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Inverse Kinematics Solution of
6-DOF Manipulator Based on
Multi-Objective Full-Parameter
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Sha Luo †, Dianming Chu †, Qingdang Li* and Yan He*

College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, China

A multi-objective full-parameter optimization particle swarm optimization (MOFOPSO)

algorithm is proposed in this paper to overcome the drawbacks of poor accuracy, low

efficiency, and instability of the existing algorithms in the inverse kinematics(IK) solution

of the manipulator. In designing the multi-objective function, the proposed algorithm

considers the factors such as position, posture, and joint. To improve PSO, the proposed

algorithm comprehensively analyzes all factors affecting the global and local searching

abilities. Based on this, the initial population is designed following the localized uniform

distribution method. Meanwhile, the inertia weight, asynchronous learning factor, and

time factor are respectively designed by introducing the iteration factor. Finally, this paper

tests the performance of MOFOPSOwith three typical functions to obtain a better inverse

kinematics solution of the 6-DOF manipulator. Also, six other algorithms are taken for

performance comparison. The experimental results indicate that the proposed method

not only ensures the stability of the manipulator but also achieves high accuracy and

efficiency in solving the inverse kinematics of the 6-DOF manipulator.

Keywords: inverse kinematics, multi-objective full-parameter optimization particle swarm optimization, inertia

weight, asynchronous learning factor, time factor

INTRODUCTION

Recently, with the increase of the application scenarios and the number of mechanical arms,
achieving high precision, and stability of the manipulator motion control system has attracted
much attention. As an important factor to determine the motion precision and stability of the
manipulator, kinematics modeling, and solving of manipulator has become a research hotspot.
Functionally, kinematics can be divided into forward and inverse kinematics. With the change of
each joint angle,the position and attitude of the end-effector of the manipulator can be obtained by
using forward kinematics. This process represents the transformation from joint space to Cartesian
space. The inverse kinematics solves the variation of the joint angles of themanipulator based on the
position and attitude of the end-effector. Since the kinematics equation of a manipulator is a set of
nonlinear equations, the solution to these equations must consider the existence of single solution
and multi-solution and solution method. Compared to forwarding kinematics, inverse kinematics
is more difficult to model and solve.

The study of inverse kinematics is crucial in the field of robotics research. This is not
only because inverse kinematics is the basis of robot trajectory planning motion control and
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workspace analysis, but also it is a technical problem in
robotics (Shi et al., 2020). With the continuous study of inverse
kinematics, the inverse kinematics of the manipulator can be
solved by four methods, including geometric method, analytical
method, numerical method, and artificial intelligence method.
The geometric method was first proposed to solve inverse
kinematics. The paper (Xie et al., 2006) proposed a geometric
method for the inverse kinematics of a 2-DOF manipulator.
However, the process of solving the inverse kinematics of the
multi-DOF manipulator is very complex, and the geometric
method does not work. The most useful method for solving
this problem is the analytical and numerical methods. Before
solving inverse kinematics, the analytical method must analyze
the number and structure of the joint of the manipulator.
Craig (2009), Murray (2017), and Angeles and Angeles (2002)
exploited the analytical method to solve the IK of the
decoupledmanipulator. In Funda and Paul (1990) concluded that
quaternion is themost economical point transformation operator
for the rigid screw displacement problem. In Raghavan and Roth
(1993) proposed the elimination method as the solving method
for the IK of the 6-DOF manipulator, in which the solution
to each position equation of the manipulator was improved in
the form of a six-member quadratic polynomial. In Husty et al.
(2007) combined double quaternion with Segre flow patterns
for the IK of the 6-DOF manipulator. Although the analytical
method is very efficient in solving the IK equation, there are some
shortcomings such as low accuracy, poor real-time performance,
and difficulty in ensuring stable operations of the manipulator
in a dynamic environment. In contrast, there are a variety
of numerical methods that can be exploited to solve inverse
kinematics, such as Newton’s method, Jacobian iterative method
(Buss, 2004), and mixed inverse kinematics method. Because
the Jacobian iteration method has a simple principle and no
special requirements on the structure and number of joints of
the manipulator, it is exploited as a method for solving most
IK problems. Meanwhile, the numerical method also has the
advantage that it can obtain an inverse solution containing path
planning from the initial pose to the target pose, so it is suitable
for path planning. However, in theory, it is impossible to verify
whether the inverse solution is optimal or suboptimal.

