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Recently, there have been many advances in autonomous driving society, attracting a

lot of attention from academia and industry. However, existing studies mainly focus on

cars, extra development is still required for self-driving truck algorithms and models.

In this article, we introduce an intelligent self-driving truck system. Our presented

system consists of three main components, 1) a realistic traffic simulation module for

generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which

is designed and evaluated for mimicking real truck response in real world deployment,

and 3) an intelligent planning module with learning-based decision making algorithm and

multi-mode trajectory planner, taking into account the truck’s constraints, road slope

changes, and the surrounding traffic flow. We provide quantitative evaluations for each

component individually to demonstrate the fidelity and performance of each part. We

also deploy our proposed system on a real truck and conduct real world experiments

which show our system’s capacity of mitigating sim-to-real gap. Our code is available

at https://github.com/InceptioResearch/IITS.

Keywords: self-driving, heavy-duty truck, high-fidelity simulation, fuel efficiency, reinforcement learning

1. INTRODUCTION

Autonomous driving technology has become a billion-dollar market worldwide (Viscelli, 2018;
Fortune Business Insights, 2020). Recently, the logistics truck with SAE level four (L4) autonomy
gainsmore spotlights in venture capital and academia as it is believed to achievemassive production
much earlier than the self-driving car. With more focused yet simpler scenarios defined in
operational design domains (ODD), such as highway transportation, the self-driving truck has
lower requirements for perception and prediction than the self-driving car. However, there are still
several challenges that need to be resolved in the self-driving truck system including precise control
with complex truck system dynamics and corresponding truck aware decision making and motion
planning algorithms in highway traffic flow. In this article, we tackle the problem of developing a
practical self-driving system for a highway truck, especially focusing on the planning and control
(PnC) modules, which largely differ from passenger cars.

It is well known that the deep learning technique forms the cornerstone of the modern
autonomous driving system, which benefits the whole system from perception to localization,
decision making, motion planning, and control. With regard to the PnC modules, even several
learning-based algorithms, especially reinforcement learning methods (Ulbrich and Maurer, 2013;
Sallab et al., 2017; Codevilla et al., 2018; Wang et al., 2019) are proposed in the most recent
years, they cannot seamlessly deploy to the self-driving truck system. First, the truck’s system
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dynamics are much more complex compared to a passenger
car due to its low power/mass ratio, the time delay of internal
engine control/air brake, prominent disturbance during gear
shifting, wind, and slight road grade, etc. (Lu et al., 2004).
The truck’s dynamic model aware PnC algorithms should be
developed to meet the unique requirement of trucks. Second,
reinforcement learning-related algorithms highly depend on
simulation environments, which injects a wide gap between
the simulation and real world operation. A straightforward
way to mitigate the sim-to-real gap is system identification,
which identifies the exact physical/dynamical parameters of the
environment relevant to the task and models it in simulation
precisely. In recent years, several simulators have been developed
for autonomous driving techniques, e.g., Carla (Dosovitskiy
et al., 2017), AirSim (Shah et al., 2018). However, these
sophisticated simulators are mainly developed for cars and
perception algorithms, extra development is still required for
heavy-duty truck simulation.

In this article, we introduce an intelligent self-driving
autonomous truck system combining realistic traffic simulation
and high-fidelity truck simulations for mitigating the sim-to-
real gap. We build the system based on the service oriented
middle-ware ROS2, which makes all modules decoupled and
independent with each other. Then, we developed the simulation
modules including a realistic truck model based on the
data collected from a real truck, and construct a simulated
traffic environment based on real highway roads and realistic
traffic flow. On the basis of those simulation modules, we
develop an intelligent planning module for trucks, including a
reinforcement learning-based decision maker and a multi-mode
trajectory planner.

The presented system has been validated by both numerical
and real world experiments. First, we conduct several
experiments to validate the fidelity of our simulation modules
and the results show that our simulation modules are highly
close to the real world. Then, we conduct a test in the simulation
environment for comparison between our proposed intelligent
decision maker and rule-based decision. Finally, we deploy our
system along with the pre-trained model to the real truck and
demonstrate that the proposed system significantly mitigates the
reality gap. In summary, the contributions of this article are:

• A complete self-driving truck system for real world logistics
operation. The performance of each part, as well as the whole
system, is examined with various numerical and real-world
experiments.

• A intelligent planning framework for self-driving truck
system, covering a learning-based decisionmaker, multi-mode
trajectory planner, increasing the system ability for interaction
with complex traffic scenarios.

• To tackle the challenge of sim-to-real gap and real-world
deployment, we adopt a system identification method to
develop a realistic traffic simulation and high-fidelity truck
simulation platform, which have been demonstrated their
fidelity by real world experiments.

• During our investigation, we realize that there is no truck
simulation platform that is easy to access for academia. To

promote the autonomous driving truck society, our system
including a high-fidelity truck model and traffic simulator is
released to the public.

2. RELATED STUDY

2.1. Simulation Techniques in Autonomous
Driving
Many simulatorshave recently been developed for autonomous
driving with different focuses, such as perception realism, traffic
flow, and vehicle model.

2.1.1. Integrated Simulation Platform
Many simulators adopt computer graphics techniques to
construct and render realistic environments, simulating one
or more perception data channels, such as RGB-D images,
LiDAR, and object segmentation etc. Popular simulators include
Intel’s Carla (Dosovitskiy et al., 2017), Microsoft’s AirSim (Shah
et al., 2018), NVIDIA’s Drive Constellation (NVIDIA, 2017),
and Google/Waymo’s CarCraft (Madrigal, 2017). A more
sophisticated simulator employs a data-driven approach to
render photo-realistic environments, such as Baidu’s AADS (Li
et al., 2019). However, these works mainly focus on generating
realistic perception data, which are more suitable for computer
vision tasks.

