most active inference models up until
now have avoided this question by pre-specifying the search
space. Within this predefined search space action policies are
then selected on the basis of the agent’s belief in the precision
of the policy - the confidence the agent places in the sensory
consequences of its actions. The work of scoring action policies is
taken over by the precision estimate associated with each action
policy. Precision estimates are based on expected uncertainty
(or salience) and unexpected uncertainty (or volatility, Parr
and Friston, 2017). The higher the precision for each action
policy, the more confident the agent can be that the sensory
outcomes of its action will match its preferred outcomes. A risky
action policy is one whose sensory consequences the organism
anticipates will diverge from its preferred outcomes leading to
an increase in expected free energy. Precision estimates can
be thought of as having effects comparable to attention. They
bias action selection toward actions whose sensory consequences
are expected to minimize free energy. The “gain” is turned-up
on opportunities to bring about those sensory consequences.
Precision is decreased and the gain turned-down on actions
whose sensory consequences are associated with increases in
free energy.

Is there reason to believe that adaptive active inference will
scale-up from a predefined search space of action policies,
without the agent once again encountering the relevance
problem?9 Recall how we are proposing that artificial agents that
develop sensorimotor autonomy will circumvent the problem
of meaning. Meaning will arise out of the agent’s history of
activity in an environment structured by its needs, interests and
concerns. Meaning is not an extra ingredient the agent needs
to add to information to determine how to solve what would
otherwise be an ill-defined problem. “With ill-defined problems,
the goal-state is often murky, the initial state is unclear,” and the
operations that will take you from your initial state to your goal
state are unspecified (Vervaeke and Ferraro, 2013, p.4). Before
one can solve an ill-defined problem one must determine what
information is relevant for defining the problem. Our hypothesis
is that agents that possess sensorimotor autonomy however will
typically not encounter ill-defined problems.10 They will relate to
an environment that is already meaningful because of their past

9For recent reviews of the application of active inference models in robotics see

Lanollis et al. (2021) and Da Costa et al. (2022). We discovered these papers only

after completing the writing of this manuscript and plan to discuss them fully in

follow-up work.
10We do not claim that skilled agents never encounter ill-defined problems. We

suggest exploratory or “epistemic” actions that aim at uncertainty reduction will

provide an important part of the answer to how agents solve such problems

when they do arise (see e.g. Friston et al., 2017b). It is an important question

for further research whether agents engaging in epistemic actions to solve an ill-

defined problem would once again encounter the relevance problem. How is it

that agents performing epistemic actions to solve an ill-defined problem constrain

the space of possible solutions they sample? This question is partially addressed

by active inference models of curiosity and insight (see e.g. Friston et al., 2017a).

Thanks to one of our reviewers for raising this problem.
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history of engagement. The habits they have developed provide
them with know-how or skills that form the basis for norms
that guide the agent’s actions. Situations and activities are good
or bad, adequate or inadequate, successful or unsuccessful to
the extent that they contribute to the sustaining of the agent’s
sensorimotor identity.

We will consider next if models of adaptive active inference
could be used to formally describe the organizational property
of sensorimotor autonomy. To address this question we
need to briefly introduce the Markov blanket formalism. The
terminology of Markov blankets is borrowed from the literature
on causal Bayesian networks (Pearl, 1988; Bruineberg et al.,
2022). The Markov blanket for a node in a Bayes network
comprises the node’s parents, children and parents of its children.
The behavior of the blanketed node can be predicted from the
states of the blanket without knowing anything about the nodes
external to the blanket that are the causes of changes internal to
the network. We suggest the Markov blanket formalism can be
used to model sensorimotor autonomy. Here we make the case
only informally and schematically. It is a task for future research
to turn our philosophical argument into concrete formal models.

