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Low-light image enhancement has been an important research branch in the field of

computer vision. Low-light images are characterized by poor visibility, high noise and

low contrast. To improve low-light images generated in low-light environments and

night conditions, we propose an Attention-Guided Multi-scale feature fusion network

(MSFFNet) for low-light image enhancement for enhancing the contrast and brightness

of low-light images. First, to avoid the high cost computation arising from the stacking of

multiple sub-networks, our network uses a single encoder and decoder for multi-scale

input and output images. Multi-scale input images can make up for the lack of pixel

information and loss of feature map information caused by a single input image. The

multi-scale output image can effectively monitor the error loss in the image reconstruction

process. Second, the Convolutional Block Attention Module (CBAM) is introduced in the

encoder part to effectively suppress the noise and color difference generated during

feature extraction and further guide the network to refine the color features. Feature

calibration module (FCM) is introduced in the decoder section to enhance the mapping

expression between channels. Attention fusion module (AFM) is also added to capture

contextual information, which is more conducive to recovering image detail information.

Last, the cascade fusion module (CFM) is introduced to effectively combine the feature

map information under different perceptual fields. Sufficient qualitative and quantitative

experiments have been conducted on a variety of publicly available datasets, and the

proposed MSFFNet outperforms other low-light enhancement methods in terms of visual

effects and metric scores.

Keywords: low-light image enhancement, multi-scale, attention mechanism, feature calibration, cascade fusion,

coarse-to-fine

1. INTRODUCTION

Nowadays, more and more researchers are working to solve the problem of image degradation in
poorly illuminated scenes. Low-light image enhancement methods aim to restore image sharpness
and contrast, as well as detailed information in dark-light regions, which is a very challenging
task. In low-light environments, due to the limitations of image acquisition equipment, the
photographs taken often have low brightness, low contrast and severe noise phenomena. Although
the use of expensive photography equipment and the involvement of professionals can reduce
image degradation to a certain extent, the photos still have overexposure and blurred objects.
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Low-light images not only affect the user’s visual perception,
but also seriously affect the processing of advanced computer
vision tasks (target detection and recognition). Low-light image
enhancement is closely related to various high-level vision
tasks, and the enhanced low-light images can bring more
hidden information. Therefore, low-light image enhancement
technology is essential to restore low-light images to low-noise,
high-contrast, and high-quality images with normal colors. The
low-light enhanced image can provide good preconditions for
the subsequent target detection (Lin et al., 2017; Shen et al.,
2020; Wang et al., 2020b), image recognition (Shi et al., 2020;
Zhao et al., 2020),image segmentation (Zhang et al., 2021), image
classification (Liu et al., 2020b) and autonomous driving (Chen
et al., 2016; Prakash et al., 2021) and other advanced vision tasks.
Meanwhile, visual information processing is also inseparable in
fields such as military missions and deep-sea environments and
Biomedical imaging (Ardizzone et al., 2006, 2008).

Early conventional low-light enhancement methods were
applied to degraded images with low brightness, low contrast
and artifacts. The histogram equalization (HE) (Pisano et al.,
1998; Abdullah-Al-Wadud et al., 2007) method counts the
frequency of each pixel value to adjust the gray value difference
between pixels, and obtains an enhanced image with uniform
gray value distribution through transformation. The method
based on Retinex (Land, 1977) theory decomposes the image
into illumination and reflection layers. The single-scale Retinex
(SSR) (Jobson et al., 1997b) algorithm and themulti-scale Retinex
(MSR) (Jobson et al., 1997a) algorithm have been proposed
successively. Later the Multi-Scale Retinex for Color Recovery
(MSRCR) (Jiang et al., 2015) method added color balance
processing to the former method. Although the contrast and
brightness of low-light images are improved, the enhanced low-
light images still have insufficient edge sharpening andweak color
retention. Because the classic Retinex method assumes that the
light is located in the low-frequency component, but the halo
phenomenon will occur in the area with large differences in
brightness and the image will be distorted. Wang et al. (2019c)
introduced the intermediate illumination component, and used
the loss function to constrain and a priori the illumination
component. Due to the lack of noise removal in this method,
the visual effect is unsatisfactory. Fu et al. (2016) proposed
a weighted variational model and estimated illumination and
reflection to obtain prior representation. The enhanced image
can retain more information details and suppress the generation
of noise. Although these methods enhance the contrast of low
illumination images, the enhanced images suffer from strong
noise and lack of details.

In recent years, with the improvement of computer computing
performance, a series of low-light enhancement methods based
on neural network algorithms have achieved good results.
Figure 1A shows the source low light image in a low light
scene. (Lore et al., 2017) and (Wei et al., 2018) proposed
LLNet and Retinex-NET network models respectively, which
solved the problems of difficult decomposition model and
complex parameter design of traditional retinexmethods. (Zhang
et al., 2019) decoupled the image into two parts and added a
denoising network for removing the degradation in the dark

region after amplification. the Zero-DCE(Guo et al., 2020)
method of Figure 1B uses an unsupervised approach for low-
light enhancement. The unsupervised Zero-DCE method used
lacks validity guidance, and the enhanced images suffer from
underexposure and poor color recovery. In addition, (Wang
et al., 2020a) proposed a Deep Lightening Network (DLN),
which treats low-light enhancement tasks as residual tasks and
uses super resolution back projection technology for lowlight
enhancement. From Figure 1C is the image after enhancement
by the DLN method, which results in a large amount of noise
and loss of texture details. Figure 1D is the image enhanced
by our MSFFNet method, which has the characteristics of low
noise and high brightness. In general, the difficulty of low-light
image enhancement tasks lies in recovering dark information and
suppressing noise generation. The above proposed method is still
a challenging task for simultaneous contrast enhancement, noise
removal, and color recovery.

In this paper, we propose an Attention-Guided Multi-scale
feature fusion network for low light image enhancement based on
the structure of a single encoder and decoder and the principle
of coarse-to-fine network design. The novelty of our proposed
method is summarized in the following aspects:

1. The framework uses a multi-scale input and output network
architecture, where low-light images at different scales are
input into the encoder for extracting shallow and deep
feature information at different scales. Adding lightweight
Convolutional Block Attention Module (CBAM) to each
encoder block enables the network to emphasize important
feature information under the channel and space and recover
the hidden detail content.

