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In obtaining color constancy, estimating the illumination of a scene is the most important

task. However, due to unknown light sources and the influence of the external imaging

environment, the estimated illumination is prone to color ambiguity. In this article, a

learning-based multi-scale region-weighed network guided by semantic features is

proposed to estimate the illuminated color of the light source in a scene. Cued by

the human brain’s processing of color constancy, we use image semantics and scale

information to guide the process of illumination estimation. First, we put the image and

its semantics into the network, and then obtain the region weights of the image at different

scales. After that, through a special weight-pooling layer (WPL), the illumination on each

scale is estimated. The final illumination is calculated by weighting each scale. The results

of extensive experiments on Color Checker and NUS 8-Camera datasets show that the

proposed approach is superior to the current state-of-the-art methods in both efficiency

and effectiveness.

Keywords: color constancy, multi-scale, weight pooling layer, semantic, network

1. INTRODUCTION

The observed color of an object in an image (representing the observed values in RGB space)
depends on the intrinsic color and light-source color. It is quite easy to distinguish the reflectance
from the light-source color for human beings while endowing a computer with the same ability
is difficult (Gilchrist, 2006). For example, given a red object, how can one discern if it is a white
object under red light or a red object under a white light? To assist a computer in solving this
problem, it is necessary to separate the color of the light source, namely, the color constancy.1 The
goal of computational color constancy is to preserve the perceptive colors of objects under different
lighting conditions by removing the effect of color casts caused by the scene’s illumination.

Color constancy is a fundamental research topic in the image-processing and computer-
vision fields, and it has many applications in photographic technology, object recognition, object
detection, image segmentation, and other version systems. Color casts caused by incorrectly applied
computational color constancy can negatively impact the performance of image segmentation and
classification (Afifi and Brown, 2019; Xue et al., 2021), thus, there is a rich body of work on this

1In this study, we aim to solve the color-constancy problem with a single light source.
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topic. Generally, methods for obtaining color constancy with
image data are divided into two main categories: low-
level-feature-based methods (Buchsbaum, 1980; Brainard and
Wandell, 1986; Lee, 1986; Wandell and Tominaga, 1989; Nieves
et al., 2000; Krasilnikov et al., 2002; Weijer et al., 2007; Gehler
et al., 2008; Tan et al., 2008; Toro, 2008; Gijsenij et al., 2011;
Finlayson, 2013; Gao et al., 2013; Barron, 2015; Bianco et al., 2015,
2017; Cheng et al., 2015; Shi et al., 2016; Xiao et al., 2020; Yu
et al., 2020) and semantic-feature-based methods (Schroeder and
Moser, 2001; Spitzer and Semo, 2002; Van De Weijer et al., 2007;
Bianco et al., 2008; Lau, 2008; Li et al., 2008; Gao et al., 2015;
Afifi, 2018).

Low-level-features-based methods pay attention to the law of
the color of the image itself, and they do not consider the image-
content information. These methods consider the relationship
between color and achromatic color statistics (Weijer et al., 2007;
Gehler et al., 2008), inspired by the human visual system (Nieves
et al., 2000; Krasilnikov et al., 2002; Gao et al., 2013), spatial
derivatives, and frequency information of scene illuminations on
the image (Nayar et al., 2007; Joze and Drew, 2014), extract hand-
crafted features from training data (Buchsbaum, 1980; Brainard
andWandell, 1986; Finlayson, 2013; Cheng et al., 2015), and learn
features automatically by a convolutional neural network (CNN)
from samples (Barron, 2015; Bianco et al., 2015, 2017; Shi et al.,
2016; Xiao et al., 2020; Yu et al., 2020). Although these methods
have achieved good results, especially the CNN-based methods,
various methods are used to make the illumination estimation
as accurate as possible, but in some complex situations, due to
inflexibility, they cannot well solve the color ambiguity.

Semantic-feature-based methods are more in line with human
vision. When observing a scene, human beings have a certain
psychological memory of the color of the object itself in the scene.
Therefore, the content of the scene can play a certain guiding
role in color constancy. Because previous attempts at semantic
information extraction have not been accurate, there is relatively
little research on this type of algorithm. Van De Weijer et al.
(2007) proposed a color-constancy algorithm based on advanced
visual information. The algorithm models the image into many
semantic categories, such as sky, grassland, road, pedestrian, and
vehicle, and it calculates multiple possible illumination values
from these semantic categories. Each illumination is used to
correct the image and calculate the semantic combination with
the greatest probability. At this time, the illumination is the
optimal scene illumination. Schroeder and Moser (2001) divided
images into different categories, and then they learned different
features for each type. Bianco et al. (2008) proposed an indoor
and outdoor adaptive illumination estimation algorithm that
uses a classification algorithm to divide the image into indoor
and outdoor scenes, and then they estimated the illumination
according to the parameters learned by training data. Afifi (2018)
exploited the semantic information together with the color and
spatial information of the input image, and they trained a CNN to
estimate the illuminant color and gamma correction parameters.
This is one of the most effective methods of this type.

However, these two methods may not find the optimal
solution in some complex situations due to inflexibility.
To summarize, several open problems remain unsolved in

these approaches, which can be generally concluded to have
two aspects.