2.1.2. Traffic Flow Simulation
There are simulators focusing on traffic flows, such as
SUMO (Krajzewicz et al., 2012), Vissim (Fellendorf and Vortisch,
2010), and HighwayEnv (Leurent, 2018). In particular, SUMO
provides editable traffic scenarios with heterogeneous traffic
agents, including road vehicles, public transport, and pedestrians.
Integrating SUMO and Carla, SUMMIT (Cai et al., 2020) focuses
on simulating urban driving in massive mixed traffic. Several
advanced studies by Feng et al. (2021) and Yan et al. (2021)
are proposed, leveraging reinforcement learning techniques
and MDP in traffic simulation, which conduct a naturalistic
and adversarial environment for driving intelligence testing.
HighwayEnv offers a simulator for behavioral planning in
autonomous driving, which is widely used as an environment to
train deep learning algorithms for high-level decision making.
Although there are various works developed with HighwayEnv
and SUMO, none of them has ever migrated their learned model
to real world vehicles because of the huge gap between simulation
and real vehicles.

2.1.3. Truck Simulation Platforms
Most aforementioned simulators assume the vehicle model of a
passenger car. We are particularly interested in truck simulation
which differs significantly from car simulation in terms of
kinematics and dynamics models. Well-known truck simulators
include TruckSim (Corporation, 2021) and EuroTruck (AG,
2021). Among them, EuroTruck is essentially a game with a
python wrapper (MarsAuto, 2017), without access to the detail
of its underlying truck model. On the other hand, TruckSim is
commercial software that cannot be easily accessed by the public.
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In this article, we describe the intelligent autonomous
truck system, which also contains a high-fidelity autonomous
simulation platform for trucks, integrating simulators with
various strengths, such as Carla, SUMO, and TruckSim, with the
aim to facilitate the development and evaluation of autonomous
truck algorithms.

2.2. Decision Making and Planning in
Autonomous Driving
Schwarting et al. (2018) provide a detailed review of the schema
of the decisionmaking and planning components in autonomous
driving, which divides them into three categories: sequential
planning, behavior-aware planning, and end-to-end planning. In
our proposed system, we adopt a sequential planning framework
that contains a decision maker and a planner sequentially.
Hence, we briefly review the previous studies of these two
aspects. Many existing approaches are proposed to the decision-
making problems for autonomous cars. Ulbrich and Maurer
(2013) apply an online Partially Observable Markov Decision
Process (POMDP) to accommodate inevitable sensor noise and
make decisions in urban traffic scenarios. Wang et al. (2018)
present a reinforcement learning approach for lane-change
maneuver. They deploy a DQN network to make decisions
for lane change and with a safety guarantee. With a high-
level decision, low-level planners are then used to generate
feasible driving trajectories. Low-level trajectory planners for
autonomous driving trucks include polynomial curves (Piazzi
et al., 2002), state lattice (Ferguson et al., 2008), and the A*
family (Urmson et al., 2008). However, compared to cars, trucks
have more complex kinematics and challenging dynamics, which
makes the existing decision making and planning system hard to
directly migrate to heavy duty trucks.

3. SYSTEM OVERVIEW

Our proposed intelligent self-driving truck system contains
three components: traffic simulation module, truck model,
and intelligent planning module as shown in Figure 1. The
traffic simulation module is designed to simulate traffic flow
substituting for the perception result in real world experiments.
The truck model is developed for reproducing the real truck
in a simulated environment precisely. The intelligent planning
module consists of a reinforcement learning based decision
maker and a multi-mode trajectory planner, truck’s constraints,
road slope changes, and the surrounding traffic flow.

The data flow of our proposed system can be summarized
as: first, the traffic simulation module will generate realistic
traffic flow interacting with ego-vehicle. Then the simulated
surrounding state for the ego-vehicle will be fed to a
reinforcement learning based decision making module. The
decision maker will output a high-level decision for the ego-
vehicle. After that, the planning module will conduct a feasible
trajectory considering high-level decisions, map information,
collision avoidance, and fuel efficiency. Then the control module
will execute the trajectory and send the corresponding control
command to the high-fidelity truck model. Finally, the truck
model will output the high-fidelity response.

The rest of this article is organized as follows: In Section 4, we
describe the technical detail of our realistic traffic simulation first
and conduct an experiment to demonstrate that our simulation
can generate similar traffic which is highly close to real world
data. In Section 5, we describe the implementation detail of our
truck model and demonstrate its fidelity. In Section 6, we present
the intelligent planningmodule including reinforcement learning
based decision making, multi-mode trajectory planner, and fuel
efficient predictive cruise control algorithm. We conduct several
numerical experiments to evaluate the decision maker and fuel-
saving performance. Finally, we deploy our system to the real
truck and illustrate the running result in Section 7.

4. REALISTIC TRAFFIC SIMULATION

4.1. Implementation Details
We develop the traffic simulation module based on
SUMO (Krajzewicz et al., 2012) to generate dynamic traffic
environments for the ego-truck (as shown in Figure 2). The
traffic simulation enhances SUMO with more a friendly Python
interface for configuration and integration and a more intelligent
mode for RL training. Technically, the traffic simulation module,
which is a ROS2 Python node, consists of three sub-modules:
map network, traffic controller, and vehicle meta-information.
The map network module describes the road connections, routes
the traces, locates the vehicles, etc. The traffic controller module
provides high-level traffic control using traffic lights. The vehicle
meta-information module gives the attributions of vehicles, and
we can adjust the vehicle behavior through this module. For
different usage and requirements, we develop four modes for
realistic traffic simulation modules:

• PureSim Mode. This mode simulates the traffic flow with the
typical car-following model [e.g., Intelligent Driver Model
(IDM) Treiber and Helbing, 2001] and lane-change model
(e.g., MOBIL Kesting et al., 2007).