2. The output of enhanced images at different scales in the
decoder facilitates the network to be able to reconstruct image
information from coarse to fine. At the same time, in order to

FIGURE 1 | (A) shows the original low-light image; (B) the result after

enhancement by Zero-DCE method; (C) the result after enhancement by DLN

method; (D) the result after enhancement by our method. (A) is poorly lighted,

so the image is shown in the upper right corner after zooming in on the

infrared and adding visible light.
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reduce the loss of details caused by the deepening of network
layers, a feature calibration module (FCM) is introduced to
adjust the weight distribution of features and enhance the
expression ability of the network. In order to capture global
context information, a cross-level fusion attention fusion
module (AFM) is added to each encoder sub-block to further
enhance the effect of low-light images.

3. A cascade fusion module (CFM) is designed to fuse multi-
scale information to improve the information flow between
networks and enhance the ability of global and local feature
information fusion.

2. RELATED WORK

Low-light image enhancement has been a widely researched
direction in the field of computer vision. The existing low-light
enhancement methods can be broadly classified into three types:
histogram equalization-based methods, Retinex-based methods,
and deep learning-based methods. We will briefly introduce the
most relevant methods for low-light image enhancement and the
application of attention mechanisms.

2.1. Histogram Equalization-Based
Methods
The HEmethod is the simplest andmost straightforwardmethod
for low-light enhancement. The histogram equalization method
stretches the image non-linearly, so that each gray value is
evenly distributed, and the image contrast is improved. Adaptive
histogram equalization (AHE) (Pizer et al., 1987) is used to
enhance the image contrast, but the enhanced image has a lot
of noise. Wang and Ng (2013) proposed a variational approach
to consider local information around pixels and perform local
transformations to enhance image contrast. The brightness
preserving dynamic histogram equalization (BPDHE) (Ibrahim
and Kong, 2007) method uses Gaussian filters to partition the
dynamic range and change the average brightness of the image.
The CVC (Tsai et al., 2012) method searches for the dependency
between each pixel and the corresponding neighborhood, and
makes full use of the contextual information between pixels to
enhance the contrast. Lee et al. (2013) proposed an algorithm
based on two-dimensional histogram to represent gray differen-
ce in a hierarchical manner, which changed the image contrast
by increasing the gray difference between each adjacent pixel.
Although these methods only dynamically adjust the range of
gray levels and improve the contrast of the image, the enhanced
image will have problems such as uneven color, amplified noise,
and loss of detail.

2.2. Retinex-Based Methods
Inspired by the theory of Retinex (Land, 1977), any images
can be expressed as the product of the illumination component
and the reflection component. In the earlier SSR (Jobson
et al., 1997b) method and MSR (Jobson et al., 1997a) method,
illumination is obtained from various a prior information and
adaptively adjusted for image enhancement. The enhanced
low-light image has the phenomenon of distorted color and
insufficient edge sharpening. Wang et al. (2013) proposed an

enhancement algorithm for non-uniformly illuminated images to
maintain detail and natural balance. Ren et al. (2018) proposed
a continuous sequence performing Retinex decomposition for
low-light image enhancement and denoising. Hao et al. (2020)
used a semi-decoupled approach to effectively implement image
decomposition to improve the visibility and visual quality of
low-light images. Guo et al. (2016) performed low-light image
enhancement by finding the maximum pixel value in the three
RGB channels for estimating the illumination of each pixel and
adding a priori structure to optimize the illumination map. Li
et al. (2018) first considered the noise problem after decomposing
images and proposed a robust Retinex model for optimizing the
structural details of low-light images. Although themethod based
on Retinex theory aims to accurately estimate the illumination
components, the estimated illumination components still have
errors due to the complexity of image decomposition and the
nonlinearity of the channels. As a result, the enhanced low-light
image still suffers from detail loss and color distortion.

2.3. Deep Learning-Based Methods
In recent years, deep learning has achieved good results in the
areas of image dehazing (Dong et al., 2020), image denoising
(Zhang et al., 2017), image super-resolution (Tai et al., 2017)
and image detection (Li et al., 2020a). Researche-rs have also
successively proposed a series of methods for low-light image
enhancement based on deep learning. These methods can be
divided into those based on convolutional neural networks and
those based on generative adversarial networks.

The CNNs-basedmethods require paired datasets for training.
Lore et al. (2017) designed low-light image enhancement
networks for contrast enhancement and denoising using stacked
sparse denoising autoencoders. Li et al. (2021) proposed a
recursive unit composed of recurrent and residual layers for
progressive low-light image enhancement. Jobson et al. (1997a)
proposed an enhancement network that uses multiple sub-
networks to extract features at different levels for multi-branch
fusion to achieve mapping from low-light images to enhanced
images. Wei et al. (2018) proposed an enhanced network
integrated with decomposition network and illumination
adjustment, called Retinex-NET. In joint denoising, existing
denoising tools (BM3D Dabov et al., 2007) are used. The
enhancement network is used to adjust the light component to
achieve end-to-end low light enhancement. Wang et al. (2019a)
proposed a new Lightening Back-Projection (LBP) block, which
iteratively learns the differences between low-light images and
normal light images for low-light enhancement. Although these
methods restore the feature information of low brightness image
to a certain extent, the enhanced image still has strong noise and
color imbalance.

In addition to CNNsmethods, there are GANs-basedmethods
that are also widely used for low-light image enhancement.
Chen et al. (2018) proposed an improved bidirectional GANs
learning method to achieve mapping from low-light images to
normal-light images. The lack of considering edge information
leads to blurred edge sharpening of the enhanced image. Jiang
et al. (2021) designed an unsupervised generative adversarial
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network to normalize the feature information of unpaired low-
light images. Guo et al. (2020) proposed a lightweight depth
network to estimate dynamic range-adjusted pixels and curves.
The network can be applied to low-light images under different
light intensities by nonlinear curve mapping. Due to the lack
of reference data as constraints in the GANs-based network
model, the enhanced low-light image still has underexposure and
strong noise.

