
ORIGINAL RESEARCH
published: 02 March 2022

doi: 10.3389/fnbot.2022.829437

Frontiers in Neurorobotics | www.frontiersin.org 1 March 2022 | Volume 16 | Article 829437

Edited by:

Zhenshan Bing,

Technical University of Munich,

Germany

Reviewed by:

Yuning Cui,

Technical University of Munich,

Germany

Xiangtong Yao,

Technical University of Munich,

Germany

*Correspondence:

Lin Cong

cong@informatik.uni-hamburg.de

Hongzhuo Liang

liang@informatik.uni-hamburg.de

Received: 05 December 2021

Accepted: 17 January 2022

Published: 02 March 2022

Citation:

Cong L, Liang H, Ruppel P, Shi Y,

Görner M, Hendrich N and Zhang J

(2022) Reinforcement Learning With

Vision-Proprioception Model for Robot

Planar Pushing.

Front. Neurorobot. 16:829437.

doi: 10.3389/fnbot.2022.829437

Reinforcement Learning With
Vision-Proprioception Model for
Robot Planar Pushing
Lin Cong*, Hongzhuo Liang*, Philipp Ruppel, Yunlei Shi, Michael Görner,

Norman Hendrich and Jianwei Zhang

TAMS Group, Department of Informatics, Universität Hamburg, Hamburg, Germany

We propose a vision-proprioception model for planar object pushing, efficiently

integrating all necessary information from the environment. A Variational Autoencoder

(VAE) is used to extract compact representations from the task-relevant part of the image.

With the real-time robot state obtained easily from the hardware system, we fuse the

latent representations from the VAE and the robot end-effector position together as the

state of a Markov Decision Process. We use Soft Actor-Critic to train the robot to push

different objects from random initial poses to target positions in simulation. Hindsight

Experience replay is applied during the training process to improve the sample efficiency.

Experiments demonstrate that our algorithm achieves a pushing performance superior

to a state-based baseline model that cannot be generalized to a different object and

outperforms state-of-the-art policies which operate on raw image observations. At last,

we verify that our trained model has a good generalization ability to unseen objects in

the real world.

Keywords: reinforcement learning, robot manipulation, planar pushing, multimodal, Variational Autoencoder,

Soft Actor-Critic

1. INTRODUCTION

Planar object pushing with a single contact is typical underactuated robot manipulation. Solutions
to most robot manipulation problems can be divided into model-based or model-free methods.
Our previous work (Cong et al., 2020) focused on a model-based method; we built a data-driven
recurrent model which adapts to the real interaction dynamics after several pushing interactions
using the proposed RMPPI algorithm as the controller. However, one limitation of the previous
method is that the robot cannot effectively switch pushing sides according to the object’s current
pose during the pushing process. Another limitation is that we need AprilTag (Olson, 2011) to
locate the object in real-time. In this work, we train amodel-free reinforcement learning (RL) policy
that takes the raw image and the pusher position as input (Figure 1). After enough training episodes
in simulation, the trained agent learns to make good decisions on switching the pushing side both
in simulation (Figure 2) and in the real world (Figure 9).

Extracting task-relevant information such as the object’s shape and pose features from image
observations is essential to enhance the robot’s generalization ability to manipulate different
objects. However, in most situations, the raw image from the camera always includes complicated
components such as noisy background, which is hard for the robot to understand, and, therefore,
it can hardly pay attention to the key components in the image. In this work, we extract useful
information by segmenting an object mask from the image and constructing a latent representation

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.829437
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.829437&domain=pdf&date_stamp=2022-03-02
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cong@informatik.uni-hamburg.de
mailto:liang@informatik.uni-hamburg.de
https://doi.org/10.3389/fnbot.2022.829437
https://www.frontiersin.org/articles/10.3389/fnbot.2022.829437/full

Cong et al. VP Model for Object Pushing

FIGURE 1 | Our experiment platform consists of a UR5 robot with a Robotiq 3-finger gripper that grasps the 3D-printed vertical pusher rod. Its cylindrical part,

designed to touch and push the moving object, is 6mm in diameter. The pushing target placed on the transparent table is painted red to obtain masks easily through

color filtering. The bottom camera (to get the input image) is set right below the table, and another front camera is added to record experimental videos.

FIGURE 2 | The figure shows two pushing processes: (A) triangle and (B) cylinder. Both the initial and target position are generated randomly at the beginning of each

episode. We show both the front view (first row) to give an overall robot-object scene and the bottom view (second row) to show what the robot sees. The

transparency of the table is set to 0.3 in the simulation. The brown point in (1–5) and the dashed line in (6) represent the pusher position and trajectory. In both (A,B),

we can see that the robot learns to first choose a proper initial pushing direction and to switch the pushing side when the object deviates from the target. The final

orientation error in (B) is explained in Section 3.1.