• Color ambiguity with only low-level features: Many of these
methods (Buchsbaum, 1980; Brainard and Wandell, 1986;
Lee, 1986; Wandell and Tominaga, 1989; Nieves et al., 2000;
Krasilnikov et al., 2002; Weijer et al., 2007; Gehler et al., 2008;
Tan et al., 2008; Toro, 2008; Gijsenij et al., 2011; Finlayson,
2013; Gao et al., 2013; Cheng et al., 2015) only focus on
the color of the image itself, for images with large color
deviation, it is difficult to accurately estimate the illumination.
The development of CNNs has facilitated a qualitative leap
in illumination estimation, but many CNN-based methods
(Barron, 2015; Shi et al., 2016; Bianco et al., 2017) are patches-
based, which take the small sampled image patches as input
and learn the corresponding local estimations subsequently
pooled into a global result. The small patches contain less
contextual information, which commonly leads to ambiguity
in local estimation. When inferring the illumination color in
a patch, it is often the case that the patch contains little or
no semantic context benefiting its reflectance or illumination
estimation. To solve this problem, Hu et al. (2017) used
a global image as input, and they designed a confidence
weight layer to learn the weight of each patch. Afifi and
Brown (2020) proposed an end-to-end approach to learn the
correct white balance, which consists of a single encoder and
multiple decoders, mapping an input image to two additional
white-balance settings corresponding to indoor and outdoor
illuminations. Both methods achieved great success. However,
due to the lack of attention to semantic information, large
errors in illumination estimation exist in some scenes, which
has also been found in our experiments.

• Inaccurate illumination with only semantics: Owing to the
low accuracy of semantic segmentation, the early semantic-
based color-constancy algorithm has great limitations. CNNs
have greatly improved the accuracy of semantic segmentation.
Afifi (2018) exploited the semantic information together with
the color and spatial information of the input image, and
they trained a CNN to estimate the illuminant color and
gamma correction parameters. However, there is a possibility
of error in segmentation, and incorrect segmentation will lead
to errors in illumination estimation. In our experiments, we
also verified that incorrect segmentation can lead to incorrect
illumination estimates.

To address the aforementioned open problems, we did some
experiments. In one experiment, we conducted, yellow banana
and a red apple were placed into a scene, illuminated with
different colors of light, and then different observers were allowed
to view the results. It was found that the observers can correctly
distinguish the color of the fruit because humans generally think
that bananas are yellow and apples are red. It can be seen that
objects with inherent colors can guide observers to estimate the
lighting of the scene; i.e., the objects in the scene have a great
effect on the color constancy of human vision. In addition, we
conducted an experiment in which some objects were placed in
the scene to allow the observer to observe them from different
distances. It was found that the colors of certain areas in the
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scene observed at different distances were biased (this deviation
is relatively small), but the bias did not have much impact on
the overall color. In addition, in the present study, traditional
algorithms were used to estimate the illumination of the image
at different scales. It was found that the estimated illumination at
different scales exhibits some deviations, but they were all close to
the actual illumination. It can be thought that scale has a certain
influence on the color constancy of human vision.

Estimating multiple illuminations from one image at multiple
scales is also in line with a verification conclusion obtained in
Shi et al. (2016), namely, that multiple hypothetical illuminations
from one image can help improve the accuracy of illumination
estimation. Inspired by that, we propose herein a learning-
basedMulti-scale Region-weighedNetwork guided by Semantics
(MSRWNS) to estimate the illuminated color of the light source
in a scene. First, the semantic context of an image is extracted,
the image and its semantics are put into the network, and
through a series of convolution layers, the region weights of the
image at different scales are obtained. Then, through the weight-
pooling layer (WPL), the illumination estimation on each scale is
obtained. The global illumination is calculated by weighting on
each scale.

The MSRWNS network differs from the existing methods and
has three contributions, which follow.

• It estimates multiple global illuminations at different feature
scales, and it obtains the final lighting by simple weighting.

• Different from previous semantic-based methods, while
using semantic guidance, a new region-WPL is used. The
network layer simultaneously learns the contribution and local
illumination of different regions in the image at each scale. It
can, thus, effectively solve the illumination estimation error
caused by the semantic segmentation error.

• A large strip is used in the convolution to replace the max
pooling layer in the network, which improves the speed of light
estimation without reducing accuracy.

The rest of this article is organized as follows. In section 2,
the structure of the proposed network and training strategy is
presented, together with the related experimental content in
section 3. Conclusions are given in section 4.

2. MULTI-SCALE REGION-WEIGHED
NETWORK GUIDED BY SEMANTICS

Following the widely accepted simplified diagonal model
(Finlayson et al., 1994; Funt and Lewis, 2000), the color of the
light source is represented as

Ic = Ec × Rc, c ∈ {r, g, b}, (1)

where Ic = {Ir , Ig , Ib} is the color image under an unknown light
source, Rc = {Rr ,Rg ,Rb} the color image recorded by a white-
light source, and Ec = {Er ,Eg ,Eb} the light source needed to be
estimated from Ic.