• InterSim Mode. This mode is built based on PureSim and can
support interactions with the ego-truck when simulating the
traffic flow.

• ReSim Mode. This mode is designed to re-simulate the traffic
flowwith the saved configurations. ReSimmode can guarantee
the determinism of simulation and yield consistent traffic,
which is needed by some learning algorithms training.

• RepSim Mode. RepSim Mode is the enhanced version of
ReSim, which could not only restore the saved configurations
but also the stored traffic flow, e.g., trajectories of vehicles.
Powered by our unique truck trajectories and some public
trajectories datasets, the simulated traffic from RepSim Mode
is deterministic and with very high-fidelity.

In order to describe map information in our simulation
pipeline, we adopt a widely used description format, ASAM
OpenDRIVE, which provides a common base for describing road
networks with extensible markup language (XML) syntax, with
the file extension xodr.We can support not only themaps created
by hands but also the HD map of the real road networks. With
the diverse maps as the environments, we can generate various
traffic flows.
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FIGURE 1 | The overview of our proposed intelligent self-driving truck system.

FIGURE 2 | Results of realistic traffic simulation with different densities. (A) Sparse traffic, (B) medium traffic, and (C) dense traffic.

FIGURE 3 | Velocity distributions of three traffic flow with different densities: (A) sparse, (B) medium, and (C) dense. The blue lines indicate the distributions of

real-world data. The red lines indicate the distributions of our simulation results.

4.2. Experiment Result
Currently, there are two types of evaluation for traffic simulation:
user studies and statistical validations (Chao et al., 2020). In this

article, we compare the velocity distributions with those of the
real-world datasets, similar to Sewall et al. (2011). Specifically, we
choose three datasets with different traffic flow densities (sparse,
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middle, and dense), and the simulation result is generated
under RepSim mode in the system, and the real world data is
collected in our test site/road in Jinan. Then, we divide our
traffic flow into three levels of traffic volumes and compare
the velocity distribution of real data and simulated traffic. The
velocity distributions with different traffic densities are shown in
Figure 3. The result shows that our simulated traffic flow is highly
close to real world data.

5. HIGH-FIDELITY TRUCK SIMULATION
PLATFORM

5.1. Overview
An accurate vehicle model forms the cornerstone of high-fidelity
simulation. We implement our real truck model in the system
to mimic the real truck experiments because both the truck’s
powertrain system and kinematics are important for system
deployment and also machine learning approaches training. In
addition, the administrative authority has not approved self-
driving truck road testing on open roads, we also have to
test our methods in simulation instead of open road testing.
We build our truck model based on a widely used truck
simulator, Trucksim. At the same time, we re-implement the
powertrain system and brake system with Simulink based on our
real truck.

Details of our truck model are shown in Figure 4. The
green block is the powertrain system, which consists of
an engine, gearbox, clutch, engine controller, and gearbox
controller. The dark gray block is the brake system, consisting
pneumatic brake system, brake control suspension, tire, tire
brake mechanism, and traction machine. The white block
is the interface between Trucksim and Simulink. Trucksim
is responsible for differential mechanism, vehicle body, and
trailer body.

The interface of our truck model complies with SAE
J1939 (SAE, 1939), which is the recommended vehicle bus
standard published by the Society of Automotive Engineers
(SAE), widely used in the heavy-truck industry. Thus, the
algorithms developed on our truck model will easily meet
the satisfaction of mass production on real trucks. Our truck
model takes four inputs: Pedal (PedaPos_pct), Brake Control
Mode (XBR1_ctrl_mode), Steering Angle (SteerWhAngle),
and Deceleration (XBR1_ExternalAccele). The output includes
16 variables, including engine torque, engine speed, and
shift position.

The prototype of our truck model is a truck manufactured by
Sinotruk Ltd, as shown in Figure 9A, which is 12 wheeler heavy
truck. The full load vehicle weight of our truck is 55t, and the
empty loadweight is 19t. The parameters and details in ourmodel
are from public data or provided by the manufacturer.

5.2. Model Design
5.2.1. Kinematics
Figure 5A shows the kinematics of the vehicle-trailer system,
which contains two parts: a bicycle model with a unicycle model.
The global reference is {XOY}, the body-fixed reference on the
bicycle model is {xoy}, and the body-fixed reference on the

unicycle model is {x′o′y′}. The system does not consider tire-
slip angles, the vehicle velocity is v and the trailer velocity is v′.
L1 refers to the tongue length and L2 is the hitch length. The
wheel base is L. φ, θ , θ ′ refer to the steering angle, vehicle heading,
and trailer heading. Therefore, the vehicle-trailer systemmodel is
directly given as follows:

ẋ = v ∗ cos(θ)
ẏ = v ∗ sin(θ)

θ̇ = (v ∗ tan(φ))/L
φ̇ = ω

ψ̇ = −v ∗ (
sin(ψ)

L2
+

L1

LL2
∗ cosψtanφ +

tanφ

L
) (1)

5.2.2. Dynamics
The vehicle dynamics can be first modeled as a tire-groundmodel
via Newton’s law and Lagrange’s equations:

Fxf cosφ + Fxr − Fyf sinφ = −Fcsinβ +mv̇cosβ

Fyf cosφ + Fyf + Fxf sinφ = Fccosβ +mv̇sinβ

Jθ̈ = Fxf sinφLf + Fyf cosφ − Fyf Lr

(2)

Figure 5B illustrates the truck dynamics with the trailer, which
can be decomposed into two aspects: longitudinal part and
lateral part.

5.2.2.1. Longitudinal–Drive-line and Brake Subsystems
Regarding the drive-line subsystem, also known as Powertrain,
our intelligent truck system introduces truck engines,
ECU (Engine Control Unit), AMT (Automated Manual
Transmission), and TCU (Transmission Control Unit). We built
those 4 modules from scratch with MATLAB Simulink using a
system identification method based on our truck prototype.