With the continuous development of artificial intelligence
and intelligent algorithms, some artificial intelligence methods
have been used to solve the inverse kinematics of manipulators
and have achieved good effects. And compared with geometric,
numerical and analytical methods to solve the inverse kinematics
of manipulator, the artificial intelligence algorithm does not need
to carry out derivation operation to obtain jacobian matrix,
and does not have the singularity problem in the conventional
iterative method (Shi et al., 2020). And artificial intelligence
algorithm has no special requirements for robot mechanism
and has strong universality,so it is applied to parallel (Kucuk,
2012) and hybrid robots (Tanev, 2000; Serdar and Baris Doruk,
2016). The most widely used algorithms include ANN(artificial
neural network), GA(genetic algorithm), and PSO. Hasan et al.
(2006) proposed an ANN-based adaptive learning algorithm
to overcome the uncertainty and nonlinearity in solving IK
equations. Momani et al. (2016) solved the IK of the manipulator

with GA, which obtained path planning in the iterative process.
Ma et al. (2016) proposed to use ANN to solve the IK of the
manipulator. Khaleel (2018) proposed a combination of neural
network algorithm and GA for the IK of the manipulator.
Although ANN and GA have achieved good results in solving
the IK problem, both of them have some defects. ANN suffers
from a long training time and weak generalization ability, while
GA has a long iteration time and easily falls into local optimum.
In 2018, Nizar and Alimi (2013) used PSO and improved PSO to
solve the IK problem, and they compared the simulation results
of the two algorithms. In 2013, Idris et al. (2018) proposed an
adaptive PSO. They applied this algorithm to solve the IK of a
3-DOF manipulator and achieved good results. Dereli and Koker
(2018) proposed an adaptive weighted PSO (AWPSO) algorithm
to achieve high position accuracy. The 7-DOF manipulator
was taken as the object for simulation experiments, and the
simulation results were compared with those of the traditional
PSO algorithm.

All the above studies only focused on solving the IK problem
of the manipulator but rarely conducted a comprehensive and
in-depth study of the IK of the manipulator. However, the
development of the IK algorithm is limited by the accuracy
of position and attitude and the stability of the manipulator.
Aiming at the poor accuracy and low efficiency in solving the
manipulator and the instability in running the manipulator, the
MOFOPSO algorithm is proposed in this paper. Firstly, the
algorithm minimizes the manipulator’s position error, attitude
error, and joint angle change. Then, it transforms the solution of
the inverse kinematics of the manipulator into a multi-objective
optimization problem.

KINEMATICS ANALYSIS OF
MANIPULATOR

For further studying the kinematics of the manipulator, this
paper seper selects the 6-DOF manipulator as the research
object. Firstly, the kinematic model of the manipulator needs
to be established. In terms of kinematic model, literature (Ayiz
and Kucuk, 2009) uses exponential rotation matrix to directly
describe the physical mechanism of the manipulator, but the
multiple transformations of matrix produce a large amount
of calculation.In this paper the coordinate system of the 6-
DOF manipulator is established according to the Danavit and
Hartenberg model (Danavit and Hartenberg, 1964), which is
shown in Figure 1.

In terms of the adjacent coordinate systems of the
manipulatoriand i − 1, the homogeneous coordinate
transformation matrix i−1

i T can be used to express the relative
relation of the position and pose.

i−1
i T =









cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1









(1)
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FIGURE 1 | The coordinate system of the 6-DOF manipulator.

TABLE 1 | The DH parameters of the 6-DOF manipulator.

i di (mm) αi (Deg) ai (mm) θi (Deg) θi (Degree)

1 450 −90 150 θ1 −170∼170

2 0 0 570 θ2 −110∼155

3 0 −90 130 θ3 −80∼210

4 640 90 0 θ4 −190∼190

5 0 −90 0 θ5 −50∼230

6 95 0 0 θ6 −360∼360

According to the DH model, it is easy to obtain the model of the
6-DOF manipulator’s forward kinematics, and the model can be
expressed as follows:

0
6T =

0
1T

1
2T

2
3T

3
4T

4
5T

5
6T =









nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1









(2)

Where 0
6T represents the position matrix of the end-effector of

the mechanical arm relative to the inertial coordinate system;
i−1
i T represents the homogeneous transformation matrix of
adjacent coordinate systems.

The IK of the manipulator can be solved by obtaining the
pose matrix of the end-effector of the manipulator and solving
the changes of the joint angles of the manipulator. The DH
parameters of the 6-DOF manipulator used in this paper are
listed in Table 1.