Our core idea is that the autonomy of the sensorimotor
network can be modeled as the nesting relations among Markov
blankets in systems that perform adaptive active inference. Each
component process in the system can be thought of as having
its own Markov blanket. Two components A and B stand in an
enabling relation when the active states of the Markov blanket
of A cause the sensory states that belong to the attracting set of
B (i.e., the sensory states that B must occupy if it is to remain
viable). B will begin to break down when the sensory states that
form its Markov blanket are improbable, departing from what
is expected given its attracting set. Thus B’s continued viability
is enabled by the active states of A. Conversely, component
B enables component A if the sensory states belonging to A’s
attracting set are made highly probable by B’s active states. So
long as the Markov blankets of each of the component processes
couple in such a way that each of the components remains in high
probability sensory states, (a condition that will be satisfied in
systems that engage in adaptive active inference) the result will be
the self-production and self-distinction of the system as a whole
(Ramstead et al., 2021; van Es and Kirchhoff, 2021). A system that
engages in adaptive active inference will succeed in maintaining
operational closure under precarious conditions.

Nave (2022) criticizes the use of Markov blankets to
model metabolic self-production. She argues that organisms
are intrinsically unstable structures that define their boundaries
while undergoing near constant material turnover. To deploy
the Markov blanket formalism we would first need to identify
the organization of the system of interest, which is a challenge
in living systems undergoing continuous material change. She
concludes that the Markov blanket formalism can only be
successfully deployed if we already know the organization of the
system we are interested in modeling. Along similar lines, Raja
et al. (2021) have argued that while the cell membrane is the
product of the activity of cells, the Markov blanket is not the
product of the activity of a cognitive system’s internal states.
They conclude: “There is nothing in the use of Markov blankets

that accounts for the fundamental features of the boundary of
self-organized, self-maintained systems” (p.28-9; cf. Suzuki et al.,
2022).

We suggest in response that the self-production of living
systems is understood as an example of autonomy (i.e.,
the production and maintenance of an operationally closed
network under precarious conditions). Such a characterization
of the organization of living systems fits perfectly with Nave’s
description of organisms as “intrinsically unstable structures -
stabilized only via their own ceaseless activity” (Nave, 2022,
preprint, p.4), and with Raja et al.’ concept of constitutive self-
organization. We have just shown informally how the Markov
blanket formalism could be applied to systems that are modeled
as engaging in adaptive active inference. To repeat the main
idea: the sensory states that define the Markov blanket for each
component of an operationally closed system will be coupled
to the active states of one or more of its enabling components.
So long as the system engages in adaptive active inference this
coupling relation will ensure that the sensory states for each
component belong to the component’s attracting set. The result
will be the self-production of the system as a whole as a unity
distinct from its environment.

As a proof of concept example of how adaptive active
inference can be used to model sensorimotor autonomy (but
not biological autonomy), consider the recent active inference
simulation of chemotaxis of Tschantz et al. (2020). “Chemotaxis”
refers to the running and tumbling movements bacteria exhibit
when they encounter a chemical gradient that is a potential
source of food (i.e., a sucrose gradient). This can be thought of
as a form of pragmatic action in which the bacterium acts to
maximize instrumental value. When bacteria sense a negative
gradient (i.e., an acid that is toxic to the bacterium), the rhythm of
the running and tumbling motions alters in such a way as to steer
the bacterium away from danger, and in search of locations were
positive gradients are to be found. This behavior can be thought
of as an epistemic action the bacterium performs to maximize
epistemic value.

Tschantz et al. simulated an active inference agent that selected
between actions by seeking to maximize both instrumental and
epistemic value. They showed that in their simulation agents
employing such a strategy were able to perform at least some
chemotaxis (i.e., running toward positive gradients, and tumbling
away from negative gradients). The strategy of minimizing
expected free energy seems to have allowed the active inference
agent to find the right balance between performing epistemic
exploratory actions of tumbling and instrumental actions of
moving forward. The agent engaged in tumbling behaviors when
it estimated there was less instrumental value in running. In
doing so it learned about the effects of tumbling, and continued
to do so until the value of tumbling becomes less than the value
of running when the agent switches its behavior.