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

through a Variation Autoencoder (VAE). As the decoder from the
trained VAE can roughly reconstruct most of the original masks
from the latent features, these features should include the object’s
pose and shape information. The robot state could be inferred
from the camera image through a deep network, but this is not
necessary. Unlike the object state, the robot state including the
end-effector pose can be obtained directly from the hardware
system. We, therefore, propose a vision-proprioception model
to fuse the latent features and robot states as the RL inputs
effectively. We train the agent to push objects to target positions
using a carefully designed reward function (refer to Section 2.3.1).
The models are evaluated by the distance between final positions
and target positions.

With this paper, we contribute multiple insights:

• We introduce a VAE-based vision-proprioception model
representing environment states for goal-conditioned RL.
• We apply ourmodel in the RL to train the robot to learn planar

object pushing.
• We train the model in simulation and do comparison

experiments with models taking only raw images as inputs.
• We verify our model’s ability to generalize with unseen objects

on a real robot platform.

2. MATERIALS AND METHODS

2.1. Related Work
2.1.1. Planar Object Pushing
Planar object pushing is an active research topic in robot
manipulation, the essence of which is the single contact
underactuated control. Both model-based and model-free
methods have been proposed to solve the problem. Building a
data-driven model (Bauza and Rodriguez, 2017; Bauza et al.,
2019) with large amounts of robot-object interaction datasets
or an analytical model (Kloss et al., 2020) with specific physical
meanings and then applying Model Predictive Control (MPC)
as robot control strategy is the general model-based solution.
However, collecting real interaction trajectories is very time-
consuming, while physics parameters in real situations can only
be approximated, making the model-based methods hard to
apply. A model-free method like RL can be used to get actions
directly from the ground truth state (Peng et al., 2018), or raw
pixel images (Zadaianchuk et al., 2020). However, generalization
of the model to different manipulation objects is hard for ground
truth input, while extracting useful features such as object shape,
size, and the robot’s relative position efficiently from raw images
for a subsequent policy network is always tricky.

2.1.2. Vision-Based RL
Learning from pixel input is a challenging problem in RL.
Convolutional neural networks (CNNs) (LeCun et al., 1998) are
always used as an encoder in modern RL algorithms to get spatial
features from images. Recent work achieves impressive results on
DeepMind Control Suite, and OpenAI Gym benchmarks with
learning tricks like image reconstruction (Ha and Schmidhuber,
2018; Yarats et al., 2019), data augmentation (Laskin et al., 2020),
and contrastive learning (Laskin et al., 2020). However, low

data sample efficiency during exploration makes it hard to train
directly on real robot platforms. In our work, automatic domain
randomization (ADR) (Akkaya et al., 2019) is applied to bridge
the gap between simulation and the real world.

Reinforcement learning consistently achieves better learning
performance given ground truth states compared with pixel
inputs (Laskin et al., 2020). One reason is that an image
input usually needs a more complicated network structure
like CNNs to process spatial features, which increases training
difficulty. Also, it is challenging to uncover attended regions
and eliminate interference from unrelated pixel perturbations
without any privileged information on the image. Top-down
attentionmechanisms are used to force the agent to focus on task-
relevant information (Manchin et al., 2019; Mott et al., 2019). A
partially observable ground truth state can also be used to train
the agent with image input. For example, the asymmetric actor-
critic method (Pinto et al., 2017) is used to improve both the
robustness and sample efficiency via access to the real state while
providing only images for the actor (Salter et al., 2020). A deep
autoencoder is used to acquire a set of feature points from the
image and perform the action planning with these feature points
(Finn et al., 2016). However, a linear-Gaussian controller needs
to be pre-trained as the exploration strategy, making the whole
training process complex.

2.1.3. Self-Supervised Feature Representation
In our case, task-relevant information includes both the
object and target’s shape, size, and pose, but no ground
truth representation can be obtained directly. Learning rich
representations from high dimensional pixel data for control
is an active research area in robotics and RL. Using dense
(pixelwise) visual description as the representation has been
proven effective in visual correspondence estimation (Choy
et al., 2016; Schmidt et al., 2016). A self-supervised system is
proposed to learn consistent dense representation for robotic
manipulation (Florence et al., 2018) while a compact state space
is necessary for our goal-based RL task. Contrastive learning
(Oord et al., 2018; He et al., 2020) is always used as an
unsupervised learning approach to extract useful representations
from high-dimensional data, which has been applied successfully
to image recognition (Henaff, 2020) and RL (Anand et al.,
2019; Laskin et al., 2020). Contrastive loss is also used in
time contrastive networks (TCNs) (Sermanet et al., 2018),
which learn state representation using temporal information
from unlabeled demonstration videos. Other methods rely on
generative reconstruction loss like VAE (Kingma and Welling,
2014) and its variations to compress images to latent vectors.
The latent vector representing what the agent sees at each time
frame is then fed into recurrent neural networks (RNNs) to
predict the future (Ha and Schmidhuber, 2018). Motion skills
can be performed directly in the latent space, which is mapped
from camera images through a deep spatial autoencoder (Finn
et al., 2016). Latent state models are also used in meta-RL to
accelerate representation learning (Zhao et al., 2020). The state
representation is learned from a sequence of visual observations
in real-world robotic control tasks.