2.4. Attention Mechanism
The attention mechanism has become an important part of
neural networks and is widely used in fields such as natural
language processing, speech recognition, and computer vision.
The attention module enhances network expression ability by
emphasizing useful features and suppressing useless feature
information. In the field of computer vision, Hu et al. (2018)
proposed the Squeeze-and-Excitation module to study the
dependencies between channels and to assign weights to different
channels by the learned weight information. Later, Woo et al.
(2018) proposed the Convolutional Block Attention Module

(CBAM) to increase attention in two dimensions, channel and
space, respectively, to refine feature information and guide
the network to focus on important content. To establish the
connection between two pixels, Wang et al. (2018) proposed
a non-local operation to capture the dependency between two
locations. To improve model training performance and reduce
computational complexity, Wang et al. (2019b) proposed the
Efficient Channel Attention (ECA) module to perform cross-
channel interaction and keep the performance constant. Liu
et al. (2020a) proposed a residual feature aggregation (RFA)
network for image super-resolution. The framework introduces
a lightweight and efficient enhanced spatial attention (ESA)
module, which makes the residual feature information more
focused on the spatial content, reduces the complexity of the
model, and improves the image visualization. Therefore, the
introduction of the attention mechanism can assign important
weights to different feature information and suppress non-
important information. In other words, the mechanism can
effectively suppress unnecessary color features and noise, and
adaptively enhance the useful information of features.

FIGURE 2 | The overall framework of our proposed MSSFNet. The network framework is divided into two parts: the upper part is the encoder part for multi-scale

input images and the lower part is the decoder part for multi-scale output images.
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3. PROPOSED METHOD

As shown in Figure 2, we designed an Attention-Guided
Multi-scale feature fusion network(MSFFNet) for low-light
image enhanc-ement. By combining the outputmultiscale images
to calculate losses to guide the training process, the multiscale
features of low-light images are fully utilized, and the loss of
texture details in the image recovery process is greatly avoided.
Different from the original U-NET (Weng and Zhu, 2015), in
order to better adapt to the task of multi-scale low-light enhanced
image, we input multi-scale image to each encoder block and
output multi-scale image to the decoder block of each layer. In
this section, we will detail the overall structure of the network
and the various functional modules of the network, as well as the
loss function.

3.1. Multi-Scale Input Encoder and Output
Decoder
The existing CNN network structure is usually based on the
encoder and decoder for low-light image enhancement, and
has shown excellent performance. Low-light image enhancement
with a single input image will cause the loss of detail and texture
when restoring the dark-light area. In order to be able to better
deal with different degrees of information loss in images, we use
low-light images of different scales as the input to each sub-
network. It has been demonstrated that multiscale images have
good enhancement effects in image deblurring (Cho et al., 2021;
Zhang et al., 2022), image derainting (Jiang et al., 2020), and
image dehazing (Li et al., 2020b).

Different from stacked sub-networks, the overall part of our
network architecture consists of a single encoder and decoder.
The encoder and decoder are composed of three encoder blocks
(ENCs) and three decoder blocks (DECs). The original encoder
and decoder extract image features from a single image in order
to restore the hidden information of the image. Although the
receptive field is enlarged in the down-sampling process, there
is often the loss of characteristic information. Therefore, in the
encoder part, in addition to extracting information in a single
encoder block, we also input low-light images at different scales
in each ENC for feature fusion of the downsampled feature
information and the shallow feature information extracted at
low scales, which can reduce the information loss after image
downsampling. In the decoder part, each DEC block outputs the
reconstructed feature maps of different sizes separately for the
calculation of the loss function.

Firstly, for the input low-light image, we use the nearest
neighbor interpolation (nearest) method to downsample twice
consecutively to generate 1/2 and 1/4 of the original low-light
image for use in ENCs. For low-light images at different scales,
we use the shallow feature module (SFM) to perform shallow
feature extraction on the downsampled images, as shown in
Figure 3A. SFM performs convolutional operations on the image
by three successive 3×3 and 1×1 convolutional layers. Then
we connect the input image Ii

low
and the features after shallow

convolution, and further refine the fused feature information by a
1×1 convolution layer. The low-light image after SFM is denoted
as SFMres

i , where i denotes the kth layer and res denotes the

FIGURE 3 | The various sub-modules of the network: (A) Shallow feature

module (SFM), (B) cascade fusion module (CFM), and (C) feature

enhancement module (FEM).

result after output. In the whole network framework, we add SFM
for shallow feature extraction in the initial stage of the second
and third layers, as shown in Figure 2.To fuse SFMres

i with the
feature information ENCres

i−1 from the previous layer, we pass
ENCres

i−1 through a convolutional layer with a step size of 2 and

a convolutional kernel of 3×3 to generate
(

ENCres
i−1

)↓
of the same

size as SFMres
i . Next, the feature enhancement module (FEM)

is used, as shown in Figure 3C. FEM effectively combines two

features SFMres
i and

(

ENCres
i−1

)↓
.It is able to reinforce multi-scale

contextual key feature information and suppress non-key feature
information, effectively utilizing the shallow spatial and channel
information learned from SFM. Specifically, the individual pixels

of SFMres
i and

(

ENCres
i−1

)↓
are multiplied, and then the hidden

feature information is obtained through a 3*3 convolution layer,

and finally this feature information and
(

ENCres
i−1

)↓
are summed

for each element to obtain a feature map containing the hidden
information.With the increase of network depth, degradation
may occur. Adding residual blocks can effectively solve the
gradient dispersion and network degradation and maintain the
performance of the network. Finally, we added the attention
module CBAM to guide the enhancement of under-exposed areas
and avoid over-enhancement of normal highlighted information,
which will be detailed in Section 3.2.