Based on the parameters in the DH table and equations (1)
and (2), the expression of the pose matrix of the end-effector of
the manipulator can be obtained.

THE PROPOSED MULTI-OBJECTIVE
FULL-PARAMETER OPTIMIZATION
PARTICLE SWARM OPTIMIZATION
METHOD

Classical PSO Method
With the progress of the research on the IK of manipulators,
artificial intelligence has been exploited to solve the inverse
kinematics, and the swarm optimization algorithm has been
widely used in this field. As early as 1995, Eberhart and
Kennedy (1995) proposed PSO under the inspiration of birds’
foraging behavior. PSO simulates the birds in the flock in
the form of massless particles and gives two attributes of the
particle, i.e., the speed and direction of movement. During
the whole search process, there are two extreme values. One
is the current individual extreme value,which is searched by
the individual particle separately. Also, the individual particle
exchanges information with other particles in the group. Another
extreme value is the group extreme value, which is updated into
the best individual extreme value. Based on the two extreme
values, all particles in the group dynamically adjust their velocity
and position,and the update equations are as follows:

vjd = vjd + c1r1(pbest − xjd) + c2r2(gbest − xjd) (3)

xjd = xjd + vjd (4)

Where, Xj = (xj1, xj2, . . . xjD) is the position of the j particle;
Pj = (pj1, pj2, . . . pjD)denotes the extreme value; gbest is the
population extreme value; vjd is the velocity of the particle; c1 and
c2 are constants representing the learning coefficient; r1 and r2 are
random real numbers in the range of [0, 1]; d = 1, 2, 3 · · · , D
is the dimension, and j = 1, 2, 3, . . . S is the j particle.

The flow chart of using the classical PSO to solve the IK of the
manipulator is shown in Figure 2.

Multi-Objective Full-Parameter
Optimization PSO Method
In the intelligent algorithm, the PSO algorithm has many
advantages, such as easy implementation, fewer tuning
parameters, and fast convergence,so it can obtain good
results in the application field. However, in many cases, the
classical PSO algorithm is easy to fall into the local optimum.
Therefore, the studies (Shi and Eberhart, 1998a,b) optimize
the traditional PSO algorithm for balancing global and local
search capabilities by changing the inertia weight. Besides the
inertia weight, the searching ability and efficiency of the PSO
algorithm are affected by the selection of learning factors, initial
population, and fitness function. In recent years, researchers
have improved various particle swarm optimization algorithms
in Table 2. So, considering these factors, the initial population
is designed in this paper following the localized uniform
distribution method. Then, the inertia weight, asynchronous
learning factor, and time factor are respectively designed
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FIGURE 2 | The flow chart of the traditional PSO used as the IK solution of the

manipulator.

TABLE 2 | Particle swarm optimization and its improved algorithm.

References Algorithm Improve

Eberhart and

Kennedy, 1995

PSO Based on the flock-based predation

behavior

Lovbjerg et al.,

2001

Breed With the advantages of both two

algorithms, faster speed and higher

accuracy

Zhan et al., 2009
Adaption Inertial weights change and converge

faster than the Breed Algorithm

Lili et al. (2015) Lin Improve the ability to find excellence,

reduce the oscillation phenomenon

Yaming (2019) Nature More optimization ability and solution

speed, reduce precocious

convergence

following the method of introducing the iteration factor. Finally,
a multi-objective PSO algorithm with full parameters is designed
in combination with the multi-objective optimization algorithm.
The proposed algorithm makes the particle swarm in the initial
state more representative and obtains the optimal solution
quickly. Also, it integrates the inertia weight and learning
factor into the design of the factors and the process of location
update algorithm to balance global and local search capabilities,
thus improving the diversity and generalization ability of
the algorithm.

Initialize the Population Design
The selection of the initial population directly affects the search
efficiency of the PSO algorithm. Theoretically, the optimal
solution of the problem is unknown at the initial stage of the
algorithm. So, if the initial population is randomly generated, the
population representation is poor, which can affect the efficiency
of particle swarm search. Meanwhile, with the increase in the
dimensionality of the search space, the algorithm is easy to fall
into local optimum because of the randomness of the initial
position of particle swarm optimization. If the particles can be
uniformly distributed in the feasible region during initialization,
the efficiency of the global search can be guaranteed, and
the probability of searching for the optimal solution by the
population can be improved. In response to this problem, a
limited domain uniform distribution method is proposed to
generate the initial population. Considering the robot joint angle
restriction, the initial value of each dimensional particle swarm is
uniformly distributed within this range.