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

FIGURE 3 | Overview: The training process in simulation is shown on the left, and the model is transferred directly to the real platform (on the right side). The camera

is put below the transparent table to avoid possible occlusions between the camera view and the object during manipulation. Color filtering is applied to the image

from the bottom camera to obtain both the object (red) and goal (blue) masks. The two masks are fed into the pre-trained autoencoder and then concatenated with

the gripper position into a fusion space, where the policy does planning.

2.2. Theory
This section presents the prior theory used in our method in
detail, including goal-conditioned RL, VAEs, and our mixed
model for RL.

2.2.1. Goal-Conditioned RL
This task can be described briefly as pushing the object from
a random initial pose to a given target position (represented
by a mask image) like in Figure 3. We consider a finite-
horizon discounted Markov Decision Process (MDP) defined by
(S ,A, p, rg), where st ∈ S and at ∈ A are continuous states and
actions, respectively, p(st+1|st , at) is the dynamics function, rg is
a function parametrized by the goal g as in the goal-conditioned
RL (Schaul et al., 2015), computing the reward for reaching new
state st+1. Then, the task of the agent is to maximize the expected
goal-conditioned return:

π∗φ = argmax
π

Eg∈G

[

Eτ (π)

[

T
∑

t=0

γ trg(st)
]

]

(1)

by conditioning its policy πφ(at|st , g) on the goal g, where G is
the distribution over the goal space during the training process.
The goal space and state space play important roles during
training as both Q-function Qψ (st , at , g) and policy πφ(at|st , g)
are computed within the two spaces. However, taking high-
dimensional image observations as state and goal spaces makes
the optimization hard (Nair et al., 2018). So in our work, we use
low-dimensional and structured representations from a VAE for
both of these. Related details are presented in Section 2.2.3.

2.2.2. Variational Autoencoders
To deal with high-dimensional image inputs, we train a latent
representation of the state by VAE. A VAE is a probabilistic
generative model composed of an encoder that converts state x
into a prior distribution qθ (z|x) and a decoder that converts the
latent variable z back to a state distribution pω(x|z) as is shown
in Figure 4. Both the encoder and decoder are deep networks
with trainable parameters (θ and ω). The model is trained by
minimizing the reconstruction loss of original states x [the first
term in Equation (2)] and forcing the latent representation z to be
similar (in KL divergence Kullback and Leibler, 1951) to a prior
distribution (second term) at the same time.

L(θ ,ω) = −Eqθ (z|x)[log pω(x|z)]+KL(qθ (z|x)||p(z)) (2)

We take Gaussian distribution as prior here, the mean and
log-variance of the Gaussian distribution can be represented
as follows:

qθ (z|x) = N (µθ (x), σ
2
θ (x)) (3)

In our task, we only care about the pose and shape of the object
and target in the image; color and texture information can be
ignored. We filter the image from the bottom camera by color
(red) and obtain the masks as in Figure 3. The VAE is trained
on these one-channel 64x64 masks. We collect a mask dataset by
randomizing the pose of different objects on the table. Figure 5
shows all the objects used in the dataset.

2.2.3. Vision-Proprioception Model
One of the most challenging parts of visual RL tasks is that the
agent needs to learn both perceptions from high dimensional data
and the control policy simultaneously. Given an image, a usual

Frontiers in Neurorobotics | www.frontiersin.org 4 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

FIGURE 4 | The training dataset (left) and reconstruction (right) of the Variation Autoencoder (VAE). All of the images are sized 64x64. The dataset includes 20,000

images, and all the object samples are illustrated in Figure 5. As we can see, the position and general shape are well reconstructed, even though some details such

as the rotation angle and sharp corners are not exactly the same as the originals.

FIGURE 5 | We use 18 different objects in our pushing task, all of them of 2 cm height. The physical parameters which can affect the dynamics are randomized from a

range in Table 2 with automatic domain randomization (ADR) during training.

perceptron like multi-layer perceptron (MLP) or CNN encodes
all the information from the input. However, human beings only
pay attention to related information, which ismore efficient when
solving a complicated task. Besides visual input, proprioception
is also an essential channel among all the modalities. Inspired
by the way human beings solve a task through both vision and
proprioception, our vision-proprioception model fuses these two
and performs planning in the fusion space.