In the multiscale decoder part, the DEC blocks of each layer
output feature maps of the corresponding size, which produce
image artifacts due to a tessellation effect after deconvolution.
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In order to eliminate this phenomenon, a feature calibration
module (FCM) is added after deconvolution to capture spatial
correlation. The feature maps correspon-ding to different
channels have different attention features. In order to fully
combine the important feature information at different scales,
the attention fusion module (AFM) is introduced to generate
more discriminative feature representation. At the same time,
we connect the feature information received from the input
images at each level to the current DEC block, and the image
reconstruction features obtained at each level can be expressed as:

Ikhigh =

{

F
(

DECk(α;β)
)

+ Ik
low

, k = 1, 2

F
(

DECk

(

ENCres
k

))

+ Ik
low

, k = 3
, (1)

where DECres
k
, ENCres

k
are the results after the output of the

DEC block, ENC block at the kth level, respectively. α and β

are denoted as CFMres
k

and DECres
k+1

, respectively, and DECk(; )
denotes the concatenation operation performed at the kth level.
Since the output after DEC block is the feature map, convolution
operation by mapping function F(·) is used to recover the
reconstructed image after each layer.

3.2. Attention Mechanism
3.2.1. Convolutional Block Attention Module

In order to be able to properly guide the network to focus
on important feature information and improve the learning
ability of the neural network. CBAM (Woo et al., 2018) was
introduced in the network for adaptive feature refinement. The
attention mechanism effectively calculates the channel attention
and spatial attention of the feature map, which can capture the
hidden information more accurately, recover the dark region
information and suppress the generation of noise. The module
computes the attention maps from two dimensions, spatial and
channel, respectively, and the resulting attention maps and the
original input feature maps are multiplied sequentially.

Firstly, the intermediate feature map with a size of C×W×H
was taken as the input of CBAM, and important channel
information was obtained by compressing spatial dimensions
in the channel attention module. Then, the spatial attention
module is further supplemented to make the network precisely

focus on low-light hidden information. Specific operations can
be expressed as follows:

Fc = Mi
c (Fin) ⊗ Fin, i = 1, 2, 3

Fs = Mi
s (Fc) ⊗ Fc, i = 1, 2, 3

, (2)

where ⊗ represents element-wise multiplication, the
intermediate feature map is represented as Fin,M

i
c and Mi

s

represent the attention maps of the ith layer through channel
and space mapping. Fc represents the global feature information
refined by the channel attention, and Fs represents the local
feature information further refined by the spatial attention.

3.2.2. Attention Fusion Module

In order to effectively fuse two feature maps with different
information contents while being able to focus on key target
regions, an attention fusion module (AFM) is introduced to fuse
the attention of the two feature maps, effectively complementing
the information of different levels of feature map contents. This
module enhances the distinguishability of features by adjusting
the weights of each channel feature. Inspired by the squeeze-
and-excitation mechanism (Hu et al., 2018), our proposed
AFM recodes the semantic correlation between channels for the
multi-scale fused feature maps and the low-level feature maps,
respectively. The AFM extracts optimized weight information for
both features in parallel, focusing attention on the target region,
as shown in Figure 4. The important target weight information
is obtained in the low-level feature map to emphasize the hidden
details. The dynamic channel features will be further calibrated by
multi-scale fusion information from the cascade fusion module
(CFM), which helps to capture global contextual information
more accurately and reinforce important channel information.

The AFM takes the low-level and multi-scale fused feature
maps and enhances semantic dependencies and boosts channel
relevance through global averaging pooling operations,
respectively. The global features are compressed into an attention
vector to facilitate the exploitation of contextual information
beyond the local sensory field. To exploit the information
in the attention vector, a convo-lutional transformation is
then performed to further capture the channel dependencies.

FIGURE 4 | This module is the Attention Fusion Module (AFM). The ⊗ represents element-wise multiplication, and the ⊕ represents element-wise sum.
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The specific operation of generating the attention vector is
represented as follows:

FAtt = λ1
[

W1 · λ2
[

W2 · GAP(x)+ b1
]

+ b2
]

, (3)

where x denotes the input feature map. GAP represents the
global average pooling operation, and the mathematical formula
is as follows. λ1 and λ2 denote ReLU activation functions and
Sigmoid activation functions, respectively. W1 and W2 denote
convolution kernels for 1×1 convolution operations. b1 and b2
are biases.

GAP (xk) =
1

W ×H

H
∑

i=1

W
∑

j=1

xk(i, j) (4)

where W and H denote the width and length of the feature
map. k = 1, 2, . . . , c, c is the number of channels of the feature
map. x = [x1, x2, . . . , xc].

xres = FAtt ⊗ x, (5)

where ⊗ represents the element-by-element multiplication
operation. xres is the final output feature map result.

Finally, the two feature maps recalibrated by the attention
module are additively merged. Compared with the Concatenate
operation, the addition operation reduces the parameters of the
convolution and avoids the increase of computational cost. The
final result obtained is the feature map after enhanced attention.

3.3. Cascade Fusion Module
Since the network is accompanied by informat-ion loss during
downsampling, we fuse each encoder block extracting informat-
ion at different scales for removing dark information to
reproduce hidden texture detail features. CFM designed by us is
introduced into the network, which is beneficial to supplement
the feature map after loss and enables cross-scale communication
and enhanced information flow between different layers of the

network. The module is shown in Figure 3B. This module
cascades the whole vertical direction of the high-level semantic
information and low-level semantic information in different
scales, enriches the multi-scale feature map, and improves the
training accuracy of the network. Each CFM fuses the output
information of three DECs blocks and further refine the multi-
scale features using two-level convolution. The cascaded fusion
information is passed into the specified ENCs, and the CFM
output results corresponding to the first and second layers
are expressed as CFM1 and CFM2. The formula is expressed
as follows:

CFMres
1 = CFM1

(

ENCres1 ,
(

ENCres2
)↑

,
(

ENCres3
)↑

)

CFMres
2 = CFM2

(

(

ENCres1
)↓

,ENCres2 ,
(

ENCres3
)↑

), (6)

where CFMres
i represents the multi-scale feature fusion result

output by the ith layer. Up-sampling and down-sampling
operations are denoted by ↑ and ↓, respectively, to facilitate the
connection of low-light image feature information at multiple
scales. We fuse feature information at different scales to reduce
the loss of target information and help restore image content and
detailed information.