5.2.2.2. Lateral–Dynamic Yaw-Sideslip Model
A dynamic yaw-sideslip model shown in Figure 5B is designed
to describe the truck’s lateral motion in Simulink instead of the
TruckSim Model. The Lagrangian mechanics is introduced to
provide a governing equation for a tractor-trailer dynamic system
with tandem (multiple) axles on tractor and trailer, the governing
equation can be written as:

d

dt

(

∇q̇T
)

= Q, (3)

where q =
[

xc, yc,βc,βt
]T

is the generalized coordinates, Q is the
generalized force, and T represents the total kinetic energy.

For the energy term on the left-hand side of Equation (3), the
combined vehicle’s total kinetic energy can be written as:

T =
Ic ωc

2

2
+

It ωt
2

2
+

mc

(

v2 + vyc
2
)

2
+

mt

(

v2 + vyt
2
)

2
, (4)

where I stands for rotational inertia, ω stands for yaw rate, m
stands for mass, v represents the longitudinal speed, and the
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FIGURE 4 | Overview of our truck model. The green block is the powertrain system, the dark gray block is the brake system, and the while block is the interface

between Trucksim and Simulink.

FIGURE 5 | Kinematics and dynamics of the truck-trailer system. (A) Kinematics and (B) dynamics.

additional subscript c and t are used to indicate the tractor
(chassis) and the trailer, respectively. The kinematics of the
tractor-trailer system also stipulates:

vyt = vyc − Lh ωc − Lt1 ωt . (5)

Then the gradient of energy can be written as:

∇q̇T =








mc +mt 0 0 0
0 mc +mt −Lh mt −Lt1mt

0 −Lh mt mt Lh
2 + Ic Lh Lt1 mt

0 −Lt1 mt Lh Lt1mt mt Lt1
2 + It









q̇,
(6)

where q̇ =
[

v, vyc,ωc,ωt

]T
.

For the force term on the right-hand side of Equation (3), the
virtual work done by DOF perturbations can be written as:

1W = (−F1δ − (F3f + F3m + F3r)1βt)1xc
+F1

√
1− δ2(1yc + Lc11βc)

+F2f (1yc − (Lc2 − i2)1βc)

+F2r(1yc − (Lc2 + i2)1βc)
+F3f (1yt − (Lt2 − i3)1βt)

+F3r(1yt − (Lt2 + i3)1βt)
+F3m(1yt − Lt21βt)+mc ωc v1yc +mt ωt v1yt ,

(7)

where yt = yc − βc Lh − βt Lt1 is complying with the kinematic
constraints. In order to obtain a linear system, coefficient√
1− δ2 is approximated as 1. The generalized force term Q

can be represented as the gradient vector of the virtual work
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with respect to the virtual displacements along each DOF (1q):
Q = ∇1q(1W).

By defining the system states as s =
[

vyc,ωc,ωt , γ
]T

and
front-wheel steer angle input δ, the dynamics of the states can
be obtained as:

Hṡ = Ahs+ Bhδ, (8)

in whichAh, Bh are calculated from differentiatingQwith respect
to s, and H is derived from reducing the kinetic potential in
Equation (6):

H =









mc +mt −Lh mt −Lt1 mt 0
−Lhmt mt Lh

2 + Ic Lh Lt1 mt 0
−Lt1 mt Lh Lt1 mt mt Lt1

2 + It 0
0 0 0 1









. (9)

Finally, the state space model in the formal form is:

ṡ = As+ Bδ, (10)

where A = H−1Ah and B = H−1Bh.

5.3. Fidelity Evaluation
5.3.1. Fidelity of Longitudinal Model
To verify the accuracy of the longitudinal model, we collect some
data from a real truck running with a human driver ten times,
then replay the truck control commands in our simulator, and
compare the difference in vehicle response. Figure 6 shows some
representative results of the experiments on verifying the drive-
line and brake subsystems, with Figures 6A,B corresponding to
the truck’s acceleration and brake motions, respectively, where
the red lines indicate the simulated results and the blue lines
are the real data from trucks. For the acceleration test, we
keep the throttle position at 40% for 40 s, and collect the
vehicle status about gear (0-10), longitudinal acceleration (m/s2),
and velocity (m/s) from real vehicle and simulation module
simultaneously. The result is shown in Figure 6A, the red lines
are very close to the blue lines, demonstrating that our simulated
model’s response is highly close to the real truck. For the
brake test, we keep the throttle at 0 all the time and activate
the brake at 17 s (CtrlMode means brake activation status, 0
indicates deactivated, 2 indicates brake activated. ExternAccel
means deceleration, we keep it at−1.5m/s2 during our test), and
collect the longitudinal velocity (m/s), acceleration (m/s2), and
brake pressure (Kpa). The result is shown in Figure 6B, the red
lines are close to their corresponding blue ones, demonstrating
that our model’s brake system is close to the real truck.
Overall, the longitudinal velocity accuracy of all experiments
is 89%.

5.3.2. Fidelity of Lateral Model
In this article, we adopt two lateral dynamic models, one is the
TruckSim model which relies on a commercial license, another
one is our proposed yaw-sideslip model, which will be released
in our open-source system. The Trucksim model combines a
steering system, solid axles, and tire system together so that
the physical characteristics of the real truck can be restored to

the utmost extent. Same as the evaluation experiment of the
longitudinal model, we replay the control commands in our
simulator and compare the responses. Results in Figure 7A,
the input command of steer is shown in the top figure and
the longitudinal velocity during the testing is presented in the
middle. We collect the yaw rate of the tractor (degree/s), the
blue line indicates the actual yaw rate of the real truck, and
the red line indicates the yaw rate response in our simulated
model. The result shows that our truck model (TruckSim)’s
lateral response is highly close to real truck experiments,
and the overall lateral yaw rate steady accuracy is 92% in
our experiments.