Crucially, the value the simulated agent assigned to actions
was modeled by the change in free energy over time. The policy
of tumbling for instance decreases in value when the agent is no
longer making information gains that resolve model uncertainty,
a situation that can be understood in terms of free energy
remaining constant or increasing. The policy (i.e. sequences of
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actions expected to minimize FE) of running takes on a value
that outweighs that of tumbling when the agent expects sensory
observations that match those it prefers (i.e., a positive gradient).
The increased instrumental value of running can therefore be
equated to an expected reduction in free energy. This is important
because valence has been analyzed and modeled in the FEP
literature in terms of change in free energy over time (Joffily and
Coricelli, 2013; Van de Cruys, 2017; Kiverstein et al., 2019; Hesp
et al., 2021). “Valence” refers to the positive or negative charge of
an affective state.

The rate of change in free energy can be taken as a measure of
how well or badly the organism is faring in its interactions with
the world. When free energy is on the increase, or is not resolved
through action, this means that the agent is in a potentially
threatening situation, while when free energy is decreasing this is
feedback for the agent that it is faring well and should, if possible,
continue on the same path. We suggest then that Tschantz
et al.’ active inference agent exhibits adaptivity in its chemotactic
behavior. The active inference agent uses changes in free energy
to negotiate the trade-off between performing epistemic and
pragmatic actions, as we have just explained. The changes in free
energy over time are used by the agent as feedback that signals
how well it is doing in its goal of achieving chemotaxis, and the
simulated agent modulates its coupling with its environment on
the basis of this feedback. In the next section we take up two
objections that challenge the hypothesis we have been proposing
that the process of adaptive active inference can be used to model
sensorimotor autonomy.11

Ergodicity, Historicity and Interactional

Asymmetry
The first objection we will consider targets the ergodicity
assumption that early iterations of the free energy principle relied
upon (e.g., Friston, 2013). Briefly, “ergodicity” refers to “the time
average of any measurable function of the system converges
(almost surely) over a sufficient amount of time. This means
that one can interpret the average amount of time a state is
occupied as the probability of the system being in that state when
observed at random.” (Friston, 2013, p. 2) If ergodicity holds, the
proportion of time a system spends in any region of its phase
space is equivalent to the probability of the system occupying
this region of its phase space. For example, if the probability of a
coin landing heads is 50/50 then over the course of the time spent
flipping a coin, the coin will spend 50% of this time landing heads,
and 50% of this time landing tails. We can think of the average

11Our argument that agents with sensorimotor autonomy will circumvent the

problem of meaning shares much in common with the account of relevance

realization developed by John Vervaeke et al. in a number of publications (e.g.,

Vervaeke et al., 2012; Vervaeke and Ferraro, 2013). Vervaeke et al. understand

relevance realization in terms of the self-organizing optimisation of trade-offs

between opponent yet complementary learning strategies. An example is how

relevance could be realized in relation to the goal of threat avoidance through

optimizing the trade-off between fight and flight. Vervaeke et al. also frequently use

the example of the trade-off between exploration and exploitation. A discussion of

similarities and differences between our approaches is unfortunately beyond the

scope of this article. However, see Hovhannisyan and Vervaeke (2021) for a recent

account of how the concept of relevance realization could contribute to developing

an enactive approach to humanistic psychology.

time a system spends in any region of its phase space – the space
of all possible states of the system – as being proportional to the
attractiveness of that region. Recall the idea of an attracting set,
that living systems as random dynamic systems, will have a set
of sensory states toward which they will continually evolve over
time whenever they are perturbed. This idea has been taken by
critics to be based on the assumption that living systems literally
are ergodic.12

