AUTHOR=Heeb Oliver , Barua Arnab , Menon Carlo , Jiang Xianta TITLE=Building Effective Machine Learning Models for Ankle Joint Power Estimation During Walking Using FMG Sensors JOURNAL=Frontiers in Neurorobotics VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.836779 DOI=10.3389/fnbot.2022.836779 ISSN=1662-5218 ABSTRACT=
Ankle joint power is usually determined by a complex process that involves heavy equipment and complex biomechanical models. Instead of using heavy equipment, we proposed effective machine learning (ML) and deep learning (DL) models to estimate the ankle joint power using force myography (FMG) sensors. In this study, FMG signals were collected from nine young, healthy participants. The task was to walk on a special treadmill for five different velocities with a respective duration of 1 min. FMG signals were collected from an FMG strap that consists of 8 force resisting sensor (FSR) sensors. The strap was positioned around the lower leg. The ground truth value for ankle joint power was determined with the help of a complex biomechanical model. At first, the predictors' value was preprocessed using a rolling mean filter. Following, three sets of features were formed where the first set includes raw FMG signals, and the other two sets contained time-domain and frequency-domain features extracted using the first set. Cat Boost Regressor (CBR), Long-Short Term Memory (LSTM), and Convolutional Neural Network (CNN) were trained and tested using these three features sets. The results presented in this study showed a correlation coefficient of