3.4. Feature Calibration Module
In order to improve image degradation to enhance detail clarity
and restore good visual quality, FCM is introduced for low-
light enhancement of global and local features, as shown in
Figure 5. During the processing of the low-light enhancement
task, the global information is used to evaluate the low-light
image lighting conditions, and the local feature information is
enhanced to optimize the detail content to enhance the feature
expression. Due to the deepening of the network layers, the
perceptual field expansion also increases the risk of gradient
disappearance and gradient explosion, for which we add residual
blocks before deconvolution to optimize the performance of the
network. Then, we input the feature map of size W×H and

FIGURE 5 | This module is the Feature Calibration Module (FCM).
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number of channels C to FCM for feature weight recalibration
after deconvolution.

Inspired by the adaptive calibration of channel weights (Hu
et al., 2018) to improve the sensitivity of channel information,
each channel information is first compressed through the
global average pooling layer to obtain the dependencies
between each other, and the feature map is compressed into
a C×1×1 compressed vector. The values of the compressed
vectors represent the information of the channels. The channel
correlations are investiga-ted by using two fully connected layers,
each with activation functions of ReLU and Sigmoid functions,
respectively, to estimate a weight vector of size C×1×1. Then,
the weight vectors are expanded in width and height, respectively,
and the recovered dimension size is C×W×H. The feature maps
and the corresponding weights aremultiplied element by element
to obtain the calibrated feature maps.

The recalibrated key information may have larger weights,
causing the key information to be too prominent. For this reason,
we optimize the expressiveness of the weighted feature maps by
convolutional layers with 1×1 convolutional kernels, and finally
obtain the weight-calibrated feature maps, which are beneficial to
the subsequent calculations.

3.5. Loss Function
The loss function plays a key role in the performance of the
model. For multi-scale low-light enhancement networks, the
content information during the multi-scale reconstruction of
images can be fully utilized. Therefore, we calculate the loss
for each pair of pixels between the reconstructed image and
the corresponding real reference image output in each decoder
layer. The content accuracy after reconstructing the image is
calculated using L1 loss (MAE loss). Inspired by Li et al. (2020b),
we accumulate the content loss of the images after low-light
enhancement at different scales, which is beneficial to monitor
the error loss of the images at different scales. The content loss is
calculated as follows:

Losscon =

N
∑

i=1

1

xi

∥

∥

∥
Iihigh − Iigt

∥

∥

∥

1
, (7)

where N denotes the number of layers in the network. The
content loss function is normalized by dividing it by xi (the total

number of pixels). I
high
i and I

gt
i are the low light enhancement

image and ground true image during the reconstruction
process, respectively.

In order to be able to reduce the loss of details and edge
features, we add auxiliary losses to recover the lost high frequency
components. A large amount of noise occurs in the image
reconstruction process, and the noise mainly exists in the high
frequency part. In order to reduce the discrepancy in the
frequency domain space, we propose a multi-scale frequency
domain (MSFD) loss function applied in the loss calculation.
The L1 loss expression between the multiscale ground truth
image and the low light enhancement image is calculated in the

frequency domain as follows:

LossMSFD =

N
∑

i=1

1

xi

∥

∥

∥
f
(

Iihigh

)

− f
(

Iigt

)
∥

∥

∥

1
, (8)

where f denotes the operation of transforming the image signal
into the frequency domain by the fast Fourier transform.

Finally, the mixed loss function defined by us is expressed
as follows:

Losstotal = Losscon + λLossMSFD, (9)

where λ is a balance parameter, set to 0.1. Themodel uses Losstotal
loss function to train end-to-end to network convergence.

4. EXPERIMENT

In this section, we detail the experimental details to demonstrate
the validity of the method. Firstly, we present the data set
and experimental details as well as the evaluation metrics.
Secondly, we perform a qualitative and quantitative comparison
with other state-of-the-art low-light enhancement methods to
compare the performance of our method. Finally, we perform
ablation experiments to analyze and validate the soundness of our
network structure.

4.1. Dataset and Implementation Details
4.1.1. Datasets

Low-light image enhancement has been a relatively popular
research direction, but there are fewer paired-based public
datasets in real scenarios. We use publicly available low-
light datasets the Brightening Train dataset (Wei et al.,
2018) and the LOL dataset (Wei et al., 2018) with a
total of 1500 paired images for network training.Website:
https://daooshee.github.io/BMVC2018website/. Among them,
1300 are training images, 100 are validation images, and 100 are
test images.

During the testing, we randomly selected 50 LOL datasets
containing 500 paired images for testing. In addition, we also
used the benchmark datasets DICM (Lee et al., 2013), LIME (Guo
et al., 2016), MEF (Ma et al., 2015), and NPE (Wang et al., 2013)
for testing.

4.1.2. Implementation Details

We use Ubuntu 18.04 operating system with Nvidia GeForce
RTXTITAN graphics card. Our network is trained for 300 epochs
in the Pytorch deep learning framework. initial learning rate
is 0.0001. gradient optimization is performed using the Adam
(Kingma and Ba, 2014) optimizer. During the training process,
the batch size is set to 4, and the four selected images are
randomly cropped to a slice size of 256×256×3. In addition, for
data supplementation, each slice is flipped horizontally with a
probability of 0.5.

4.1.3. Evaluation Criteria

In order to be able to evaluate the quality of low-light enhanced
images in an all-round way, we use non-referenced evaluation
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metrics and referenced evaluation metrics to objectively analyze
the enhanced images.

The reference-based evaluation metrics requires that the
enhanced low-light image is compared with the reference image.
We use peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) and luminance order error (LOE) to measure the gap
between the enhanced image and the ground truth image. PSNR
is used to evaluate the image fidelity by calculating the mean
square error between the enhanced low-light image and the
ground truth image. The higher the value of PSNR, the smaller
the image distortion. SSIM considers the image similarity in
terms of brightness, contrast and structure, respectively. The
larger the value of SSIM, the more similar the structure of the
enhanced image is to the ground truth image and the smaller
the loss. LOE (Wang et al., 2013) indicates the natural retention
ability of the image, and when the value is smaller, the enhanced
image is more natural.