We embed the object maskmo and goal maskmg into a latent
space z with the pre-trained encoder e in Section 2.2.2, getting
the latent object state zo = e(mo) and latent goal state zg =
e(mg). As the latent variable z samples fromGaussian distribution
qθ (z|x) = N (µθ (x), σ

2
θ (x)), we take the mean of the encoder

µθ (x) as the state encoding. With the planar position of the

pusher pr = [x, y] easily obtained from forward-kinematics on
the joint-angles during robot manipulation, we construct a fusion
state space S = [pr , zo, zg] in which the policy πφ(at|s, s ∈ S)
does its planning. The action a = [ax, ay] is a continuous vector,
representing the pusher’s 2-D velocity in the motion plane. We
use squashed action implementation: a = tanh (ā), in which
ā ∼ N (µφ(x), σ

2
φ (x)) (Raffin et al., 2019).

2.3. RL With Vision-Proprioception Model
In this part, we show how to train RL with the model we
propose in Section 2.2.3. To improve the sample efficiency of
RL, we use the stochastic off-policy algorithm SAC (Haarnoja
et al., 2018) with the goal relabelling trick HER (Andrychowicz
et al., 2017). With an entropy regularization as part of the

Frontiers in Neurorobotics | www.frontiersin.org 5 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

optimization, the policy is trained to maximize the expected
return and the policy entropy, which is a randomness of the
policy. The general training process is similar to other off-
policy RL algorithms like DDPG and TD3 by optimizing two
targets: value function J(Q) and policy function J(π). The model
architecture is shown in Table 1. FC(), Conv(), and ConvT()
represent the fully connected, convolutional, and transposed
convolutional networks, respectively. The arguments of FC()
and Conv() / ConvT() are [node] and [channels, kernel size,
stride]. The training process of the whole framework is shown
in Figure 6. VAE is pre-trained before being used in RL; the two
encoders for object and goal share the same weights. During the
experiment, we can understand what the agent sees by visualizing
the reconstruction image from the decoder, which turns out to be
quite useful for debugging purposes during the training process.

2.3.1. State Space and Reward Specification
We use the following symbols in Algorithm 1: pr , po, and pg
are the ground truth positions of the robot pusher, center of
the object, and goal, respectively. Both po and pg are only

TABLE 1 | Model architecture.

Model Architecture

Encoder Conv([[32,4,2],[64,4,2],[128,4,2],[256,4,2]])

FC([256,6])

Decoder FC([256,1024])

ConvT([[32,5,2],[32,5,2],[16,6,2],[1,6,2]])

Actor FC([128,256,64,2])

Critic FC([128,256,64,1])

used to compute the step reward during the training process in
simulation, but not during tests or in the real robot experiment.
xo and xg are pixel observations of the object and goal, zo and
zg are corresponding encodings. Different reward functions can
lead to diverse training results. Previous work trained the robot
in the real world and computed rewards in the latent space of the
pixel observation (Xu et al., 2020). However, computing rewards
from the ground truth data is also possible in simulation, as all
ground truth information is available. In our work, we consider
three different kinds of reward functions. The first is a dense
reward in latent space:

r(zo, zg) = −‖zo − zg‖ (4)

and the second is sparse reward computed by the ground
truth state:

r(po, pg) =

{

−1, if‖po − pg‖ > threshold

0, if‖po − pg‖ 6 threshold
(5)

The third is dense reward with ground truth state:

r(po, pg) = −‖po − pg‖ (6)

The results are compared in the next section.

2.3.2. Sim2Real
We use Robogym (OpenAI, 2020) as the framework and build
our simulation environment according to our UR5 platform.
Domain randomization is used to bridge the gap from simulation
to the real world. With enough variability, the object in the real
world may be a variation from the randomized domains. We

FIGURE 6 | The network structure of our reinforcement learning (RL) framework, in which dashed arrows represent back propagation. VAE and RL are trained

separately, encoders from VAE do not update during the RL training process. The critic and actor parts are optimized by value target J(Q) and expected future return

J(π).