It has recently been argued that the enactive concept
of adaptivity is fundamentally at odds with the ergodicity
assumption (Di Paolo et al., 2022; also see Colombo and Wright,
2018; Kauffman, 2019 for a critique of ergodicity as applied to
living systems). Adaptivity, they have argued, involves changes
in the phase space of the dynamical system the organism forms
with the environment to avert the potential loss of viability
that would ensue, were the agent to remain in a steady-
state regime. The possibility of such critical transitions in an
organism’s phase space requires an understanding of the change
in internal dynamics the agent undergoes as path-dependent,
that is, as dependent on the agent’s history of interaction with
the environment. We see examples of such phase transitions
in development, in for example, “embryogenesis, life cycle
patterns, epigenetic variability, metamorphosis and symbiosis”
(Di Paolo et al., 2022: p.21). In behavior, critical transitions
occur in perceptual learning, skill acquisition, tool use and
habit formation. Over shorter time scales, changes in patterns
of effective connectivity in the brain that allow for many-to-
many mapping between neural structure and function, or what
Anderson (2014) calls “neural reuse”, depend upon such critical
transitions. In short, phase transitions are ubiquitous in living
and cognitive systems. Di Paolo et al. characterize adaptivity
in terms of phase transitions. An adaptive act is, they contend,
a phase transition in which an agent undergoes a change in
structure switching from an existing dynamical trajectory that
would lead to a loss of viability eventually if left unchecked.
The history of an organism can be described as the “cumulative
change” in the configuration of the phase space that describes the
behavior of the organism over the course of its lifetime.

Di Paolo et al. argues that this characteristic of path-
dependence, whereby the agent’s internal dynamics are
dependent on its past history of phase transitions, is
fundamentally incompatible with the idea of an attracting
set of non-equilibrium steady-states to which the organism
repeatedly returns when perturbed. A system that conserves
its organization in this way will, they argue, quickly forget its
history. The long-term average of the states the system visits
over time will be equivalent to the averaging of the states in an
ensemble of the system at a time. Di Paolo et al. take this to
describe a key difference between physical systems that tend to
conserve invariant structure and biological systems that rely
upon a continuous reconfiguration of their structure following
critical transitions. If adaptivity happens in such moments of

12The ergodicity assumption is employed as an approximation to model systemic

behavior. It requires that a system returns to approximately the same states over

time. The notion of approximate similarity however should not be mistaken for

numerical identity.
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critical transition, it would seem to follow that adaptivity cannot
be understood in terms of adaptive active inference.

First, let us agree with Di Paolo et al. that adaptivity does
indeed occur in moments of critical transition in the dynamics
of an organism-environment system (cf. Varela, 1995). Indeed
historical path-dependence has been central to how we have
analyzed meaning in this paper. We suggest the appearance of
incompatibility of adaptivity, so conceived, with the FEP may
stem from the generality of the FEP. Recall how the FEP is equally
applicable both to physical systems that engage in mere active
inference, and to biological systems which engage in adaptive
active inference. The past history of dynamical interaction is
indeed irrelevant to describing how the swinging pendulums
enslave each other over time. However, the path independence
of behavior is less obviously true of systems that exhibit adaptive
active inference.

Recall that such systems are able to strike the right balance
between the reduction of expected free energy through
instrumental actions, and temporarily increasing free energy
through exploration of the environment. To strike a balance
between exploitation and exploration an adaptive active
inference agent will need to instantiate a metastable dynamics.
Metastability is the consequence of two competing tendencies
(Kelso, 1995): the tendency of the parts of the system to separate
and express their own intrinsic dynamics, which leads to an
increase in free energy, and the tendency of the parts to integrate
and coordinate to create new dynamics, in the way that Di Paolo
et al. argue is required for adaptivity. Metastable systems are able
to transit between regions of their phase space spontaneously
without external perturbation. The structure of a metastable
system is therefore transient. Systems with metastable dynamics
avoid getting trapped in fixed-point attractors that lead to a
single outcome. The internal dynamics are instead itinerant or
wandering in a way that allows for exploratory behaviors that
temporarily increase free energy (Zarghami and Friston, 2020).
However, such temporary increases in free energy allow for just
the kind of dynamical reconfiguration that Di Paolo et al. take to
be essential for adaptivity.13

Indeed we suggest that systems that can find the right balance
between reducing and temporarily inducing increases in entropy
would need to be capable of dynamically reconfiguring their
internal dynamics in ways that fit with the context in which
they are acting. This is not to deny that the internal dynamics
of an adaptive active inference agent can never become rigid
and inflexible over time. However such rigidity is perhaps a
signature feature of psychopathologies (cf. Carhart-Harris et al.,
2014). Think for instance of obsessive compulsive disorder in