Based on the evaluation metrics of no-reference, we used the
blind/referenceless image spatial quality evaluator (BRISQUE)
(Mittal et al., 2012) and the natural image quality evaluator
(NIQE) (Mittal et al., 2013) to evaluate the quality of no-
reference images. BRISQUE quantifies the loss of naturalness by
using natural scene statistics with locally normalized luminance
coefficients. When the BRISQUE value is lower, it indicates less
distortion and higher image quality. NIQE is a distance metric
between the computed model statistics and the enhanced low-
light image based on the spatial domain natural scene statistics
model. When the NIQE value is lower, it means that the closer to
the natural image, the higher the image quality.

4.2. Subjective Evaluation
Our method was compared visually with 10 different state-of-
the-art methods under real low-light images. IB (Al-Ameen,
2019) method based on mathematical theory method. FFM (Dai
et al., 2019) method based on image fusion. RRM (Li et al.,
2018) and SDD (Hao et al., 2020) methods based on Retinex
decomposition. MBLLEN (Lv et al., 2018), Retinex-Net (Wei
et al., 2018), KinD (Zhang et al., 2019), DLN (Wang et al.,
2020a), MIRNet (Zamir et al., 2020), Zero-DCE (Guo et al., 2020)
methods based on deep learning.

We selected 7 real low-light images for visual comparison
of the above 10 low-light enhancement methods. As shown in
Figure 6, the first row is the original low-light image, lines 2-
11 are the enhancement results of the other 10 comparison
methods, and the last row is our enhancement result. It can be
seen that the overall brightness of the image is darker after the
MBLLENmethod with multi-branch shimmer enhancement and
the FFM method with fusion frame enhancement for rows 2 and
5, respectively. The Retinex-Net method in row 3 divides the
network into a decomposed network and an enhanced network,
and the obtained results are heavily sharpened and excessively
noisy.RRM and SDD methods based on the Retinex method are
shown in rows 4 and 9, respectively, and the enhanced effect
suffers from underexposure, with some of the detailed texture
features of the image not being recovered. For example, the
background area behind the fourth column of the hand violin
is missing part of its content. It can be observed from the sixth

line that the image enhanced by the IB method has overexposure
of brightness and serious color distortion. For example, the
sky area of the image in the 6th and 7th columns is over-
enhanced, and the details are seriously lost. As seen in rows 8
and 10, the supervised deep learning-based DLN and MIRNet
methods suffer from overexposure, poor color saturation, and
color distortion. The unsupervised Zero-DCE method has dark
colors after enhancement. The last row is our proposed method,
and the enhanced image results in uniform color, high contrast,
and excellent brightening effect.

Figure 7 shows the enhancement effects demonstrated by
different enhancement methods on the LOL dataset. It can be
observed that the overall brightness of the image illumination
enhanced by the methods in Figures 7d,e,i,k is insufficient.
Although the SDD method in Figure 7i reduces the noise by
smoothing, it is still lacking for the brightness enhancement. The
enhanced image results of DLN method and MIRNet method
have strong noise in the local dark regions. Overall, our proposed
method has a good effect on global luminance enhancement, and
the enhanced image is colorful and maintains the detailed texture
of the image.

Figure 8 shows the enhancement results of the indoor
scene map on the DICM dataset. The low-light image after
enhancement by the Retinex-Net method is severely sharpened
and produces severe noise. The IB method is overexposed and
shows partial loss of details. The enhanced result of the MIRNet
method shows a large number of color spots and uneven overall
brightness adjustment. The overall color reproduction of the
enhanced image by our method is high. Thus, our method
produced good enhancement results.

Figure 9 shows the low-light image enhancem-ent in the
LIME dataset for an indoor low-light environment. Comparing
the enhanced rose color by the detail magnification, the
enhancement effect of our method is richer in terms of color.
The MBLLEN and RRM methods are smoothed to reduce noise
generation, resulting in a severe loss of detail information on the
walls. Compared with other enhancement methods, our method
achieves better visual results.

Figure 10 shows the low-light image enhancem-ent in the
MEF dataset for the outdoor backlit scene. The IB and MIRNet
methods are overexposed at the sky, while the KinD method is
moderately exposed overall, but distorts the color at the grass.
Our method maintains the realism of the sky color, and has good
effect on the contrast and brightness enhancement of local details.

Figure 11 shows the effect of low light image enhancement
in a natural landscape in the NPE dataset. It can be observed
that there is overexposure at the sky for IB, DLN and
MIRNet methods. The overexposure of the stone parts in
Figures 11c,g,i,k causes severe distortion and lack of naturalness
in the image content. In terms of image fidelity and color
information, our method is generally superior to other low-light
enhancement methods.

4.3. Objective Evaluation
To evaluate the performance of our MSFFNet more
comprehensively, we analyze various low-light enhancement
methods using objective evaluation metrics. As shown in the
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FIGURE 6 | Enhancement results of different low-light enhancement methods in real low-light images. The last row is the enhancement result of our method.

data in Table 1, we used 11 low-light enhancement methods
to enhance the real low-light images in Figure 6. And the
performance of the various enhancement methods is evaluated
by using PSNR, SSIM, NIQE, BRISQUE and LOE metrics.

Table 1 shows that the proposed MSFFNet achieves the best
values for various evaluation metrics. It can be seen that our
method has some superiority in enhancing detailed textures
while maintaining the naturalness of the image.
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FIGURE 7 | Four images were extracted from the LOL dataset to compare the visual effects of our method with other low-light enhancement methods. (A) is the

original image, (B–K) is the image enhanced by other methods, and (I) is the image enhanced by our method. The yellow box is the selected detail content, and the

red box is the enlarged detail.

In addition, for the reference LOL dataset, we have also
quantitatively evaluated various low-light enhancement methods
using various objective evaluation metrics. As shown in the
data in Table 2, comparing various state-of-the-art low-light
enhancement methods, our method has superior results in
smoothing noise and restoring image naturalness. In addition,

the MIRNet method also shows better results under most
other metrics. As shown in Figure 7, our method can recover
more texture information in a visual perspective, preserving the
naturalness of the original image.