Optimal Inertia Weight Strategy
In PSO algorithms, inertia weight is a very important parameter
to balance the global and local search capabilities of the whole
algorithm. If the inertial weight is too large, the global search
capability is strong but the local search capability is poor; if the
inertial weight is too small, the local search capability is strong
but the global search capability is poor (Xi-Hu, 2011). Although
the decline of linear weight can improve the balance of the global
and local search capabilities of the algorithm to some extent,
the local search capability will be weakened as the number of
iterations decreases linearly. It is found that a large inertial weight
is conducive to the global search at the beginning of the iteration,
while a small inertial weight is conducive to local precise search at
the later stage of the iteration. However, a fast decline process is
easy to cause the problem of search fault. Therefore, this paper
designed the nonlinear function of optimal inertia weight by
introducing the factor of iteration number. Based on this, the
range can be quickly determined at the beginning of the iteration.
Then, the local precise positioning is realized with a small change
of inertia weight to obtain the optimal inertia weight at a fast
speed. The function is as follows:

w = wmax − (wmax − wmin)sin
( rπ

2N

)

(5)

Where,w ∈ [wmin,wmax]; r and N are respectively the current
iteration and total iterations number of the algorithm.

Asynchronous Learning Factor
The learning factor is usually set to a constant in the classical
PSO algorithm. But it is an important factor that affects the self-
cognition and social cognition of particles and the movement
direction and position of particles. Also, it reflects the degree
of information communication among particles in the whole
population. To make the global search ability better, at the
beginning of the algorithm iteration, the particles are expected to
have more group communication, that is, strong social cognition
ability, which facilitates the global search. In later iterations,
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the self-cognition ability of the particle is expected to be strong
to achieve an accurate local search. Based on the analysis, the
function and iteration number factor are introduced into the
learning factor design in this paper. Also, in the early iteration,
the learning factor is adjusted to achieve a strong social cognition
ability and a strong self-cognition ability in the late iteration,
Besides, the optimal learning factor is quickly realized through
nonlinear changes. The learning factors are set as follows:

{

c1 = cmin + (cmax − cmin)
2

1+e−(1+20r�N )

c2 = cmax − (cmax − cmin)
2

1+e−(1+20r�N )

(6)

Where, c1, c2 ∈ [cmin, cmax]; r and N are respectively the current
iteration and total iterations number of the algorithm.

Time Factor
The position update strategy of the classical PSO is based on
the initial position and the current speed. From the perspective
of physics, the addition of two physical quantities requires the
quantities have the same dimension, which means that the direct
addition of displacement and velocity does not conform to the
physical theory. Therefore, in the classical PSO algorithm, the
position update formula contains a time factor that is important
for particles to oscillate near the optimal solution. However, this
time factor is usually set to 1 (Kong et al., 2010). To improve the
particle search ability, the time factor is adopted by this paper. In
equation (4), a time factor is added to the local update model, and
the update function is as follows:

xid = xid + Tvid (7)

Through experiments, it is found that the convergence of the
algorithm is affected by the time factor. So, the iteration number
is introduced to design the time factor:

T = 0.5+
r

2N
(8)

Where, r and N are respectively the current iteration and total
iterations number of the algorithm.

Multi-Objective Function
Multi-objective optimization (He and Shao-hua, 2019) is
complex, and it is widely used in engineering applications.
However, in this optimization problem, each objective cannot
achieve the optimal at the same time due to non-linearity, multi-
dimension, and other characteristics. Also, each objective must
have a weight. In this case, the allocation of the weight becomes
a hot research topic. There are a variety of traditional multi-
objective optimizationmethods, such as the weighted summation
method (Zadeh, 1963), objective programming method (Charnes
et al., 1955), maximum and minimum value (Tseng and Lu,
1990), etc. The key of these methods is to transform the multi-
objective problem into a single-objective problem and then
use the single objective algorithm for optimization. However,
these methods rely too much on experience and fail to achieve
the optimization effect when the multi-objective problem has
non-linearity and high latitude. Recently, with the continuous
development of the evolutionary algorithm along with its
unique update mechanism, various evolutionary algorithms have
been applied to the combinatorial optimization and numerical
optimization fields (Liu et al., 2020) and achieved breakthroughs.
TheMOPSO algorithm (Li et al., 2017) is one of the typical multi-
objective algorithms. Due to the precocity of particle swarm
in the traditional multi-objective PSO algorithm, the particle
swarm will suffer from local optimization, poor convergence,
global search, and local search ability imbalance (Feng et al.,
2020). In this section, the multi-objective function will be
optimized and improved for the IK of the manipulator to make
the MOPSO algorithm have excellent optimization performance
and pertinence.

