AUTHOR=Liu Fangjin , Hua Zhen , Li Jinjiang , Fan Linwei TITLE=Low-Light Image Enhancement Network Based on Recursive Network JOURNAL=Frontiers in Neurorobotics VOLUME=16 YEAR=2022 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.836551 DOI=10.3389/fnbot.2022.836551 ISSN=1662-5218 ABSTRACT=
In low-light environments, image acquisition devices do not obtain sufficient light sources, resulting in low brightness and contrast of images, which poses a great obstacle for other computer vision tasks to be performed. To enable other vision tasks to be performed smoothly, it is essential to enhance the research on low-light image enhancement algorithms. In this article, a multi-scale feature fusion image enhancement network based on recursive structure is proposed. The network uses a dual attention module-Convolutional Block Attention Module. It was abbreviated as CBAM, which includes two attention mechanisms: channel attention and spatial attention. To extract and fuse multi-scale features, we extend the U-Net model using the inception model to form the Multi-scale inception U-Net Module or MIU module for short. The learning of the whole network is divided into T recursive stages, and the input of each stage is the original low-light image and the inter-mediate estimation result of the output of the previous recursion. In the