The four non-referenced data sets of DICM, LIME, MEF, and
NPE were quantitatively compared using NIQE and BRISQUE
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FIGURE 8 | Comparison of the visual effects of our method and other low-light enhancement methods in the DICM dataset. (A) is the original image, (B–K) is the

other 10 low-light enhancement methods, and (I) is our method.

FIGURE 9 | Comparison of the visual effects of our method and other low-light enhancement methods in LIME dataset. The yellow box shows the selected detail

content and the red box shows the detail magnification. (A) is the original image, (B–K) is the other 10 low-light enhancement methods, and (I) is our method.

FIGURE 10 | Comparison of the visual effects of our method and other low-light enhancement methods in the MEF dataset. (A) is the original image, (B–K) is the

other 10 low-light enhancement methods, and (I) is our method.

non-referenced quality evaluation indicators, respect-ively. The
image quality recovered by various enhancement methods
was evaluated by spatial quality assessment and naturalness
of the enhanced images. The statistical results in Table 3

show that our method outperforms various advanced low-
light enhancement metho-ds in all metric values, proving

equally good performance in the no-reference dataset. For
aspects such as image fidelity and spatial detail, which
are of interest for evaluation metrics, our method has a
great advantage.

In Figure 12, we present the numerical results of the
BRISQUE and NIQE evaluation metrics using box line plots for
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FIGURE 11 | Comparison of the visual effects of our method and other low-light enhancement methods in the NPE dataset. (A) is the original image, (B–K) is the

other 10 low-light enhancement methods, and (I) is our method.

TABLE 1 | Comparison of the real low-light dataset in Figure 6 with the

state-of-the-art low-light enhancement methods in metrics PSNR, SSIM, NIQE,

BRISQUE, LOE.

Method PSNR SSIM NIQE BRISQUE LOE

MBLLEN 17.246 0.675 4.472 28.661 664.876

Retinex-Net 19.251 0.729 5.612 38.42 687.721

RRM 18.496 0.686 5.992 35.388 665.23

FFM 16.131 0.704 4.33 26.238 669.866

IB 18.773 0.799 4.886 26.035 661.516

KinD 18.455 0.728 4.651 24.71 666.975

DLN 20.454 0.826 4.261 22.978 664.835

SDD 17.576 0.672 5.203 29.382 674.554

MIRNet 16.718 0.695 4.427 27.87 676.466

Zero-DCE 19.555 0.795 4.456 24.734 663.421

Ours 25.879 0.878 4.193 22.475 659.311

The best results are marked in bold red.

TABLE 2 | Quantitative comparison with state-of-the-art methods on the LOL

dataset.

Method PSNR SSIM NIQE BRISQUE LOE

MBLLEN 16.477 0.773 4.954 26.891 576.325

Retinex-Net 16.54 0.55 8.528 29.964 650.367

RRM 12.256 0.728 5.703 31.644 620.891

FFM 11.541 0.63 6.435 19.209 625.354

IB 20.203 0.739 6.97 21.895 582.239

KinD 18.254 0.866 5.671 25.7 638.234

DLN 21.03 0.812 5.613 18.566 583.655

SDD 11.957 0.707 5.125 25.532 613.574

MIRNet 26.041 0.912 4.573 29.185 556.238

Zero-DCE 14.291 0.717 6.881 22.216 598.564

Ours 28.396 0.935 4.341 16.536 547.325

The best results are indicated in bold red.

statistics to visualize the distribution of metric values for various
low-light enhancement methods. The first row shows the result
of BRISQUE score statistics. The second row shows the results of

the fraction statistics of NIQE. It is observed in Figure 12 that the
Retinex-Net method has a larger range of fluctuation in values
on BRISQUE, indicating that the enhanced images are weaker
in spatial domain quality than the other low-light enhancement
methods. Our method achieves low and concentrated values on
BRISQUE and NIQE, indicating that the enhanced images are
more naturalistic and fidelity.

4.4. User Study
Since existing publicly available low-light image datasets lack
images in normal light for comparison, it is impossible to
judge the difference between the enhanced results and ground
truth images. The effect of low-light image enhancement can
rely on people’s subjective judgment to rate the image quality.
Therefore, we conducted a user study through an observational
method to evaluate the performance of various low-light image
enhancement methods based on users’ subjective judgments.

First, we randomly selected 10 low-light images in 4 public
datasets (DICM, LIME, MEF, NPE) and performed image
enhancement using MBLLEN, Retinex-Net, RRM, FFM, IB,
KinD, DLN, SDD, MIRNet, Zero-DCE, and our method. Second,
we invited 20 participants (10 males and 10 females) with normal
vision to subjectively evaluate the results of the low-light image
enhancement methods. The participants compared the low-light
image with the enhanced image to see how well the image was
recovered. If the participant thought the enhancement was good,
the image was scored 1; otherwise, it was scored 0. All image
evaluations were performed under a monitor with a resolution
of 1,920*1,080. The scoring details were as follows: 1) Whether
there was a lot of noise and texture loss in the enhanced image.
2) Whether there was color imbalance and uneven color in
the enhanced image. 3) Whether there was overexposed or
underexposed in the enhanced image.

After counting the participant assessment scores, the ranking
results were derived by estimating subjective scores using the
Bradley-Terry model (Bradley and Terry, 1952). In addition,
we calculated the sum, mean, standard deviation and variance
statistics of the scores of the different enhancement methods
separately. The final results are shown in Table 4. Combining
the numerical results of several metrics, our methods were
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TABLE 3 | Performance of the following low-light enhancement methods calculated on the DICM, LIME, MEF, and NPE public datasets using the no-reference metrics

NIQE and BRISQUE.