13One of our reviewers objected that random dynamical systems that tend toward

a NESS cannot possess metastable dynamics. Friston has however provided

many models of active inference that in his words “provide a key connection to

dynamical approaches to the brain that emphasize. . .metastability” (Friston, 2010,

p.134), a connection that the reviewer takes to be excluded by the derivation of

the FEP. We suspect the reviewer is confusing the mathematics that are used to

derive the FEP, which may well contain equations that fail to capture metastability,

with the use of the FEP to model systems with metastable dynamics. We will

return to this point below in responding to the challenges raised by Aguilera et al.

recent work.

which the agent finds themselves trapped in maladaptive cycles
of behavior. What is characteristic of such pathological behaviors
is a weakening of metastable dynamics that in healthy individuals
allows for finding the right balance between reducing and
increasing entropy.

To summarize our response to Di Paolo et al., we have
argued that an agent that exhibits adaptive active inference will
exhibit the historical path-dependence of behavior they take to be
required for adaptivity. Such an agent will need to exhibit path-
dependent behavior if it is to succeed in maximizing both the
instrumental and epistemic value of its action policies. Indeed,
any system that learns a model of its environment will exhibit
plastic changes in its internal dynamics. The appearance of
an incompatibility between the enactive approach to life and
cognition and the FEP stems from the generality of the FEP.
Certainly some of the systems to which the FEP applies will not be
capable of adaptivity (e.g., those that are modeled as performing
mere adaptive inference) but it doesn’t follow that no systems the
FEP is used to model could exhibit adaptivity.

We turn next to a second recent paper that also challenges
our proposal to use adaptive active inference to formally
model sensorimotor autonomy. It has been argued that to
apply the mathematics of the FEP to concrete physical systems
requires specific assumptions that do not typically apply to the
sensorimotor interactions of living systems (Aguilera et al., 2021).
Aguilera et al. argue for the opposite conclusion from the one
we have been defending, that the FEP is highly particular in
the systems to which it applies. Indeed they claim the FEP
is so particular in its requirements as to fail to pick out the
class of systems that would qualify as having sensorimotor
autonomy. Aguilera et al. make their argument by considering
the assumptions that would be required to apply the FEP to a class
of simple systems whose dynamics are described by stochastic
linear differential equations. They select such systems on the
grounds that if the assumptions of the FEP do not apply to such
simple systems, it is unlikely that they hold for more complex
non-linear systems.

Aguilera et al. begin by considering the type of sensorimotor
interface that, according to the FEP, mediates the interaction of
the internal dynamics of the agent and the external dynamics of
the environment.14 They show that the sensorimotor interface
must have two statistical properties. First, they must be described
by the Markov blanket formalism, whereby internal and external
states are conditionally independent given the sensory and
active states of a Markov blanket. Second, the sensorimotor
interface must be such that solenoidal couplings between internal
and external states are decoupled by blanket states. Aguilera
et al. define “solenoidal couplings” as arising from “dissipative
tendencies in the system” that drive a system “away from
equilibrium” (Aguilera et al., 2021: p.2). They show that any

14Aguilera et al. discuss a second assumption required for applying the FEP to

concrete systems that “implies decoupling the actions of an agent from its history

of previous states” (Aguilera et al., 2021, p.3). Their critique of this assumption

is related to that of Di Paolo et al., discussed earlier in this section, but it also

raises additional issues we cannot tackle in this paper but hope to return to in

future work.
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system that possesses a sensorimotor interface satisfying these
two statistical properties will exhibit an internal dynamics that
can be described in terms of descent on a free energy gradient.
Aguilera et al. show that to connect the average flow or
internal dynamics of a system with a gradient minimizing free
energy requires the assumption that a Markov blanket precludes
solenoidal couplings between internal and external dynamics.