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

Algorithm 1: RL with Vision-Proprioception Model

Given:

Pre-trained Encoder eθ (x);
Policy πφ(at|pr , zo, zg);
Value Function Qψ (pr , zo, zg , a);

Replay Buffer D :{τ (1∼N)};

for n← 1 to N episodes do
Reset environment;
Sample and store pg , xg in τ

n;
for t← 1 to H episodes do

Get state St = {pr , po, xo};
Encode zo = eθ (xo), zg = eθ (xg);
Select action at ∼ πφ(at|pr , zo, zg);
Execute at in the simulation;

Get next state S
′

t = {p
′

r , p
′

o, x
′

o}, reward rt ;

Store (St , at , rt ,S
′

t) in τ
n;

Sample transitions (S , a, r,S
′
) ∼ D;

Relabel pg , xg to p
η
g , x

η
g with method in Andrychowicz

et al. (2017);

Get new encoding zg = eθ (x
η
g) and compute new reward

rn from function 4;

Minimize J(Q) and J(π) in Figure 6 using (S , a, rn,S
′
)

TABLE 2 | Dynamic parameters and their ranges in simulation.

Parameters Range

Size [4, 15] cm in length, fixed height=2cm

Mass [0.05, 0.3] kg

Sliding friction coefficient [0.1, 1]

Rotation friction coefficient [0.001, 0.01]

Damping coefficient [0.01, 0.015]

apply 18 differently shaped objects during the training process,
as shown in Figure 5, and randomize their physical parameters,
including mass, sliding/rotation friction coefficient of the object
from a reasonable range. Details of the physical parameters are
shown in Table 2. We randomize 20 different combinations of
physical parameters for each of the objects. At the beginning
of each episode, one combination of the physical parameter is
chosen and remains unchanged during the episode (50 action
steps in the training process). During training and testing, we
find an apparent gap between simulation and the real world in
all objects’ rotational motion: given the same pushing action, the
object shows more rotation in the real world.

3. RESULTS

We first test our algorithm by training an agent in simulation,
then evaluate the training results by applying the model directly
to a real robot platform. We build the same hardware setup for
simulation and the real robot as shown in Figure 3. The red
rectangle represents the object to be pushed, and blue is the

goal position. In a simulation (Todorov et al., 2012), the non-
collision goal object can be rendered conveniently. However,
in real experiments, for each episode, we first put the object
at the point we want, take an image with the bottom camera
and record it as the target image. Under human interference,
the robot can consistently switch the pushing side and keep
pushing the object to the target. We use the same online
controller (Ruppel et al., 2018) to translate Cartesian motions of
the pusher into joint-space robot commands as in our previous
pushing research (Cong et al., 2020).

3.1. Simulation Results
We evaluate our method against two prior model-free SOTA
algorithms and do ablation studies to determine how critical
each component of our method is. As is shown in Figure 7, we
compare the learning performances with the pushing success
rate. One episode is considered a success if the final center point
distance is within the threshold (5 cm) we set in Equation (5).
Orientation error is not considered in the reward function. To
our best knowledge, RL with imagined goals (RIG) is the SOTA
algorithm for the visual pushing task (Nair et al., 2018, 2020).
We choose RIG as the baseline method. Besides, we also give
the results with direct access to state information, including
the robot’s end-effector position and the object’s pose (Oracle).
However, because the interaction dynamics of differently shaped
objects differ significantly, one state-based policy can neither
learn to push all 18 candidates used in our experiment nor train
on one specific object and then generalize to another object.
Therefore, the “Oracle” learning curve is the learning result
of pushing one specific cylinder. For the other experiments,
one random object is selected from all the candidates at the
beginning of each episode.

During experiments, we find that two components have the
most significant influence on the training performance: (1) the
dimension of VAE latent space and (2) the reward function
type. We first compare learning results using VAE models with
different latent space dimensions (Figure 7, left). During all
training processes of the VAE, as the training epochs keep rising,
the model goes from under-fitting to over-fitting. Most of the
over-fitting happens between the range of (60, 90) epochs. For
the models with different latent spaces, we choose the saved
ones, which occur just before the over-fitting happens. Through
analysis, we find that the best latent dimension is 6. This may be
because it is a suitable dimension to remember the shape and pose
of the object, and at the same time, its representation is not too
complicated for the agent to learn an effective policy. Lower latent
space dimension (4) is not enough to represent all necessary
features of the mask image. However, a higher dimension (10)
also increases the learning difficulty of the agent.

One of the differences between our work and Nair et al. (2018)
is that we train our model in simulation and use it in on a real
robot, which reduces training time considerably and facilitates
access to the environment ground truth state, while the above
authors directly train their agent in the real world.We apply three
different reward functions (Section 2.3.1) in the training time and
find that (1) sparse reward from ground truth state (Equation (5))
leads to the best pushing performance (90% success rate), (2)

Frontiers in Neurorobotics | www.frontiersin.org 7 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

FIGURE 7 | Learning results in simulation, success rate vs. training steps. From left to right: model trained with different VAE latent space dimensions (left), reward

functions (middle), and input modalities (right). Through experiments, we find that the best performance comes from the model with latent space dimension dz = 6,

trained with the ground truth sparse reward function. “Oracle” in the right figure is the training results of a state-based agent on one single object (cylinder, d = 4cm).