A new color-space model has been used by color-constancy
methods (Finlayson et al., 2004; Barron, 2015; Shi et al., 2016) in

recent years and has certain advantages, i.e., log−uv space. 2 The
calculation method proceeds as follows:

Lu = log(R/G), Lv = log(B/G). (2)

After estimating the light, it can be converted back to RGB space
through a very simple formula:

R = exp(−Lu)/z,G = 1/z,B = exp(−Lv)/z

z =

√

exp (−Lu)
2
+ exp (−Lv)

2
+ 1,

(3)

where (Lu, Lv) is the image in log− uv color space. (R,G,B) is the
image in RGB color space.

2.1. Problem Formulation
Generally, we only know the image Ic under an unknown light
source Ec that must be estimated. The goal of color constancy is
to estimate Ec from Ic and then compute it as Ec = Ic/Rc. How
do we estimate Ec from Ic? To address this problem, we formulate
color constancy as a regression problem.

First, we obtain the semantic context of the image, and for this,
we use PSPNet (Zhao et al., 2016), defined as Is, and then convert
Ic from RGB space to log−uv space to obtain (Iu, Iv). Combining
these three channels into a new three-channel image In, the aim is
to find a mapping fθ such that fθ (In) = Puv, where Puv represents
the light value in log − uv space.

As mentioned earlier, the objects in the scene have a great
effect on the color constancy of human vision (Van De Weijer
et al., 2007; Gao et al., 2019). Therefore, the designed color-
constancy algorithm should imitate the human visual system,
i.e., the mapping fθ should be able to be based on semantic
information and is used to support the larger contribution
area and suppress the smaller contribution area in the image.
Therefore, two aspects must be considered in the model: First,
one must find a way to estimate the illumination of each area
in the image, and, second, one must use an adaptive algorithm
to integrate the illumination of these multiple areas into a global
illumination. Supposing that R = R1,R2, ...,Rn represents n non-
overlapping regions in the image Ic, Euv

i represents the estimated
scene illumination of the ith area Ri. Therefore, the mapping fθ
can be expressed as follows:

fθ (In) = Puv =

n−1
∑

i=0

w(Ri)E
i
uv, (4)

where w(Ri) represents the contribution of each area to the
illumination estimation, i.e., the weight. In other words, if Ri
contains the semantic context information, the corresponding
w(Ri) has a higher weight value.

2As reported in Finlayson et al. (2004), Barron (2015), log − uv is better than

RGB, since, first, there are two variables instead of three; and second, the

multiplicative constraint of the illumination estimation model is converted to the

linear constraint.
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FIGURE 1 | The architecture of Multi-scale Region-weighed Network guided by Semantics (MSRWNS) is trained to estimate the illuminant and weights of a given

image in each region.

2.2. Network Architecture
It can be seen from Equation (4) that it is necessary to design a
network structure fθ to be able to calculate w(Ri) and Eiuv in each
area. The network structure is shown in Figure 1.

We learn Puv at different scales from the intermediate features
with scales of 1/16, 1/32, and 1/64. Defining the superscript
j to represent the scale, Puv

j then represents the estimated
illumination in log − uv space under the jth scale, which is
converted back to RGB space according to Equation (3) to obtain
Pc

j, where c = R,G,B. Finally, the final illumination Pc in RGB
color space is obtained by simple calculation of the obtained
illumination on different scales, and the formula is:

Pc =

n
∑

j=1

CjP
j
c

n
∑

j=1

Cj = 1,

(5)

where Cj represents the weight of the illumination obtained at
each scale. In this article, j = 1, 2, 3. In the final illumination
calculation, it is assumed that the estimated illumination at
different scales contributes the same to the scene illumination,
namely, Cj = 1/3, j = 1, 2, 3.

2.3. Weight-Pooling Layer
In most of the previous methods, the extracted features are
directly calculated through several fully connected layers to
obtain a global illumination. However, it can be seen from the
results of the earlier literature that the effect of illumination
estimation is not significantly improved. Referring to Hu et al.
(2017), we used a custom network layer, called a WPL, the main
function of which is to converge the regional illumination into a
global illumination, and at the same time, learn the weight w(Ri)
of each area; Ri represents the ith area. TheWPL on each scale is
expressed as follows:

Pj =

n−1
∑

i=0

wi
jEi

j, (6)

where Pj represents the output of the WPL layer in the jth scale,
wi

j the contribution of each region that must be learned on the jth
scale, Ei

j the illumination of the i area on the jth scale that must
be learned, and n represents the number of areas. In this study,
each scale is n = W

16 × H
16 ,

W
32 × H

32 ,
W
64 × H

64 .

2.4. Illumination Fusion for Multiple Scales
We made a simple attempt to determine how to select
illumination at multiple scales, and we used several samples
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FIGURE 2 | (A–D) Performance under different parameters.

TABLE 1 | Accuracy of different network input sizes and whether semantics are used or not in the Color Checker dataset.