5.3.3. Fidelity of Dynamic Yaw-Sideslip Model
Since the TruckSim is a commercial, closed source software, we
designed the dynamic yaw-sideslip model in Matlab Simulink
as an alternative choice of TruckSim model, thus, we conduct
an experiment to compare the dynamic yaw-sideslip model with
the TruckSim lateral model. During the comparison experiment,
we set the truck speed at 80 km/h, and we fed a step steering
command of 15 degrees to each model. Results are shown
in Figure 7B, we collect the yaw rate response of tractor and
trailer, the lateral position of the tractor, and the hitch angle
between the tractor and trailer, the blue lines show the result
of the simulation results from TruckSim lateral model, and the
red lines indicate the results from our proposed dynamic yaw-
sideslip model. The result shows that our proposed yaw-sideslip
lateral model is highly close to our TruckSim lateral model,
which has already been demonstrated its fidelity in the previous
section. In total, the overall accuracy of these experiments
is 96%.

6. INTELLIGENT DECISION AND
PLANNING

In this section, first, we will describe the reinforcement
learning based decision making, then we will present
the technical detail of the planning module in our
system, finally, we will conduct several experiments
to evaluate our proposed intelligent decision
making module.

6.1. Reinforcement Learning Based
Decision Making
In this section, we introduce our reinforcement learning
based decision maker, including problem formulation and
network design.

6.1.1. Problem Formulation
The self-driving trucks evaluate and improve their decision-
making policy by interacting with the environment including
surrounding vehicles and lanes in a trial-and-error manner.
This process can be formulated as a sequential decision-making
problem, which can be solved using a reinforcement learning
framework (Van Hasselt et al., 2016). In the RL settings, the
problem is formulated as a Markov Decision Process (MDP),
which is composed of a five-tuple (S ,A, r(st , at),P(st+1 |
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FIGURE 6 | Drive-line and brake subsystems experiments. Red lines indicate simulated results, and blue lines are real data from the truck. The results demonstrate

that our longitudinal model is highly close to the real truck. (A) Drive-line and (B) brake.

FIGURE 7 | (A) Steering system experiments. Red lines indicate simulated results, and blue lines are real data from the truck. The results demonstrate that our

TruckSim lateral model is highly close to the real truck. (B) Results of the experiments on verifying the accuracy of the dynamic yaw-sideslip model. Red lines indicate

results of the alternative model, and blue lines are data from the TruckSim model. The results demonstrate that our dynamic yaw-sideslip model is highly close to the

TruckSim model.

st , at), γ ). At time step t, the agent selects the action at ∈ A by
following a policy π in the current state. The agent is transferred
to the next state st+1 with the probability P(st+1 | st , at) after
executing at . Additionally, the environment returns a reward
signal r(st , at) to describe whether the underlying action at is
good for reaching the goal or not. For brevity, we rewrite it as rt =
r(st , at). By repeating this process, the agent interacts with the
environment and obtains a trajectory τ = s1, a1, r1, · · · , sT , aT , rT
at the terminal time step T. The discount cumulative reward

from time step t can be formulated as Rt =
∑T

k=tγ
k−trk, where

γ ∈ (0, 1) is the discount rate that determines the importance of
future rewards. The goal of RL is to learn an optimal policy π∗

that can maximize the expected overall discounted reward:

π∗ = argmax
π

Es,a∼π ,r [R1] . (11)

Typically, two kinds of value functions are used to estimate the
expected cumulative reward for a specific state:

Vπ (s) = Eπ [R1|s1 = s] , (12)

Qπ (s,a) = Eπ [R1|s1 = s, a1 = a] . (13)

To improve the robustness of the lane-change decision-maker
based on reinforcement learning while reducing the difficulty
of training, we discretize the action space of the lane-change
problem and use the double DQN algorithm (Van Hasselt et al.,
2016) to solve it. In reference to both double Q-learning (Hasselt,
2010) and DQN (Mnih et al., 2015), double DQN proposes to
evaluate the greedy policy according to the online network but
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using the target network to estimate its value. Its update is the

same as for DQN but replacing the target YDQN
t with

Yt = Rt+1 + γQ
(

St+1, argmax
a

Q (St+1, a, θt) , θ
−
t

)

. (14)

Double DQN replaces the weight of the second network θ
′
t with

the weights of the target network θ−t for the evaluation of the
greedy policy in comparison to double Q-learning. For the update
method of the target network, double DQN still adopts the DQN
method and remains a periodic copy of the online network.

6.1.2. State Space
In our formulation, the state s is defined as follows:

s = 〈p, v, vt〉 +
N

∑

i

〈iotp,i otv〉, (15)

where p and v indicate the location and velocity of ego-car, vt
is the speed profile in the next 3 s, N is the number of the
observable neighbors, otp and otv are relative position and velocity
of neighbors, respectively.

6.1.3. Action Space
For the action a of the agent, we use R3 vectors for our action
space, which includes: change left (−1), straight forward (0), and
change right (1).

6.1.4. Reward Function
As a key element of the RL framework, the reward drives the
agent to reach the goal by rewarding good actions and penalizing
poor actions. For a lane change process, safety and efficiency
are the main concern. Therefore, our objective is to achieve the
reference speed profile with a few lane changes as possible while
ensuring safety.

The process of change lanes will not only increase the
probability of danger but also reduce the efficiency of
transportation. To avoid the meaningless lane change behavior,
we give a penalizing reward rch when a lane change decision is
made. In our simulator, we limit the self-driving trucks to only
drive in two lanes of the road. That means when a decision to
change lanes to the left is made while the truck is on the left lane,
it stays in the current lane, but a penalizing reward rch will also
be given.