“RIG” (Nair et al., 2018) takes only the image as input. We set random explorations at the first 200 episodes for each training process, leading to an initial success rate

of around 20% for each learning curve.

FIGURE 8 | The layout of the visualization tool in the experiment. A comprehensive view is given in (B): the blue and red rectangles represent the target and real-time

object pose, respectively, the yellow cross represents the pusher position. (A,C) are the real-time object masks after the color filter and the mask reconstruction from

the decoder. We find it quite useful to visualize the two masks during debugging for the experiment. (D) shows what the robot sees from the bottom camera and (E) is

the front view.

dense reward in latent space (Equation (4)) can also guide the
agent to a working policy, (3) dense reward from ground truth
state (Equation (6)) is invalid as is shown in Figure 7.

3.2. Real Robot Verification
This part evaluates whether our model can be transferred to the
real world and manipulate unseen objects (with similar shape
and size) without any fine-tuning. All the models in our method,
including the VAE and policy network, are trained in simulation.
The visualization tool and the real pushing experiment are shown
in Figures 8, 9. We visualize both the original object mask and its
reconstruction in real-time to check whether the information in
latent space is correct or not.

During experiments, we find that the interaction dynamics in
the real world are different from that in simulation, especially on

the rotation motion of the object. The objects turn easily around
the vertical axis in the real world under the robot’s pushing
actions. Even though we randomize the physical parameters in
simulation from a wide range, the gap cannot be eliminated. We
assume this is because the simulator simplifies the contact model.
The position distribution frequency from 500 episode trajectories
is shown in Figure 10. We set the same robot working space
and goal randomization space for simulation and the real world.
However, because the objects rotate easily in the real world, the
robot needs more adjusting motions to push the object to goal
positions than simulation. Most of these unexpected adjusting
motions happen around the workspace center, rendering the
object and pusher trajectory distribution more intensive in the
center part. To analyze the transfer performance of ourmodel, we
measure the distance between the goal position of the object and

Frontiers in Neurorobotics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

FIGURE 9 | A cuboid pushing process under human interference on the real robot platform. The object is put at an initial pose (marked with a blue box), the bottom

camera takes an image and records it as the target image, which is the blue mask. The robot keeps pushing the object to the target during the whole episode. From

(A–C), we can also see that the robot is switching the pushing side as in the simulation. In (C), the first pushing target is reached, and we give an active interference in

(D). From (D) to (F), the robot adjusts the pusher consistently and finishes the second pushing process successfully.

FIGURE 10 | Distribution of the object and pusher’s position during tests in simulation and real experiments. The color bar represents the occurrence frequency.

FIGURE 11 | Illustration of 7 tested objects in the real experiments. Object

numbered from 1–3 are training objects in the simulation. Object 4 and 5 have

similar shapes but different size with the training objects, but object 6 and 7

are novel in shape.

the final position (without orientation), also the corresponding
time consumption. We test 3 objects (1–3 in Figure 11) from the
training dataset and four unseen objects (4–7 in Figure 11) in the
experiment. The results in Table 3 show that our method shows

TABLE 3 | Comparison of pushing results.

Object number In simulation In real world

1 3.2 (cm) / 5.5 (s) 3.5 (cm) / 22.9 (s)

2 3.5 (cm) / 4.6 (s) 3.7 (cm) / 18.6 (s)

3 2.9 (cm) / 4.3 (s) 3.1 (cm) / 19.4 (s)

4 3.6 (cm) / 5.6 (s) 3.9 (cm) / 21.5 (s)

5 4.2 (cm) / 6.2 (s) 4.5 (cm) / 23.3 (s)

6 5.2 (cm) / 8.2 (s) 5.5 (cm) / 27.7 (s)

7 3.8 (cm) / 4.4 (s) 3.8 (cm) / 20.3 (s)

robustness to unseen objects. More adjusting pushing actions
also mean more time consumption for each push. Object 7 (the
pentagon) has a novel shape which is not included in the training
object, but our model can deal with it successfully. Except for
the object 6, the mean distance between goal and final position is
within 5 cm in both simulation and the real world. We analyzed
that the concave shape of object 6 is not learned by our Encoder.
Therefore, the latent state only extracts the position information
from the mask, but the shape feature is not well represented.

Frontiers in Neurorobotics | www.frontiersin.org 9 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

4. DISCUSSION

In this study, we present a self-supervised pixel-based method
that can encode visual inputs into latent space and fuse with a
robot’s proprioception into one model, to solve the task of planar
pushing and achieve a competitive advantage over a state-based
method. (The latter method can only be trained on a single object
without the ability to generalize to other objects.) Our model
is trained in a simulation environment and can be transferred
to the real world without fine-tuning. Real experiment results
show that the model is of high robustness to similar but
unseen objects.