Size/Method Mean Median TriMean Best 25% Worst 25% Speed(ms)

256,T 1.67 1.36 1.53 0.45 4.09 27

256,None 1.81 1.44 1.62 0.55 4.31 23

512,T 1.64 1.17 1.28 0.31 3.82 34

512,None 1.66 1.33 1.48 0.42 4.01 30

128,T 1.74 1.33 1.49 0.55 4.17 19

128,None 1.76 1.35 1.51 0.55 4.27 15

256, 512, and 128 are defined as different input sizes. T, None defined as the use of semantics or not. Red indicates best accuracy.

to train the 3 classification problems, hoping to obtain the
probability of illumination at different scales. However, the
training process model is difficult to converge and the effect is not
ideal. Finally, for the sake of simplicity, it is assumed that each
scale has the same contribution to the illumination estimation,
so the average value of 3-scale illumination is taken as the final
illumination in this section3, and the results also show that the

3In this work, the average value of multiple-scale illumination is used.

average value is higher than that of a single scale on a variety
of datasets.

2.5. Loss Function
At the time of training optimization, Euclidian loss is utilized for
the network, defined

Loss =

n
∑

j=1

Lossj, (7)
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FIGURE 3 | Local illumination estimation of network output at different scales. Left to right: (A) original color-biased image; (B) Local illumination at scale 3; (C) Local

illumination at scale 2; (D) Local illumination at scale 1; (E) Final correction results. It can be seen from the figure that under different scales, due to different area sizes,

the estimated illumination is also different, but the overall color is basically the same.

Lossj =
1

N

n
∑

i=1

∥

∥Eei − Eti
∥

∥

2
, (8)

where Lossj is the loss function of the jth scale, Ee is the
illumination estimated by the network, Et is the ground truth
illumination, and N represents the batch of the training samples.
The loss is minimized using stochastic gradient descent with
standard back-propagation.

2.6. Discussion of Network Structure
Either shallower (i.e., Shi et al. 2016) or deeper networks (i.e.,
VGG-net Simonyan and Zisserman 2014) could replace the pre-
feature extraction in the proposed system. However, due to the
color-constancy problem, the best network for feature extraction
should have enough capacity to distinguish ambiguities and
should be sensitive to different illuminants. We tried several
common networks, such as AlexNet (Krizhevsky et al., 2012),
VggNet16 (Simonyan and Zisserman, 2014), and VggNet19
(Simonyan and Zisserman, 2014), and they all achieved good
results. Finally, to improve the computational efficiency of the
network, we simplified AlexNet (Krizhevsky et al., 2012) and
removed all of its pooling layers. The test results showed that the
efficiency increased by approximately 4 and the accuracy by an
average of 5.2%.

3. EXPERIMENTAL RESULTS

3.1. Datasets
Because semantic information is needed in this study, we mainly
used a semantic segmentation dataset, namely, the ADE20k
dataset (Zhou et al., 2016). Meanwhile, we used PSPNET (Zhao
et al., 2016; Zhou et al., 2017)4 to segment the semantic
information for Color Checker (Gehler et al., 2008; Zhou et al.,
2017) and NUS 8-Camera datasets (Cheng et al., 2014).

During the training process, 100 images with accurate
semantic segmentation were manually selected from the Color
Checker dataset (Gehler et al., 2008), and 200 images were
extracted from the NUS 8-Camera dataset (Cheng et al., 2014).

In addition, since the ADE20k dataset (Zhou et al., 2017)
does not provide illumination information, it is assumed that
the images in the ADE20k dataset are corrected white-balanced
images, and we, therefore, visually selected 500 images with
normal color. Different lights were then rendered according to
the following equations:

Ii
′ = Ii.Mi, (9)

4We did not train the scene parsing network ourselves, the model used is

downloaded from https://github.com/hszhao/PSPNet.
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FIGURE 4 | Effect of training at different epochs. Left to right: (A) original image and normal image; (B) output image and local illumination at 100 epochs; (C) output

image and local illumination at 500 epochs; (D) output image and local illumination at 2,000 epochs; (E) output image and local illumination 4,000 epochs. It can be

seen that with an increasing number of epochs, the corrected image tends to the real result. In addition, it can be seen from the red circle that the area in which

people are located and that at the junction of the wall and sofa are different in local color.

Mi =





ri 0 0
0 gi 0
0 0 bi



 , (10)

where (ri, gi, bi) represents the simulated scene illumination.
After simulation, more than 2,000 training images with
illumination labels and accurate semantic information were
obtained from the ADE20k (Zhou et al., 2017) dataset. These
2,000 images were cut, mirrored horizontally and vertically, and
rotated from (−30o, 30o), 90o, 180o, and a total of approximately
20,000 pieces of data were obtained. Similarly, the images selected
from the Color Checker (Gehler et al., 2008) and NUS 8-Camera
datasets (Cheng et al., 2014) were processed in the same way
to obtain approximately 8,000 images. All 28,000 images were
randomly cropped and normalized to 512×512 as network input.
As in the previous study, 3-fold cross-validation was used for all
of the datasets, and each one run was used for training, one for
validation, and one for testing.