FIGURE 3 | The image of the Ackely function.
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Based on the multi-objective optimization and taking the
6-DOF manipulator as the object, this paper designs a multi-
objective function to minimize position error, attitude error, and
joint angle change:

{

F = Min(f1(ptar), f2(etar), f3(θi))
s.t.θimin ≤ θi ≤ θimax

(9)

Where, F is the multi-objective function; f1(ptar), f2(etar), and
f3(θi) are respectively the position error function, the attitude
error function, and the joint angle change function; θimin and
θimax are the ranges of joint angle θi.

To make the algorithm more targeted, the structural principle
of the manipulator is studied in-depth, and then the position

FIGURE 4 | The comparison of the convergence speed of different algorithms.

FIGURE 5 | The image of the Rastrigin function.

error function, attitude error function, and angle change function
of each joint are designed. Especially, the joint angle change
function involves the changes of multiple joint angles. If it is
designed with the minimum changes of all joint angles, it does
not conform to the structural principle of the manipulator.
Specifically, there is the least change in the inertial coordinate
system of the manipulator in the whole operation process, while
the joint changes at the end of the manipulator are generally
large. So, the linear weighted summation method is adopted
by this paper to design the joint angle change function. The
mathematical description of the position error function, attitude
error function, and joint angle change function is as follows:







































f1(p) =
∥

∥ptar −Hposition(qtar)
∥

∥

f2(p) =
∥

∥etar −Horientation(qtar)
∥

∥

f3(θi) =

6
∑

i=1
λi

√

(θi − θinit)
2

6
∑

i=1
λi = 1

i = 1, 2 · · · 6

(10)

Where, ptar and etar are respectively the target position and
attitude of the end-effector of the manipulator; qtar is the angle
value of each joint angle of the manipulator, and it can be solved
by the equation; θinit contains the initial values of the joint angles
of the manipulator, and λi is the weight value of the change of
joint angle θi.

Fitness Function
The construction of the fitness function is the most important
step in the PSO algorithm. For the inverse kinematics, this paper
designs the fitness function by considering the position, attitude
accuracy, and joint angle change at the same time. According to
equation (9), the fitness function with the minimum variation

FIGURE 6 | The Comparison of the convergence speed of different algorithms.
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FIGURE 7 | The image of the Griewangk function.

FIGURE 8 | The abilities of the algorithms to jump out of the local optimal.

of position accuracy, posture accuracy, and joint angle can
be obtained:























f1(qcur) =

√

(px−tar − px−cur)
2
+ (py−tar − py−cur)

2
+ (pz−tar − pz−cur)

2

f2(qcur) =

√

(ex−tar − ex−cur)
2
+ (ey−tar − ey−cur)

2
+ (ez−tar − ez−cur)

2

f3(θi) =

6
∑

i=1
λi

√

(θi − θinit)
2

(11)

Where,ptar = [px_tar , py_tar , pz_tar]
T and etar =

[ex_tar , ey_tar , ez_tar] are respectively the target position and

attitude of the manipulator; pcur = [px_cur , py_cur , pz_cur]
T and

ecur = [ex_cur , ey_cur , ez_cur] respectively represent the initial

position and attitude of the manipulator; λi is the weight value of
the change of joint angleθi.

IK Model of the 6-DOF Manipulator Based
on MOFOPSO
Based on the MOFOPSO algorithm, the IK model of the 6-DOF
manipulator can be obtained as follows:















































































































F = Min(f1(ptar), f2(etar), f3(θi))
s.t.θimin ≤ θi ≤ θimax

vjd = w � vjd + c1(pbest − xjd)+ c2(gbest − xjd)

xjd = xjd + Tvjd
w = w = wmax − (wmax − wmin)sin

(

rπ
2N

)

c1 = cmin + (cmax − cmin)
2

1+e−(1+20r�N )

c2 = cmax − (cmax − cmin)
2

1+e−(1+20r�N )

T = 0.5+ r
2N

f1(p) =
∥

∥ptar −Hposition(qtar)
∥

∥

f2(p) =
∥

∥etar −Horientation(qtar)
∥

∥

f3(θi) =

6
∑

i=1
λi

√

(θi − θinit)
2

6
∑

i=1
λi = 1

i = 1, 2 · · · 6

(12)

Where all the variables in the formula have been introduced in
the above description.Among them, the value of λi (i = 1,2..6)
is decreasing, i.e., λ1 > λ2 > λ3 > λ4 > λ5 > λ6. The linear
decline method is adopted in this calculation.