The core idea of our method is to force the agent only
to pay attention to useful information in the image and
fuse the encoding with information from other perceptions
in the environment, making use of all task-relevant inputs
from multiple channels. A vision-proprioception model
is proposed as the controller and trained with SAC. We
believe our method can be taken as an inspiration to
extract useful information from different modalities and
fuse them for end-to-end decision-making problems,
improving learning efficiency and performance in real
robot RL tasks.

Based on current research, our future work will be adding a
top-down attention mechanism into RL tasks. One limitation of
our current method is that the agent cannot intelligently judge
whether the information is helpful in the task. The ability to learn
and infer task-relevant information from sequential observations

could solve more complicated tasks andmake our algorithm even
more generalizable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LC designed the algorithm and experiments. HL and NH helped
with the robot setup. PR provided the robot online controller. All
the authors contributed to valuable discussions in this paper.

FUNDING

This research was funded by the German Research Foundation
(DFG) and the National Science Foundation of China (NSFC)
in project Crossmodal Learning, DFG TRR-169/NSFC
61621136008. LC was supported by the China Scholarship
Council (CSC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2022.829437/full#supplementary-material

REFERENCES

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A.

et al. (2019). Solving Rubik’s Cube with a Robot Hand. arXiv. [Preprint].

arXiv:1910.07113v1.

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., and Hjelm, R. D. (2019).

“Unsupervised state representation learning in atari,” in Advances in Neural

Information Processing Systems (NeurIPS), Vol. 32. (Vancouver, DC: Curran

Associates), 8766–8779.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,

et al. (2017). “Hindsight experience replay,” in Advances in Neural Information

Processing Systems. (Long Beach, CA: Curran Associates), 5048–5058.

Bauza, M., Alet, F., Lin, Y.-C., Lozano-Pérez, T., Kaelbling, L. P., Isola, P., et al.

(2019). “OmniPush: accurate, diverse, real-world dataset of pushing dynamics

with RGB-D video,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (Macau), 4265–4272.

Bauza, M., and Rodriguez, A. (2017). “A probabilistic data-driven model for planar

pushing,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA) (Singapore), 3008–3015.

Choy, C. B., Gwak, J., Savarese, S., and Chandraker, M. (2016). “Universal

correspondence network,” in Advances in Neural Information Processing

Systems (NeurIPS), Vol. 29 (Barcelona: Curran Associates), 2414–2422.

Cong, L., Görner, M., Ruppel, P., Liang, H., Hendrich, N., and Zhang, J.

(2020). “Self-adapting recurrent models for object pushing from learning in

simulation,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Las Vegas, NV), 5304–5310.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., and Abbeel, P.

(2016). “Deep spatial autoencoders for visuomotor learning,” in IEEE

International Conference on Robotics and Automation (ICRA) (Stockholm),

512–519.

Florence, P. R., Manuelli, L., and Tedrake, R. (2018). “Dense object nets: learning

dense visual object descriptors by and for robotic manipulation,” in Proceedings

of the Conference on Robot Leaning (CoRL) (Zürich), 373–385.

Ha, D., and Schmidhuber, J. (2018). “Recurrent world models facilitate policy

evolution,” in Advances in Neural Information Processing Systems (NeurIPS),

Vol. 31 (Montreal, QC: Curran Associates), 2450–2462.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic:

off-policy maximum entropy deep reinforcement learning with a stochastic

actor,” in International Conference on Machine Learning (Stockholm: PMLR),

1861–1870.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). “Momentum contrast for

unsupervised visual representation learning,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Seattle, WA), 9729–

9738.

Henaff, O. (2020). “Data-efficient image recognition with contrastive predictive

coding,” in International Conference on Machine Learning (PMLR) (Vienna),

4182–4192.

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational Bayes,” in

Proceedings of the International Conference on Learning Representations (ICLR),

eds Y. Bengio and Y. LeCun (Banff, AB).

Kloss, A., Schaal, S., and Bohg, J. (2020). Combining learned and analytical

models for predicting action effects from sensory data. Int. J. Robot. Res.

doi: 10.1177/0278364920954896

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.

Stat. 22, 79–86.

Laskin, M., Srinivas, A., and Abbeel, P. (2020). “CURL: contrastive unsupervised

representations for reinforcement learning,” in Proceedings of the 37th

International Conference onMachine Learning Proceedings of Machine Learning

Research (PMLR), Vol. 119, eds H. Daumé and A. Singh (Cambridge),

5639–5650.