The no solenoidal couplings (NSC) assumption raises
difficulties for our claim that adaptive active inference is sufficient
for adaptivity. Aguilera et al. show that a system that conforms
with the NSC assumption will possess a sensorimotor interface
that precludes adaptivity. This is because systems that satisfy
the NSC assumption will possess a sensorimotor interface that
permits only fully symmetrical interaction loops to form between
agents and environments. If systems that conform with the
FEP must exhibit fully symmetrical sensorimotor interactions
with the environment, such systems will lack adaptivity.
For adaptivity, as we have seen above, requires interactional
asymmetry between agent and environment. Adaptivity requires
that the agent be able to modulate its interaction with the
environment in such a way as to influence the constraints on the
agent’s behavior, where some of these constraints are due to the
agent, and others to its environment.15

By way of a reply, we begin by briefly considering more
carefully the claim that the sensorimotor interface implied by
the FEP can be modeled as a Markov blanket that induces
a separation described statistically in terms of conditional
independence of internal and external states. Now it is crucial
to note that the Markov blanket is not fixed once and for
all but the sensory and active states out of which it is built
continuously undergo change, based on the agent’s coupling with
its environment. The accumulation of fluctuations will gradually
render the states of the Markov blanket independent of the
initial conditions that gave rise to them. Given sufficient time,
the FEP implies that a system that minimizes expected free
energy should instantiate a probability density that converges on
aNESS. However in the intervening period of time as fluctuations
accumulate, internal and external dynamics enter into a transient
state of conditional dependence mediated by theMarkov blanket.
Thus, the Markov blanket condition, that is the conditional
independence of internal and external dynamics, is temporarily
violated. This violation of the Markov blanket condition has been
argued to allow for memory (Parr et al., 2021) but we suggest
it should also allow for a modulation of the agent-environment
relation in line with interaction asymmetry.

This takes us back to our earlier discussion of the historical
path dependence of behavior. Recall that it was the capacity of
agents that conform with the FEP to modulate the parameters
and constraints on their coupling with the environment that
was in contention in this earlier discussion. We argued that
neural processes that alter their dynamics in fluid and adaptive

15Di Paolo et al. note that the individual agent need not always be the source of

the modulation of its coupling. Other agents can also induce asymmetric changes

in dynamical constraints resulting in a modulation of the individual’s coupling

with the environment (Di Paolo et al., 2017: p.120). We set aside this important

complication here.

ways, in response to the requirements of particular contexts of
activity, are part and parcel of adaptive active inference. Such
neural processes are an essential part of selecting action policies
that maximize instrumental and epistemic value in a dynamical
environment. The model of chemotaxis of Tschantz et al. already
exhibits a bistable dynamical profile. It is able to endogenously
switch between running and tumbling based on changes in free
energy. We take this simulation as a demonstration that an agent
can be formally described in accordance with the FEP and exhibit
a minimal form of sensorimotor agency.

Aguilera et al. may respond that our argument fails since
systems that satisfy the NSC assumption must engage in
symmetrical sensorimotor interactions with the environment.
We suggest however that the systems that the FEP models are
dynamical systems that can temporarily violate the assumptions
the models rest upon, while at the same time on average and over
time conforming to those assumptions. Aguilera and colleagues
ask what assumptions are needed to apply the equations of FEP
to a specific class of systems whose dynamics are described by
stochastic linear differential equations. Such an argument seems
to assume however that in order for the FEP to be used to
represent the dynamics of physical systems, its mathematical
equations must literally be instantiated by those physical systems.
This is an example of what we have elsewhere called the “literalist
fallacy”—the fallacy of taking the properties of FEP models
to literally map onto real-world target systems (Kirchhoff et
al., 2022). We suggest instead that active inference models
based on the FEP are better conceived of as idealisations
and approximations that introduce deliberate distortions. The
Markov blanket assumption is an example of such a distortion,
which is why the systems that the FEP describes can violate
this assumption, while at the same time FEP based models can
accurately represent the longer-term dynamics of such systems.