The proposed MOFOPSO algorithm analyzes the structure
characteristics of the mechanical arm and the instability problem
in the process of mechanical arm movement. Also, it analyzes
the defects of traditional inverse kinematics algorithms, such as
only considering location accuracy or precision of position and
attitude. So, the proposed algorithm is a combination of theory
and application and has certain practicability.
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TABLE 3 | The initial and convergent values of different algorithms.

Algorithm Initial value Convergent value Iterative step Gradient

Ackely PSO 3.156917 0.017917 19 0.165211

Adaption 2.699713 0.013031 16 0.167918

Breed 2.800934 0.017496 17 0.163732

Lin 2.852798 0.129628 17 0.160186

MOFO 4.957359 0.050007 16 0.30671

Rastrigin PSO 0.03943727 0.002264 7 0.0053105

Adaption 0.04220217 0.000696 6 0.0069178

Breed 0.04718385 0.001574 2 0.0228052

Lin 0.13877033 0.007731 11 0.0119127

MOFO 0.51498297 8.55E55E-02 10 0.0429484

Griewangk PSO 17.48753 3.39924 10 1.408829

Adaption 30.34479 3.49541 10 2.684937

Breed 32.09457 8.848614 7 3.320851

Lin 16.80333 9.048955 5 1.550875

MOFO 56.26652 10.38 7 6.555218

TABLE 4 | The relevant parameters of various algorithms.

PSO variants Parameters

PSO c1=2,c2=2,w=0.5

PSO_Adaptation c1=2,c2=2,wmax=0.8,wmin=0.2

PSO_Breed c1=2,c2=2,w=0.5,bc=0.8,bs=0.05

PSO_Lamda c1=2,c2=2,lamda=0.99

PSO_Lin c1=2,c2=2,wmax=0.8,wmin=0.2

PSO_Nature c1=2,c2=2,w=0.5

MOFOPSO Cmax=3,cmin=1.5,

wmax=0.8,wmin=0.2

(c1=2.99,c2=1.505,w=0.466)

ALGORITHM PERFORMANCE TEST

In this paper, six algorithms are taken for performance test,
including the classical PSO algorithm, random weight PSO
(RWPSO) (Zhan et al., 2009), linear decline PSO (LDPSO) (Lili
et al., 2015), PSO algorithm based on hybridization (Lovbjerg
et al., 2001), PSO algorithm based on natural selection (Yaming,
2019), and PSO algorithm based on simulated annealing.
However, in the performance evaluation process, the PSO
algorithms based on simulated annealing and natural selection
achieve poor performance in convergence quality, speed, and
stability. Thus, they are excluded from the evaluation of test
function, convergence speed, and stability, while the performance
of the rest algorithms is compared.

Although many articles (Yiyang et al., 2021) use many test
functions to test the performance of PSO algorithm, but in
this paper, MOFOPSO algorithm is proposed to overcome
the drawbacks of poor accuracy, low efficiency. SO three
test functions are chosen for the algorithm performance test,
including Ackely function, Rastrigin function, and Griewangk
function to investigate the shortcomings of classical PSO

FIGURE 9 | The relation of the fitness value and the number of iterations.

algorithms, such as slow convergence speed and falling into
local optimum.

Convergence Rate Test
Ackely function is a continuous function used to evaluate the
convergence rate of an algorithm. It is obtained by superposing
the exponential function with a moderately amplified cosine.
As shown in Figure 3, the Ackely function presents the multi-
directionality of a multi-dimensional point in the optimization
process. Thus, the Ackely function is used to detect the global
convergence rate of the algorithm.

Figure 4 demonstrates the results obtained by the six
algorithms using the Ackely function. It indicates that the
RWPSO and MOFOPSO algorithms achieve the fastest
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FIGURE 10 | The relation between the fitness value and the number of

iterations of the MOFOPSO algorithm.

convergence speed, while the MOFOPSO is better than the
RWPSO at a close speed. From the vertical axis of the image,
it can be seen that the fitness function value of the MOFOPSO
algorithm rapidly decreases from the large value to the optimal
value. This meets the design goal of balancing the global and
local search capabilities of the algorithm.