For efficiency, self-driving should try tomeet the requirements
of driving at a reference speed generated by the planner. To do
so, we define the following reward according to the speed of the
truck:

rv = λ
∣

∣v− vref
∣

∣ , (16)

where v denotes the car’s current speed, and vref is the reference
speed planned by the speed planner last clock cycle while λ is a
normalizing coefficient.

For safety, we hope that the truck can change lanes while
ensuring safety. Therefore, we will use the rule-based method
to determine whether the lane change decision at the current
moment is dangerous according to the observation. If the truck

makes a lane change decision at a dangerous moment, we will
give a larger penalty rsa.

In general, our reward function goes as:

r = rch + λ
∣

∣v− vref
∣

∣ + rsa. (17)

Considering the safety and efficiency of truck transportation,we
set rch = −10, λ = 1, rsa = −20.

6.1.5. Network Design
In the DRL network, we take four consecutive observations, in
the past 3 s St−3, St−2, St−1, St as input. Such input can enable our
agents to infer the motion of surrounding cars and, thus, make
more reasonable lane change decisions. Because the method of
discretizing the action space reduces the difficulty of the decision-
making problem, we only use a few fully connected layers to
build a policy network. The input and output layers have 216
and 3 neurons, respectively, while the total number of neurons
in the hidden is (256, 512, 256). The architecture consists of
two networks with the same structure: the value network for
select action and the target network for evaluating the value
of the underlying state. The online network’s inputs are Ot =
[St−3, St−2, St−1, St] and Ot+1 = [St−2, St−1, St , St+1] to predict
the value of the current state and action of the next state. The
target network’s input is Ot+1 = [St−2, St−1, St , St+1] to predict
target value.

6.2. Trajectory Planning Module
To execute high-level decisions, we deploy a trajectory planning
module, which can be divided into two modes: lane change
mode and lane keeping mode. In addition, the reference
speed profile for the trajectory is planned by a fuel efficient
speed planner, which we adopt predictive cruise control (PCC)
algorithm (Lattemann et al., 2004).

6.2.1. Fuel Efficient Speed Planner
Since fuel consumption achieves 30% of total operation cost in
the logistic industry, fuel efficiency in the autonomous truck
system becomes more and more important currently. PCC
algorithm (Lattemann et al., 2004) is a widely adopted fuel
saving method for heavy duty truck, which leverage the road
slope change in front of the ego-vehicle and generate a sequence
of control strategy (a reference speed profile in the future) to
achieve fuel efficient operation goal. PCC algorithm can be
formulated as an optimization problem, which is to find the
optimal longitudinal distance trajectory s∗(t) that minimizes:

J =
∫ T

0

(

ṁf + ka s̈(t)
2
)

dt (18)
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FIGURE 8 | Three different situations for lane change mode: (A) The target lane does not exist. (B) Target Lane exists and is safe for lane changing now. (C) There is a

collision risk for lane changing.

Subject to:

s1 = s(0)

sT = s1 + vrefT

ṡ1 = ˙s(0)
ṡT = vref

ṡi ≤ Vmax, i ∈ [2, 3, ..., n− 1]

si ≤ s
fence
i , i ∈ [2, 3, ..., n− 1]

(19)

where ṁf is a nonlinear lookup table that computes the mass fuel
flow rate based on the engine power shown in Figure 11A, Ka is
a penalizing factor on acceleration so that the convex nature of J
can be ensured. The engine power can be obtained from a vehicle
dynamics model, as:

pe = ṡη(sin(θ(s))+ µ(ṡ))gMveh +
1

2
ρairAfCd ṡ

2 + s̈Mveh ṡ (20)

in which η is total power efficiency from engine torque to
propulsion force, θ(s) is road gradient with respect to the distance
ahead of vehicle, µ(ṡ) is tire rolling friction, Mveh indicates the
vehicle mass, ρair is the density of air, Af means the front area of
vehicle, and Cd is the air drag constant. We assume that ṁf and

dṁf

dpe
are smooth for pe ∈ [0, pe,max], the necessary condition on

optimality states that, for any arbitrary small perturbation δs(t):

∫ T

0

(

ṁf

(

pe(s, ṡ, s̈)
)

+ ka s̈
2
)

dt =
∫ T

0

(

ṁf

(

pe(s+ δs, ṡ+ δṡ, s̈+ δs̈))+ ka(s̈+ δs̈
)2

)

dt

(21)

Using Taylor expansion, we have:

ṁf (s+ δs, ṡ+ δṡ, s̈+ δs̈) =

ṁf (s, ṡ, s̈)+
∂ṁf

∂s
δs+

∂ṁf

∂ ṡ

dδs

dt
+
∂ṁf

∂ s̈

d2δs

dt2
+H.O.T.

(22)

Therefore, the necessary condition then takes the following form:

∫ T

0

(

∂ṁf

∂s
δs+

∂ṁf

∂ ṡ

dδs

dt
+
∂ṁf

∂ s̈

d2δs

dt2
+ 2ka

d2s

dt2
d2δs

dt2

)

dt = 0

(23)
Then we employ the well-established finite element method to
solve such an optimization problem (Liao-McPherson et al.,
2018). Finally, we will get the solution:

X = [s1, ṡ1, s2, ṡ2, ..., sn, ṡn]
T (24)
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Algorithm 1 Trajectory Planner and Speed Profile Assignment

1: Receive the high level decision at
2: if at = 0 then

3: Query for the waypoints from current lane:
(s1, s2, s3, ...., sn)

4: sCollision = sFrontCar − sEgo
5: for waypoint si = s1, s2, s3, ..... do
6: if sCollision > sn then
7: vi = Query_Reference_Speed(si)
8: else

9: vi = Brake
10: end if

11: end for

12: else

13: Check the availability of target lane (at = −1 is the left
lane, at = 1 is the right lane)