Frontiers in Neurorobotics | www.frontiersin.org 10 March 2022 | Volume 16 | Article 829437

https://www.frontiersin.org/articles/10.3389/fnbot.2022.829437/full#supplementary-material
https://doi.org/10.1177/0278364920954896
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Cong et al. VP Model for Object Pushing

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Manchin, A., Abbasnejad, E., and van den Hengel, A. (2019). “Reinforcement

learning with attention that works: a self-supervised approach,” in International

Conference on Neural Information Processing (Sydney, NSW: Springer),

223–230.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and Rezende, D. J. (2019).

Towards interpretable reinforcement learning using attention augmented

agents. arXiv preprint arXiv:1906.02500.

Nair, A., Bahl, S., Khazatsky, A., Pong, V., Berseth, G., and Levine, S. (2020).

“Contextual imagined goals for self-supervised robotic learning,” in Conference

on Robot Learning (Osaka: PMLR), 530–539.

Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine, S. (2018).

“Visual reinforcement learning with imagined goals,” in Advances in Neural

Information Processing Systems (NeurIPS), eds Bengio, S., Wallach, H.,

Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., Vol. 31,

9191–9200.

Olson, E. (2011). “AprilTag: a robust and flexible visual fiducial system,” in

IEEE International Conference on Robotics and Automation (ICRA) (Shanghai),

3400–3407.

Oord, A. V. D., Li, Y., and Vinyals, O. (2018). Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.

03748.

OpenAI (2020). Robogym. Available online at: https://github.com/openai/robogym

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). “Sim-to-

real transfer of robotic control with dynamics randomization,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA) (Brisbane, QLD),

1–8.

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., and Abbeel, P. (2017).

Asymmetric actor critic for image-based robot learning. arXiv preprint

arXiv:1710.06542.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., and Dormann, N.

(2019). Stable Baselines3. Available online at: https://github.com/DLR-RM/

stable-baselines3

Ruppel, P., Hendrich, N., Starke, S., and Zhang, J. (2018). “Cost functions

to specify full-body motion and multi-goal manipulation tasks,” in IEEE

International Conference on Robotics and Automation (ICRA) (Brisbane, QLD),

3152–3159.

Salter, S., Rao, D., Wulfmeier, M., Hadsell, R., and Posner, I. (2020). “Attention-

privileged reinforcement learning,” in Proceedings of the Conference on Robot

Learning (CoRL) (Cambridge).

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). “Universal value function

approximators,” in Proceedings of the 32nd International Conference onMachine

Learning Proceedings of Machine Learning Research, eds F. Bach, and D. Blei,

Vol. 37 (Lille: PMLR), 1312–1320.

Schmidt, T., Newcombe, R., and Fox, D. (2016). Self-supervised visual descriptor

learning for dense correspondence. IEEE Robot. Autom. Lett. 2, 420–427.

doi: 10.1109/LRA.2016.2634089

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and

Brain, G. (2018). “Time-contrastive networks: self-supervised learning from

video,” in IEEE International Conference on Robotics and Automation (ICRA)

(Brisbane, QLD), 1134–1141.

Todorov, E., Erez, T., and Tassa, Y. (2012). “Mujoco: a physics engine for model-

based control,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (Vilamoura-Algarve), 5026–5033.

Xu, Z., Yu, W., Herzog, A., Lu, W., Fu, C., Tomizuka, M., et al. (2020). Cocoi:

contact-aware online context inference for generalizable non-planar pushing.

arXiv preprint arXiv:2011.11270.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J., and Fergus, R.

(2019). Improving sample efficiency inmodel-free reinforcement learning from

images. arXiv preprint arXiv:1910.01741.

Zadaianchuk, A., Seitzer, M., and Martius, G. (2020). Self-supervised visual

reinforcement learning with object-centric representations. arXiv preprint

arXiv:2011.14381.

Zhao, T. Z., Nagabandi, A., Rakelly, K., Finn, C., and Levine, S. (2020). Meld: meta-

reinforcement learning from images via latent state models. arXiv preprint

arXiv:2010.13957.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Cong, Liang, Ruppel, Shi, Görner, Hendrich and Zhang. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2022 | Volume 16 | Article 829437

https://github.com/openai/robogym
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1109/LRA.2016.2634089
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Reinforcement Learning With Vision-Proprioception Model for Robot Planar Pushing
	1. Introduction
	2. Materials and Methods
	2.1. Related Work
	2.1.1. Planar Object Pushing
	2.1.2. Vision-Based RL
	2.1.3. Self-Supervised Feature Representation

	2.2. Theory
	2.2.1. Goal-Conditioned RL
	2.2.2. Variational Autoencoders
	2.2.3. Vision-Proprioception Model

	2.3. RL With Vision-Proprioception Model
	2.3.1. State Space and Reward Specification
	2.3.2. Sim2Real

	3. Results
	3.1. Simulation Results
	3.2. Real Robot Verification

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