3.2. Metrics
Color-constancy algorithms are often evaluated using a distance
measure, such as Euclidean distance (Land, 1977; Buchsbaum,
1980), perceptual distances (Gijsenij et al., 2009), reproduction
angular error (Finlayson et al., 2016), and angular error (Hordley
and Finlayson, 2004; Cheng et al., 2014; Bianco et al., 2015;
Shi et al., 2016). Within these metrics, the angular error is the

most widely used in this field, and most of the existing works
(Cheng et al., 2014; Bianco et al., 2015; Shi et al., 2016) that
tested using the Color Checker (Gehler et al., 2008), NUS 8-
Camera (Cheng et al., 2014), and ADE20k datasetd (Zhou et al.,
2017) reported their performance in terms of the angular error
in five indexes: Mean, Median, and TriMean of all errors; mean
of the lowest 25% of errors (Best 25%); and mean of the highest
25% of errors (Worst 25%). Hence, in the present study, we also
used these indexes. In particular, although we aimed to estimate
the single illuminant in this study, we also tested performance
on the popular outdoor multi-illuminant dataset (Arjan et al.,
2012). The angular error between the estimated illuminant Ee
and ground-truth illuminant E∗e is computed for each image
as follows:

e = arccos

(

Ee.E
∗
e

||Ee||.||E∗e ||

)

. (11)

The less the value of e is the better performance of the method.

3.3. Implementation Parameters
In this subsection, the parameter settings for training our final
model are given.

Feature-extraction-network selection: Different network
structures, such as AlexNet (Krizhevsky et al., 2012), VGGNet-19
(Simonyan and Zisserman, 2014), and SqueezeNet (Iandola et al.,
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FIGURE 5 | Effect comparison between using weight-pooling layer (WPL) layer or not using it. For each group, (A) original image and normal image; (B) local

illumination and image with WPL layer; (C) weight image and result without WPL; (D) semantic and global illumination (in global illumination, the left-hand side is the

light estimated after using WPL and the right-hand side is that estimated without WPL). It can be seen that in an image with rich scenic content, the effect of using the

WPL layer is significantly better than that of not using it. From the weighted image (the image after the weight is normalized, for which the gray value is high, the weight

is large, and vice versa) and the local illumination image, different objects in the scene have different weights, and some contribute significantly. It can be seen from the

estimated illumination and semantics that the illumination is also different in different semantic parts, and the approximate shape of the objects in the scene can be

seen from the illumination image.

2016), were used to test performance. The comparison diagram
is shown in Figure 2B, from which it can be seen that, although
VGGNet-16 (Simonyan and Zisserman, 2014) and VGGNet-
19 (Simonyan and Zisserman, 2014) network structures have a
better effect than other networks, they take more time. Finally,
considering effect and efficiency, the structure in Figure 1 is used
in this study.

Network input and output: We compared the performance
of the model trained with (Iu, Iv, It) three-channel image input
and (Iu, Iv) two-channel input, and we tested the performance
of different resolution images as network input. The comparison
results are shown in Table 1. Considering effect and efficiency,
the effect is the best when the network input image resolution is
512 and semantic information is used at the same time.

For output, we tested the effects of 1–5 scales outputs on
illumination estimation, where 1 scale uses W

64 × H
64 , 2 scales

uses W
32 × H

32 ,
W
64 × H

64 , 3 scales use W
16 × H

16 ,
W
32 × H

32 ,
W
64 × H

64 ,

4 scales use W
8 × H

8 ,
W
16 × H

16 ,
W
32 × H

32 ,
W
64 × H

64 , and 5 scales use
W
8 × H

8 ,
W
16 ×

H
16 ,

W
32 ×

H
32 ,

W
64 ×

H
64 ,

W
128×

H
128 . The curves are shown

in Figures 2C,D. It can be seen that the effect is best when the
scale is 4, but the time consumption is more than doubled when
the scale is 3. Considering comprehensive effect and efficiency,
we used 3 scales in the network. Figure 3 shows the intermediate
results of estimating illumination at different 3 scales.

Batch size and learning: For optimization, Adam (Kingma
and Ba, 2014) was employed with a batch size of 64, and a
basic learning rate of 0.0001 was set for training. We trained
all of the experiments over 4,000 epochs (2,50,000 iterations
with batch size 64). The average angular error is calculated in
the Color Checker dataset for every 20 epochs. The curve is
shown in Figure 2A. Figure 4 shows the resulting image and local
illumination after different numbers of epochs.
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TABLE 2 | Performance comparison on Color Checker dataset (Gehler et al., 2008).