Similar arguments can be made in response to the argument
of Di Paolo et al. that systems with an attracting set or NESS
are memoryless, and are therefore incapable of historical path-
dependent behavior. Di Paolo et al. critique trades on the
assumption that in order for the FEP to truthfully represent a
system, the properties it models must literally be instantiated by
a system. We have been arguing however that the systems the
FEP purports to model are dynamical systems that can fruitfully
be represented as tending to evolve toward states belonging to
their attracting set. The FEP can serve as the basis for models that
provide truthful but approximate and idealized representations
of such systems, including systems that instantiate sensorimotor
autonomy, if the arguments of our paper are valid. We conclude
with some additional issues for further research.

CONCLUSION

Artificial intelligence from its earlier days has struggled with the
problem of meaning. The information that computers process
does not mean anything for the system that is doing the
processing. This information only means something for the
users of these systems. We have argued that the imperative
to minimize expected free energy could serve as an intrinsic
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norm for an artificial agent. Thus adaptive active inference could
provide a formal description of the conditions an artificial agent
would need to satisfy to possess sensorimotor autonomy and
thus to perceive a meaningful environment (see Kolchinsky
and Wolpert, 2018 for a related proposal). We finished up by
considering two objections to our thesis that the imperative to
minimize expected free energy may serve as an intrinsic norm
for an agent. These objections generate a number of important
questions for further research, which we will end by highlighting.

First, we have argued that models of adaptive active
inference can be used to formally describe systems that possess
sensorimotor autonomy. However it could be objected that such
an agent could indeed be considered a model of sensorimotor
autonomy but without itself possessing this property. Just as a
model of intelligence may lack intelligence, similarly a model of
sensorimotor autonomy may not itself instantiate this property.
To genuinely instantiate such a property, it might be argued
that an agent would need to have a material body composed
of processes that self-organize to form operationally closed
networks, and that distinguish the agent as a unified individual
from its environment. The artificial agent of Tschantz et al., which
we have taken as our main example in this paper, has no material
body but exists only in silico. When it is simulating chemotaxis,
it does not engage in exchanges of matter and energy with its
environment that are part of its process of self production and self
differentiation. Thus no matter how good a model of autonomy
and adaptivity it may be, it might be argued it does not yet possess
these organizational properties.

Second, and relatedly, Froese and Taguchi (2019) have argued
that modeling autonomy and adaptivity will fail to solve the
problem of meaning. They concede that artificial agents may be
simulated that act as if they have their own intrinsic norms.
They argue however that an important disanalogy will remain
with organic life. An organism actively brings about its own
existence through engaging in metabolic activity. Its continued
existence or being is, in an important sense, a consequence of
its own doings. It is this relationship between being and doing
that makes for goals and concerns that are intrinsic to the
organism. Froese and Taguchi (2019) argue that any simulation
of artificial agency cannot be said to genuinely have a existence
that is the consequence of its own doing. They argue that
there is no room for meaning, normativity or value to make a
difference to the behavior of such agents insofar as they act in a

simulated environment that is fully deterministic. The behavior
of a simulated agent is due to dynamical constraints on its
internal and interactional dynamics, not to the agent’s bringing
forth a domain of meaningful action. Froese and Taguchi argue
on this basis that if meaning is to make a real difference to the
behavior of an agent, some indeterminacy must be built into the
agent’s engagement with its environment.

Finally, more work is needed on the challenges that arise from
applying the mathematics of the FEP to concrete sensorimotor
agents. Are systems whose dynamics are describable in terms
of non-equilibrium steady-states also capable of path-dependent
behaviors, as we have argued? If the application of the FEP to
concrete systems depends upon the NRC assumption, as Aguilera
et al. show, does it follow that all systems describable in terms
of the FEP must engage in symmetrical interactions with their
environment? Can the FEP be used to model systems with
metastable dynamics?We argued that these are related challenges
but more work is certainly required on the implications of
answering them for the FEP. While there is a good deal
more work to be done, we have argued that the synthesis
of enactive ideas with the FEP may set biologically inspired
AI research on a promising path for addressing the problem
of meaning.
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