14: if Target Lane is not available then
15: Return to Lane Keeping Mode
16: else

17: Get the end pose of lane changing send
18: (s1, s2, s3, ...., sn) = QuinticPlanner(sego, send)
19: for waypoint si = s1, s2, s3, ..... do
20: vi = Query_Reference_Speed(si)
21: end for

22: end if

23: end if

24: Return (s1, v1, s2, v2, s3, v3, ....sn, vn)

This speed profile is a fuel optimal control strategy compared to
constant speed cruise control with the same average speed setup.
Since solving optimization problems is time consuming, which
may cost about 60 s from initialization status to 95% convergence,
meanwhile the optimization significantly slows down as the
predictive horizon increases. Hence, we choose to execute the
PCC algorithm in advance to plan a global optimal speed profile,
then the trajectory planner will query the speed profile according
to the given coordinates. As a result, we can not only reduce the
operation cost but also accelerate online planning.

6.2.2. Trajectory Planner
We have two different modes for the trajectory planning module.
If there is no lane change order sent from the superior module,
the lane keeping mode will be activated. Otherwise, if a lane
change signal is received, the system will enter the lane change
mode. In lane keeping mode, the planner queries the map for the
current lane’s reference center-line, then discretizes the center-
line into waypoints (s1, s2, s3, ...., sn), then assign the speed profile
for each waypoint. In lane change mode, the planner queries
the target lane in the map and determines the safety, as shown
in Figure 8, there are three different situations: Figure 8A The
target lane does not exist. Figure 8B There is a collision risk for
lane changing. Figure 8CThe target lane exists and is safe for lane
changing now. If it is invalid or not safe for lane changing, the
algorithm will return to the lane keeping mode. If it is suitable
for lane changing, we adopt the quintic polynomial trajectory

planning algorithm (Piazzi et al., 2002) to generate a smooth
trajectory from the current position to the target waypoint in the
target lane. Then the planner queries the reference speed profile
and assigns it to the trajectory. The trajectory planner module is
summarized in Algorithm 1.

Finally, we obtain a sequence of waypoints along with the
corresponding speed profile, (s1, v1, s2, v2, s3, v3, ....sn, vn), which
will be sent to the next module.

6.3. Experiments of Intelligent Decision
Making
6.3.1. Numerical Experiment Scenarios
We reconstruct our test site, which is a closed highway in Jinan, a
city in Eastern China, shown in Figure 9, and also rebuild the
texture in visualization. We illustrate the ego-truck, the traffic
flow (of neighbor cars), and the trajectory on the screen, as shown
in Figure 10. The test site is 15km in length in total, covering
variable typical road conditions, e.g., slope, tunnel, and curve.

6.3.2. Experiment Setup
We build our reinforcement learning based decision making
model based on Pytorch (Paszke et al., 2019) and train it on
a ThinkStation P920 with Intel Xeon(R) Silver 4110 2.1GHz
x32 and NVIDIA RTX 2080Ti. During the training process, the
learning rate is fixed as 5e−4, the optimizer is ADAM (Kingma
and Ba, 2015), and the training batch size sets as 64. The proposed
system is running at 10 Hz. Note that up to six cars in front of
the ego-truck and two cars behind the ego-truck are observable.
The model is trained for 2 days, and the reward curve is shown
in Figure 11B.

For performance evaluation of our RL model, we present the
following metrics for quantitative evaluation:

1. Delta velocity: the average difference between ego-truck speed
V and reference speed Vref . It is formulated as ∇V = (Vref −
V)/Vref .

2. Count of lane change: the average count of lane change
decisions during the journey.

To increase the diversity of the environment, we investigate traffic
with three different densities and two average speeds. We modify
the traffic spawn probability as 0.05, 0.02, 0.005, corresponding to

the dense, medium, sparse density, respectively. For the average

speed of traffic aspect, we set the maximum speed of the traffic

flow as 12.5 m/s, 15 m/s, and our ego-truck’s reference speed

is fixed as 16.67 m/s (60 km/h) which is suitable for most
logistics operations.

For comparison, we propose three baseline algorithms
with rule-based FSM to mimic different characteristic drivers’
behavior. When the ego-truck detects obstacles d m ahead of it,
we will check whether there is no traffic in the neighbor lane with
dm ahead of it and dm back of it. If so, the lane change decision
will be sent to the trajectory planner, if not, we will keep it in
this lane. Here, we use d to describe the drivers’ characteristics:
aggressive, neutral, and conservative, corresponding to d =
50, 100, and 150.
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FIGURE 9 | (A) The prototype truck from our partner SINOTRUK, a 12 wheeler truck. We reconstruct our test site (B) (a closed highway in Jinan Eastern China) in our

system for the numerical experiment (C).

FIGURE 10 | We rebuild the texture in visualization, illustrate our ego-truck, traffic flow, and also the trajectory on the screen. (A) Car following, (B) running alone, (C)

lane change, and (D) overtaking.

FIGURE 11 | (A) The diagram of the engine model. The abscissa axis represents the engine speed (rpm), the vertical axis is the engine torque (Nm) and the value

(contour) denotes the BSFC (g/kWh). (B) The average accumulative reward for each epoch during the training procedure. The vertical axis represents the average

accumulative reward of each epoch, the horizontal axis represents the number of epochs.

We compare our RL based lane change decision-maker with
aggressive, neutral, and conservative baseline algorithms. Note
that except for the decision-maker module, all other modules
remain unchanged. We run each experiment trial 30 times and
compute the mean value of them.