Method Mean Median TriMean Best 25% Worst 25% 95th percentile

White-Patch (Brainard and Wandell, 1986) 7.55 5.68 6.35 1.45 16.12 -

Edge-based Gamut (Barnard, 2000) 6.52 5.04 5.43 1.90 13.58 -

Gray-World (Buchsbaum, 1980) 6.36 6.28 6.28 2.33 10.58 11.3

1st-order Gray-Edge (Weijer et al., 2007) 5.33 4.52 4.73 1.86 10.03 11.0

2nd-order Gray-Edge (Weijer et al., 2007) 5.13 4.44 4.62 2.11 9.26 -

Shades-of-Gray (Finlayson and Trezzi, 2004) 4.93 4.01 4.23 1.14 10.20 11.9

Bayesian (Gehler et al., 2008) 4.82 3.46 3.88 1.26 10.49 -

General Gray-World (Barnard et al., 2002) 4.66 3.48 3.81 1.00 10.09 -

Intersection-based Gamut (Gehler et al., 2008) 4.20 2.39 2.93 0.51 10.70 -

Pixel-based Gamut (Gehler et al., 2008) 4.20 2.33 2.91 0.50 10.72 14.1

Natural Image Statistics (?) 4.19 3.13 3.45 1.00 9.22 11.7

Bright Pixels (Joze et al., 2012) 3.98 2.61 - - - -

Spatio-spectral (GenPrior) (Hirakawa et al., 2012) 3.59 2.96 3.10 0.95 7.61 -

Cheng et al. (2014) 3.52 2.14 2.47 0.50 8.74 -

Corrected-Moment (19 Color) (Finlayson, 2013) 3.50 2.60 - - - 8.6

Corrected-Moment (19 Color)* (Finlayson, 2013) 2.96 2.15 2.37 0.64 6.69 -

Corrected-Moment (19 Edge) (Finlayson, 2013) 2.82 2.00 - - - 6.9

Corrected-Moment (19 Edge)* (Finlayson, 2013) 3.12 2.38 2.59 0.90 6.46 -

Regression Tree (Cheng et al., 2015) 2.42 1.65 1.75 0.38 5.87 -

CNN (Bianco et al., 2015) 2.36 1.98 - - - -

CCC (Barron, 2015) 1.95 1.22 1.38 0.35 4.76 5.85

DS-Net (Shi et al., 2016) 1.90 1.12 1.33 0.31 4.84 5.99

FC4 (Hu et al., 2017) 1.77 1.11 1.29 0.34 4.29 5.44

MSRWNS-AVG 1.93 1.38 1.42 0.33 4.32 4.20

MSRWNS-1 1.72 1.16 1.33 0.32 3.79 4.36

MSRWNS-2 1.68 1.13 1.28 0.31 3.84 4.44

MSRWNS-3 1.71 1.13 1.31 0.31 3.82 4.18

MSRWNS 1.64 1.13 1.28 0.31 3.78 4.07

For each metric, red indicates the best performance and blue indicates the second-best performance.

3.4. Comparison With State-of-the-Art
Methods
To evaluate the performance of the proposed method and
the influence of the WPL layer on the method. We trained
two models. One used the mean value when the local region
converges to the global, which is defined as MSRWNS-AVG, the
othermodel used theWPL layer, which is defined asMSRWNS. In
addition, we also estimated the illumination effect at each scale,
defined as MSRWNS-1, MSRWNS-2, and MSRWNS-3. Several
visualizations of processing outputs obtained using the proposed
method are presented in Figure 5.

The quantitative performance comparison on the Color
Checker dataset is presented in Table 2 and the results on the
NUS 8-Camera dataset inTable 3. The performance comparisons
on the ADE20k (Zhou et al., 2017), SFU Lab dataset (Barnard
et al., 2010), and SFU Gray-Ball dataset (200, 2003) are shown
in Tables 4–6, respectively. Most CNN-based methods compare
the effects on only two datasets, Color Checker dataset and
NUS 8-Camera dataset. In order to make the comparison results
consistent, the data in Tables 2, 3 are from Shi et al. (2016),
while others were trained by us with the same training samples
mentioned in the datasets section.

In addition, we compared our method with most of the
existing works; typical works include the Deep Specialized
Network (DS-Net) (Shi et al., 2016) and Fully Convolutional
Color Constancy with confidence-weighted pooling (FC4) (Hu
et al., 2017). Several visualizations of testing outputs obtained
using the proposed method are presented in Figures 6, 7.

From Tables 2, 3, it can be seen that the mean error of the
proposed method is reduced by 12.3% on the Color Checker
dataset and by 5.8% compared to DS-Net (Shi et al., 2016), and
reduced by 7.3% on the Color Checker dataset and reduced by
0.5% compared to FC4 (Hu et al., 2017). In addition, using the
WPL layer under a single scale gives a better result than that
obtained using the mean. The effect of using the mean of three
scales on most indicators is better than the result of using a
single scale.

In particular, the proposed method shows the best
performance on the ADE20k (Zhou et al., 2017) dataset.
The mean angular error is lower than that of DS-Net (Shi et al.,
2016) by 29.7% (from 1.68 to 1.18), and the mean error of the
worst 25% was reduced by 25.6% (from 3.86 to 2.87) compared
to DS-Net (Shi et al., 2016). Other indicators have also been
reduced to a certain extent. The reason for these results is that
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TABLE 3 | Performance comparison on NUS 8-Camera dataset (Cheng et al., 2014).