NIQE BRISQUE

Method DICM LIME MEF NPE DICM LIME MEF NPE

MBLLEN 3.707 4.427 4.549 3.902 24.96 26.089 31.807 28.348

Retinex-Net 4.488 4.869 4.41 4.461 31.289 32.088 20.607 30.537

RRM 3.953 4.902 4.918 4.591 32.044 32.07 32.644 33.328

FFM 3.23 3.99 3.665 3.46 22.117 18.388 18.204 23.05

IB 3.211 4.191 3.735 3.961 26.909 22.496 17.895 33.871

KinD 3.564 4.628 3.877 3.443 25.238 23.681 27.505 23.336

DLN 3.009 4.054 3.356 3.571 20.19 18.656 17.165 25.754

SDD 3.554 4.302 4.268 3.54 28.267 24.163 28.095 26.238

MIRNet 3.133 4.008 3.77 3.701 17.926 21.634 25.275 23.431

Zero-DCE 2.899 3.997 3.697 3.527 19.215 19.473 16.604 26.581

Ours 2.847 3.938 3.291 3.422 17.228 17.74 14.243 22.492

The best results are marked in bold red.

FIGURE 12 | The results of the different low-light enhancement methods were calculated using BRISQUE and NIQE evaluation metrics in a total of four public

datasets, DICM, LIME, MEF and NPE. The calculated results are compared quantitatively using box-line plots. The shorter the length of the box line plot, the more

stable the method is and the better the enhancement effect.

TABLE 4 | Subjective evaluation scores of the enhancement results of 10 low-light

images by 20 participants under 11 low-light enhancement methods.

Method Sum↑ Mean↑ Variance↓ Standard deviation↓ Rank↓

MBLLEN 151 15.1 0.767 0.876 5

Retinex-Net 136 13.6 0.489 0.699 11

RRM 144 14.4 0.711 0.843 7

FFM 148 14.8 1.067 1.033 6

IB 137 13.7 1.344 1.16 9

KinD 141 14.1 1.211 1.101 8

DLN 153 15.3 2.233 1.494 3

SDD 158 15.8 0.622 0.789 2

MIRNet 138 13.8 0.9 0.949 10

Zero-DCE 152 15.2 1.733 1.317 4

Ours 173 17.3 0.456 0.675 1

TABLE 5 | Validation of the rationality of the proposed network structure by

adding and removing different modules in the ablation experiments.

Model CBAM AFM FCM CFM MIMO

M1 X X

M2 X X X X

M3 X X X

M4 X X X X

M5 X X X X

M6 X X X X X

Notice that we represent the multiscale input and multiscale output images as MIMO.

more favored for human visual observation. Among them,
SDD and DLN methods also achieved excellent ranking in the
quality of enhancement effects. SDD method uses an efficient
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FIGURE 13 | Visual comparison results with different combinations of modules in the DICM dataset. (A) shows the low light image and (B–G) show the effect of the

enhanced low light image with different combinations of modules.

FIGURE 14 | Visual comparison results with different combinations of modules in the LIME dataset. (A) shows the low light image and (B–G) show the effect of the

enhanced low light image with different combinations of modules.

FIGURE 15 | Visual comparison results with different combinations of modules in the MEF dataset. (A) shows the low light image and (B–G) show the effect of the

enhanced low light image with different combinations of modules.
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semi-decoupled approach for Retinex decomposition, achieving
efficient visibility and image quality. DLN method used the
inverse projection method iteratively for residual learning and
achieved good results in the processing of noise and texture.

4.5. Ablation Study
To verify the performance of each module, six ablation
experiments were performed to determine the importance and
rationality of adding modules. It can be observed that adding all
modules gives better performance than eliminating any of them.
Methods M1-M6 are represented as the combination modes of
each module, as shown in Table 5. Figures 13–15 shows the
qualitative comparison results of different module combinations
under various common data sets. In the ablation experiment,
M1-M6 methods kept the training set, learning rate and training
times unchanged.

For the M1method, which lacks the attention mechanism and
FCM, the image enhancement effect in Figures 13–15b shows
severe color imbalance and uneven brightness enhancement. In
Figure 13b, the buildings are partially white and the grass color is
also degraded to different degrees, and the enhanced image loses
its original color. Figure 14b The enhanced image has local dark
patches and the brightness of the enhanced image is unbalanced.
Figure 15b The details below the pavilion are blurred, and the left
half of the lake shows color distortion.

For the M2, M3, and M5 methods, which lack the network
structure of FCM, attention mechanism and CFM, respectively,
the presented results all have strong noise and low exposure.
Figures 13c,f–15c,f the whole image exhibits a low exposure
state. Figure 15d lacks the attention mechanism, resulting in an
overall color imbalance and overexposure in the sky.

For the M4 method remove the multiscale input and
output images to verify the effectiveness of our multiscale
network structure. It can be clearly seen that the image
enhancement results in Figures 13–15e have poor quality.
Overall, the comparative analysis of the above ablation
experiments concludes that the M6 method with all modules
added outperforms the results of adding some modules
in terms of contrast, color balance, and detailed texture
recovery. Therefore, the designed network structure is reasonable
and scientific.

5. CONCLUSION

In this paper, we propose an Attention-Guided Multi-scale
feature fusion network (MSFFNet) for low-light image

enhancement to solve the low-light image enhancement
problem. To avoid the computational burden caused by stacking
multiple sub-networks, a simple and efficient single encoder-
decoder structure is used for low-light image enhancement in a
coarse-to-fine strategy. The original encoder structure is changed
to a multi-scale input low-light image and combined with
feature information at different scales. It also combines CBAM,
which can accurately focus on the dark region and strengthen
the network’s ability to extract hidden feature information.
The decoder structure is changed to multi-scale output low-
light-enhanced images for multi-scale frequency domain loss
calculation, which effectively supervises the recovery of low-
light-enhanced images in the image reconstruction process.
FCM enhances the channel and spatial dependence in the feature
map and reduces the loss of details. The CFM is introduced to
fuse semantic information at different scales, and fully combines
shallow semantic information and deep spatial information for
dynamic low-light image enhancement. Attention fusion strategy
is adopted to introduce AFM to extract attentional features from
different layers, and fully fuse the detailed texture features of the
low-level feature maps and the semantic information of the high-
level feature maps. Finally, after extensive experiments, MSFFNet
has been shown to be more effective than other methods in terms
of visual effects and metric scores. In the next work, we will
continue to investigate more efficient low-light enhancement
methods to improve the robustness and generalization ability of
the network.
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