Table 1 shows the performance evaluated using different
methods in different test scenarios. It can be seen that our RL
base method yields the best performance according to delta
velocity metrics in most cases. We noticed that our method’s

performance is worse than the aggressive baseline algorithm.
This is because that aggressive baseline tends to change lanes
frequently. Ideally, if the ego-truck can change the lane frequently
enough that the influence of any car in front of it can be avoided.
However, because of the character of the truck we mentioned in
the introduction section, it is impossible, even dangerous, for a
truck to be tap-dancing through the traffic flow. That is the reason
why we add a penalty for all lane change decisions in our reward
function for the RL. Our goal is to achieve the reference speed
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TABLE 1 | Average delta velocity (shown as mean/std) evaluated for different methods on different scenarios, and the best results in each category are in bold.

Scenario
Trafic

speed

Average delta speed Average count of lane change

Conservative Neutral Aggressive RL-Baseline Conservative Neutral Aggressive RL-Baseline

Dense 12.5 m/s 38.9%/0.059 28.5%/0.043 24.5%/0.038 24.0%/0.037 2.84/1.76 6.23/2.67 6.98/3.87 6.16/2.65

15 m/s 30.9%/0.047 20.1%/0.031 18.8%/0.028 17.3%/0.027 3.06/1.82 6.89/2.85 7.13/3.91 6.24/2.68

Medium 12.5 m/s 14.1%/0.022 13.8%/0.021 6.6%/0.010 8.0%/0.012 4.58/1.23 5.09/2.37 8.93/3.39 6.22/2.67

15 m/s 4.4%/0.007 1.6%/0.002 1.6%/0.002 1.4%/0.002 5.00/1.34 4.02/2.08 8.99/3.41 6.30/2.69

Sparse 12.5 m/s 5.9%/0.009 3.4%/0.005 4.4%/0.007 3.4%/0.005 2.55/0.68 2.83/0.75 2.99/0.80 3.02/0.81

15 m/s 1.0%/0.001 1.0%/0.001 10.0%/0.002 1.0%/0.001 0.40/0.11 0.40/0.10 0.50/0.13 0.77/0.21

Note that Conservative in table is the abbreviation of the conservative baseline. Average Count of Lane Change (shown as mean/std) evaluated for different methods on different

scenarios.

FIGURE 12 | Fuel saving experiment in a static environment. Top left: the road slope (m) of our test site. Top right: the velocity (Km/h). Bottom left: the engine power

(kW) during the test. Bottom right: the accumulative fuel consumption (g).

with as few lane changes as possible while ensuring safety. We
can observe that our RL based approach changes lanes fewer than
the aggressive baseline algorithm in most cases. With the fewer
change, we also achieve comparable performance compared to
baseline methods.

6.4. Experiment of Fuel Efficiency
We evaluate the fuel efficient speed planner described in
Section 6.2.1. First, we conduct the experiment in a static
environment, in which traffic is not involved. The baseline
method we choose to compare with is the constant speed cruise
strategy (72 km/h). As shown in Figure 12, the top left figure
illustrates the road slope (m) of our test site, the top right
figure shows the velocity (Km/h) of our proposed system (orange
line) and baseline method (blue line), the bottom left figure
shows the engine power (kW) during the test, the bottom right
figure illustrates the accumulative fuel consumption (g) for our

method and baselinemethod. The results show that our proposed
system can effectively allocate the engine working status, which
is more stable than the baseline method. The key fuel saving
capacity for heavy duty trucks on the hilly road is to utilize the
conversion between kinetic energy and potential energy uphill
and downhill. The velocity allocation of our proposed system
is shown in the top right figure, which decelerates in the uphill
process and accelerates in the downhill process. Our proposed
system can save about 21.68% fuel compared to the constant
speed cruise strategy.

7. REAL WORLD EXPERIMENT

We deploy our proposed intelligent autonomous truck system to
the real truck and conduct several experiments at our test site
in Jinan. In this section, we describe the setup detail of the real
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FIGURE 13 | We deploy our intelligent self-driving truck system to the real truck and conduct a real world experiment at our test site in Jinan. (Bottom) Jinan test site

is a closed highway, we arrange some actor cars on the road during our testing. We also use our visualizer to monitor our system’s operating status (Top). (A)

Simulation visualization, (B) real truck deployment, (C) car following (Sim), (D) car following (Real), (E) lane changing (Sim), and (F) lane changing (Real).

truck deployment first, then we illustrate several results of the real
world experiment.

In order to integrate our proposed system in to the real truck,
we plug our system into Inceptio autonomous driving platform to
obtain the perception result and control the real truck, as shown
in Figure 1.

We recorded a video from the front camera on our truck,
and also the visualization of our system’s running. As shown in
Figure 13, our system demonstrates robust performance in the
real truck experiment and the simulated environment.

CONCLUSION AND FUTURE STUDY

In this article, we describe an intelligent self-driving truck system,
which consists of three main components: the realistic traffic
simulation module for generating realistic traffic flow in testing
scenarios, the high-fidelity truck model for mimicking real truck
response in real world deployment, and the intelligent planning
module with learning-based decision making algorithm and
multi-mode trajectory planner. We conduct adequate evaluation
experiments for each component, and the results show the
robust performance of our proposed intelligent self-driving truck
system. Our system is the first open-sourced full self-driving
truck system for logistic operation and mass production. In
addition, the high-fidelity truck model filled the gap and demand
for self-driving truck development in industry and academia. Our
code is available at https://github.com/InceptioResearch/IITS.

In this article, we only focus on the self-driving truck
in highway transportation scenarios, covering 90% of logistic
daily operation. However, there is still a long way to full L4
autonomous driving truck, especially dealing with more complex
traffic and pedestrians.We noticed many recent advanced studies
have been released targeting several areas in autonomous driving,
e.g., collision avoidance (Zhang and Fisac, 2021), left-turn

planning (Shu et al., 2020). For the future study, we plan to cover
more logistic truck operation scenarios in addition to highways,
e.g., on-ramp/off-ramp scenarios, left-turn/right-turn planning
in crowd intersections. We also welcome you to contribute codes
and ideas to our project.
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