Method Mean Median TriMean Best 25% Worst 25%

White-Patch (Brainard and Wandell, 1986) 10.62 10.58 10.49 1.86 19.45

Edge-based Gamut (Barnard, 2000) 8.43 7.05 7.37 2.41 16.08

Pixel-Based Gamut (Gehler et al., 2008) 7.70 6.71 6.90 2.51 14.05

Intersection-based Gamut (Gehler et al., 2008) 7.20 5.96 6.28 2.20 13.61

Gray-World (Buchsbaum, 1980) 4.14 3.20 3.39 0.90 9.00

Bayesian (Gehler et al., 2008) 3.67 2.73 2.91 0.82 8.21

Natural Image Statistics (?) 3.71 2.60 2.84 0.79 8.47

Shades-of-Gray (Finlayson and Trezzi, 2004) 3.40 2.57 2.73 0.77 7.41

Spatio-spectral (ML) (Hirakawa et al., 2012) 3.11 2.49 2.60 0.82 6.59

2nd-order Gray-Edge (Weijer et al., 2007) 3.20 2.26 2.44 0.75 7.27

Bright Pixels (Joze et al., 2012) 3.17 2.41 2.55 0.69 7.02

1st-order Gray-Edge (Weijer et al., 2007) 3.20 2.22 2.43 0.72 7.36

Spatio-spectral (GenPrior) (Hirakawa et al., 2012) 2.96 2.33 2.47 0.80 6.18

Corrected-Moment (19 Edge)*(Finlayson, 2013) 3.03 2.11 2.25 0.68 7.08

Corrected-Moment (19 Color)*(Finlayson, 2013) 3.05 1.90 2.13 0.65 7.41

Cheng et al. (2014) 2.96 2.04 2.24 0.62 6.61

CCC (Barron, 2015) 2.38 1.48 1.69 0.45 5.85

Regression Tree (Cheng et al., 2015) 2.36 1.59 1.74 0.49 5.54

DS-Net (Shi et al., 2016) 2.24 1.46 1.68 0.48 6.08

FC4 (Hu et al., 2017) 2.12 1.53 1.67 0.48 4.78

MSRWNS-AVG 2.13 1.51 1.72 0.58 5.44

MSRWNS-1 2.12 1.45 1.64 0.46 5.12

MSRWNS-2 2.11 1.45 1.66 0.51 5.29

MSRWNS-3 2.11 1.46 1.67 0.47 5.33

MSRWNS 2.11 1.45 1.64 0.45 4.77

For each metric, red indicates the best performance and blue indicates the second-best performance.

TABLE 4 | Performance comparison on ADE20k dataset (Zhou et al., 2017).

Method Mean Median TriMean Best 25% Worst 25%

CCC (disc+ext) (Barron, 2015) 2.14 1.66 1.82 0.32 4.24

CNN (Bianco et al., 2015) 1.96 1.32 1.14 0.23 3.94

DS-Net (Shi et al., 2016) 1.68 0.96 1.06 0.26 3.86

FC4 (Hu et al., 2017) 1.56 1.32 1.02 0.33 3.86

MSRWNS-AVG 1.66 0.96 1.44 0.32 3.66

MSRWNS 1.18 0.61 0.83 0.11 2.87

For each metric, red indicates the best performance and blue indicates the second-best performance.

TABLE 5 | Performance comparison on SFU Lab dataset (Barnard et al., 2010).

Method Mean Median TriMean Best 25% Worst 25%

CCC (disc+ext) (Barron, 2015) 3.77 2.19 2.21 0.42 8.87

CNN (Bianco et al., 2015) 3.18 2.31 2.40 0.39 6.98

DS-Net (Shi et al., 2016) 2.93 2.11 2.23 0.34 5.87

FC4 (Hu et al., 2017) 2.99 1.78 2.11 0.33 4.62

MSRWNS-AVG 3.15 1.88 2.01 0.32 4.88

MSRWNS 2.82 1.71 1.85 0.26 4.65

For each metric, red indicates the best performance and blue the second-best performance.
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TABLE 6 | Performance comparison on SFU Gray-Ball dataset (200, 2003).

Method Mean Median TriMean Best 25% Worst 25%

CCC (disc+ext) (Barron, 2015) 3.31 1.66 1.82 0.32 4.24

CNN (Bianco et al., 2015) 2.96 1.32 1.14 0.23 3.94

DS-Net (Shi et al., 2016) 2.41 0.96 1.06 0.26 3.86

FC4 (Hu et al., 2017) 2.33 1.12 1.46 0.41 3.76

MSRWNS-AVG 2.18 1.12 1.34 0.26 3.88

MSRWNS 1.83 0.82 0.94 0.20 3.65

For each metric, red indicates the best performance and blue indicates the second-best performance.

FIGURE 6 | Visual comparison results. (A) Original image; (B) result obtained by CNN (Bianco et al., 2015); (C) result obtained by DS-Net (Shi et al., 2016); (D) result

obtained by FC4 (Hu et al., 2017); (E) result obtained by proposed method; (F) ground truth. Regardless of quantification or visual effects, the proposed method

shows better performance, especially in the first, second, and fourth lines, because there is a large area in the scene that can be accurately segmented, and the

correction result of the method proposed in this article is very close to the real image. In the second line, because the color of the sofa and that of the light are

relatively close. Although the network model considers the contribution of different regions, it is difficult to eliminate the color cast caused by the similar color of the

light and the surface of the object. From the corrected image look, the image has a slight red tint. In the fourth line of the image, because the objects in the scene are

too singular, the red objects on the left and the white objects on the right have greater contributions and the color of the objects on the left is biased in the result.

the semantic segmentation model used is trained based on
the ADE20k (Zhou et al., 2017) dataset. The accuracy of the
semantics on this dataset is high, and there are parts of training
data in the ADE20k dataset (Zhou et al., 2017).