Convergence Test
The Rastrigin function is a highly multimodal function used to
test the ability of global optimization. This function is based
on the De Jong function and adds a cosine modulation transfer
function to generate frequent local minima. This paper makes
good use of the Rastrigin function to test the practicability of
the algorithm for a case with regular solutions. The figure of the
Rastrigin function is illustrated in Figure 5.

Figure 6 demonstrates the convergence of different
algorithms. It can be seen that all the algorithms converge
well, and the proposed MOFOPSO algorithm converges faster
than the other algorithms with no shocks.

Skip the Local Optimal Capability Test
The Griewangk function is used to detect the ability to jump out
of the local optimum. The function changes with the quantity,
and there are a large number of local extreme values in the real
data distribution of the function. The image of the Griewangk
function is illustrated in Figure 7. This function can be exploited
to detect the convergence of the algorithm with a regular position
of minimum value.

Figure 8 demonstrates the abilities of the algorithms to
escape from the local optimum. It can be seen that the
multi-objective full-parameter optimization particle swarm

FIGURE 11 | The stability of different algorithms.

optimization algorithm can escape from the local optimum at a
faster speed than other algorithms.

Above all, the three test functions, Ackely function, Rastrigin
function, and Griewangk function, are all multi-modal functions,
which are considered to be complex functions that are difficult
for the optimization algorithm to solve. However, the proposed
MOFOPSO algorithm can solve the complex multi-modal
function optimization difficulty and performs better in terms
of convergence speed, convergence, and the ability to escape
from the local minimum value than other algorithms. And it
should be noted that in the figure comparing the test functions
(Figures 6–8), it can be seen that the initial value is the fitness
function value. Due to our fitness function on the traditional
PSO algorithm was improved, the mechanical arm joint Angle
change values as a fitness function of a component, and the
change of the mechanical arm joint Angle value compared to
the position and posture error value is bigger, which makes
the whole parameter optimization PSO to calculate the fitness
function value is higher than other fitness function value of
the algorithm.

Above all, we can obtain the initial and convergent values of
different algorithms in Table 3. Although the initial value of the
MOFOPSO algorithm is bigger than others, the gradient of the
MOFOPSO algorithm shows that this algorithm has the fastest
convergence speed.

RESULTS DISCUSS

Based on the algorithm performance test, a 6-DOF manipulator
from Japan Yaskawa Company is taken to simulate the solution
to the inverse kinematics problem. Meanwhile, six algorithms
are selected for performance comparison, and the simulation
results of the MOFOPSO algorithm proposed in the article are
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TABLE 5 | The simulation results of different algorithms.

PSO variants Parameters Average fitness Average time

PSO c1=2,c2=2,w=0.5 0.004791622 3.3710435

PSO_Adaptation c1=2,c2=2,wmax =0.8,wmin =0.2 0.004791622 5.0460895

PSO_Breed c1=2,c2=2,w=0.5,bc =0.8,bs =0.05 0.002395811 3.8617253

PSO_Lamda c1=2,c2=2,lamda=0.99 8.605051908 3.0658353

PSO_Lin c1=2,c2=2,wmax =0.8,wmin =0.2 0.002395811 4.9974822

PSO_Nature c1=2,c2=2,w=0.5 10.31912828 1.6046351

MOFOPSO Cmax =3,cmin =1.5,wmax =0.8,wmin =0.2 (c1=2.99,c2=1.505,w=0.466) 4.39E-09 2.6588259

TABLE 6 | The angle values of the six joints of the manipulator calculated by different algorithms.

Algorithm 1-DOF 2-DOF 3-DOF 4-DOF 5-DOF 6-DOF

Standard value −1.047198 −1.047198 1.047198 −0.785398 0.785398 0.523599

PSO −0.49164228 −0.9547942 0.003137195 −1.42360713 1.275797884 1.306460089

PSO_Adaptation −1.1199608 −1.58311273 0.63145572 −0.16697007 1.031499907 −0.33419752

PSO_Breed −1.08357914 −1.31515517 0.839326647 −0.47618412 1.132207126 0.185101802

PSO_Lamda 0.557517444 −0.12569131 −0.71358997 1.027890172 −2.00106961 2.265754194

PSO_Lin −1.71189772 −1.31515511 0.839326614 −0.47618413 0.673626419 0.643682534

PSO_Nature −2.54977472 0 0 0 0 0

MOFOPSO −1.04719681 −1.04719668 1.047197423 −0.78539912 0.785401078 0.523591577

analyzed to further verify the superiority of the performance of
the algorithm.