In addition, we also provided several natural examples
captured by a Canon D7100 without auto-white-balance 5, as

5The sensor of this camera does not have a low-pass filter, and the color filter

comprises several Bayer filters that overlap each other.

shown in Figure 7, and we obtained several images of natural
scenes with more accurate colors from the Internet, and then
performed some random color casting. Results are shown in
Figure 8.

It can be seen From Figure 7 that on the image taken indoors
(the first line in Figure 7) the image corrected by a CNN (Bianco
et al., 2015) is obviously yellowish, and that corrected by DS-Net
is slightly greenish. The white-balance effect of the camera and
our result is similar and look relatively natural. In outdoor scenes,
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FIGURE 7 | Visual comparison between the proposed method with the auto-white-balance (AWB) function of the Canon D7100 camera used. Left to right: (A)

original image; (B) results by D7100 camera with AWB; (C) results by CNN; (D) results by DS-Net; (E) results by present study.

it can be seen from the second line that the image corrected by
a CNN (Bianco et al., 2015) has a very obvious color cast. The
other types are visually more natural. Our results are seen in the
sky part of the image, in which the clouds are more realistic. The
scene in the third row exhibits little difference in visual effects.
This may be due to sufficient sunlight in the shooting scene, and
the objects in the scene receive very uniform illumination. In this
way, any method can obtain better results more accurately. From
Figure 8, it can be found from the first row that, although there is
a phenomenon of highlight overflow in some areas of the sky (due
to random color casts leading to pixel overflow in some areas), the
overall color is close to that of the real image; the second row is
due to the random color cast. The resulting color cast is small and
the corrected image is basically the same as the original image. In
the third row, it can be seen that, although the corrected image is
different from the original image, the visual perception is better.

3.5. Efficiency
The code used to test the efficiency of the proposed method
is based on Tensorflow (Rampasek and Goldenberg, 2016) and
training took approximately 5 h, after which the loss tended to
stabilize. In the testing phase, we converted the model to that
of Caffe (Jia et al., 2014), implemented the WPL layer with C++
under Caffe, and finally used C++ code for testing. An average
image took 34 ms on a CPU and only 12 ms on a GPU (the time
does not include semantic segmentation) 6.

3.6. Adaptation for Multi-Illuminant
As mentioned in this article, the proposed method aims to
solve the color constancy under a single illuminant, and we
only compare our algorithm with existing single illuminant
based methods. In addition, after the WPL layer, we can get

6experimental hardware platform: i7 7700k, 32 GB memory, gtx1080ti. If the

test-image resolution was greater than 512× 512, it was resized to 512× 512

the local illumination of the regions, it can estimate the multi-
illuminant sources in different local regions, shown in Figure 9,
where the images are taken from the popular outdoor multi-
illuminant dataset (Arjan et al., 2012). However, there has a
large deviation between the estimated illumination and the real
multi illumination, we have analyzed the reasons and found that
there are big errors in semantics. We will solve this problem in
future research.

4. CONCLUSION

In this article, we proposed a learning based multi-scale region
weighed network guided by semantics (MSRWNS) to estimate
the illuminated color of the light source in a scene. Cued
by the human brain’s processing of color constancy, we used
image semantics and scale information to guide the process of
illumination estimation. First, we put an image and its semantic
mask into the network and, through a series of convolution
layers, the region weights of the image at different scales were
obtained. Then, through a WPL, the illumination estimation
on each scale was obtained. Finally, we obtained the best
estimation using the weighting on each scale, and state-of-the-art
performance was achieved on three of the largest color-constancy
datasets, i.e., the Color Checker, NUS 8-Camera, and ADE20k
datasets. This study should prove applicable in the exploration of
multi-scale and semantically directed networks for other fusion
tasks in computer vision. In this study, we aim to solve the color-
constancy problem with a single light source, however, there are
multiple light sources in the real world, in our future research,
we will try to solve the problem of multiple illuminations. In
addition, it is time-consuming to obtain semantics, in our future
work, we will try to use semantic information only in the training
phase, not in the illumination estimation phase.
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FIGURE 8 | Result in a natural scene. From left to right. (A) Original image; (B) random color-cast image; (C) corrected image; (D) local-light image; (E) final-light

color. It can be seen from the first row that, although there is a phenomenon of highlight overflow in some areas of the sky (due to random color casts leading to pixel

overflow in some areas), the overall color is close to the original image; the second row is due to the random color cast. The resulting color cast is small, and the

corrected image is basically the same as the original image. In the third row, it can be seen that, although the corrected image is different from the original image, the

visual perception is more realistic.

FIGURE 9 | The evolution of illumination estimated. Left to right: (A) original image; (B) the estimated local illumination; (C) ground-truth illumination; (D) the corrected

image by our method; (E) the ground-truth image.
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