Parameter Setting Analysis
When the MOFOPSO algorithm is simulated, it is not necessary
to set the relevant parameters of the algorithm but to input
the parameters of the 6-DOF manipulator. However, for other
algorithms,it is necessary to set the relevant parameters (inertia
weight, learning factor, or one of both) to the empirical values
during simulation. Thus, in terms of parameter setting, the
MOFOPSO is more practical, effective, and intelligent than other
algorithms. The relevant parameters of various algorithms are
listed in Table 4.

In this process, it is found that the optimal value of the inertia
weight w is 0.466 rather than the empirical value of 0.5. Also, the
best value of the learning factor is c1 = 2.99 and c2 = 1.505
rather than the empirical value and c2 = 2. Thus, it shows that
the MOFOPSO algorithm designed in this paper achieves good
convergence and efficiency when it is applied to solve the IK of
the 6-DOF manipulator.

Convergence Rate Analysis
In the simulation, the relationship between the fitness
and the number of iterations for solving the IK of the 6-
DOF manipulator using different algorithms is illustrated
in Figure 9. It indicates that the MOFOPSO algorithm
converges very fast and finds the optimal solution successfully.
Due to the large difference in the order of the fitness
function value of different algorithms, the convergence
speed of the MOFOPSO algorithm is not obvious. Thus,
the simulation results of the MOFOPSO algorithm are

extracted separately, which are shown in Figure 10. It shows
that the MOFOPSO reaches convergence after about nine
iterations, indicating a very fast convergence speed of the
MOFOPSO algorithm.

It should be noted that the initial value (in Figures 9,
10) is the fitness function value, the relation between the
fitness value and the number of iterations of these algorithms
can indicate the convergence speed of the algorithm (Serkan,
2021).

Stability Analysis
It is acknowledged that stability is a prerequisite for the
operation of an algorithm. If there is no guarantee of stability,
it is meaningless to discuss the convergence of the algorithm.
Therefore, this paper conducts experiments on the stability of
the algorithms. Figure 11 shows the average value of the fitness
function obtained by applying the algorithms to solve the IK
of the 6-DOF (each algorithm is run 10 times consecutively).
It indicates that the average fitness value of the classical PSO
algorithm and RWPSO algorithm fluctuates greatly, indicating
the poor stability of these two algorithms. In contrast, the average
fitness value of the MOFOPSO algorithm is basically unchanged,
indicating that the algorithm has good stability.

Synthetic Simulation Results Analysis
Table 3 lists the comprehensive results of solving the IK of
the manipulator using seven different algorithms including
MOFOPSO. By analyzing the data inTable 5, the PSO algorithms
based on natural selection and simulated annealing obtain
the worst accuracy and large minimum values of the fitness
function. The precision of the classical PSO algorithm, RWPSO
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algorithm, LDPSO algorithm, and hybridization-based PSO is
all better. The MOFOPSO algorithm proposed in this paper
achieves the highest precision, and it improves the fitness value
to six orders of magnitude compared with other algorithms. In
terms of solving speed, the proposed MOFOPSO algorithm is
the fastest, about 0.7 s faster than the fastest one among other
algorithms with the same accuracy, and the speed is increased
by about 20%.

In summary, Table 6 shows the angle values of the six
joints of the manipulator calculated by different algorithms.
The standard value is the joint Angle value of the manipulator
obtained by mathematical derivation. It can be seen from the
calculation results that the full-parameter optimization multi-
objective particle swarm optimization algorithm proposed in this
paper has the highest accuracy.

CONCLUSION

In this paper, the problem of solving the inverse kinematics
of the manipulator is analyzed firstly, and the advantages
and disadvantages of the existing solution algorithms are
summarized. Then, the PSO algorithm based on the principle
of multi-objective optimization is selected to solve the IK of
the manipulator. Next, the MOFOPSO algorithm is proposed
and realized. Finally, to obtain a better inverse kinematics
solution of the 6-DOF manipulator,this paper tests the

performance of MOFOPSO with three typical functions.
Also, six algorithms are taken for performance comparison.
The experimental results indicate that the proposed method
achieves good generalization ability, convergence speed,
and accuracy.
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