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Recent advances have witnessed a trending application of transfer learning in a broad

spectrum of natural language processing (NLP) tasks, including question answering

(QA). Transfer learning allows a model to inherit domain knowledge obtained from

an existing model that has been sufficiently pre-trained. In the biomedical field, most

QA datasets are limited by insufficient training examples and the presence of factoid

questions. This study proposes a transfer learning-based sentiment-aware model,

named SentiMedQAer, for biomedical QA. The proposed method consists of a learning

pipeline that utilizes BioBERT to encode text tokens with contextual and domain-specific

embeddings, fine-tunes Text-to-Text Transfer Transformer (T5), and RoBERTa models

to integrate sentiment information into the model, and trains an XGBoost classifier to

output a confidence score to determine the final answer to the question. We validate

SentiMedQAer on PubMedQA, a biomedical QA dataset with reasoning-required yes/no

questions. Results show that our method outperforms the SOTA by 15.83% and a single

human annotator by 5.91%.

Keywords: biomedical question answering, T5, RoBERTa, sentiment analysis, transfer learning, XGBoost

1. INTRODUCTION

Retrieving high-quality short answers to a given natural language question from the growing
biomedical literature is key to creating high-quality systematic evaluations that support evidence-
based medical practice (Stylianou et al., 2020) and improve the quality of patient care
(Kumbhakarnaa et al., 2020). However, the explosion in the volume of scientific literature in
biomedicine makes it difficult for even experts in their field of interest to assimilate all relevant
information. As a result, there is an increasing number of studies that require more sophisticated
techniques and automated biomedical text mining methods in order to provide relevant answers to
information seekers. Current venues that aggregate scientific advances in biomedicine are mainly
search engines based on information retrieval (IR) (Singhal et al., 2001) techniques, such as PubMed
and Google Scholar. However, in the current setup, the size of the answers represented by the
retrieved set of documents (which may be relevant) is still too large to easily identify precise
information. Users often have to manually examine and filter the returned documents to find the
exact information they are looking for. A study by Hersh et al. (2002) showed that medical and
nurse practitioner students took an average of at least 30 min to answer clinical questions using
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MEDLINE. Unlike IR, question and answer (QA) (Diefenbach
et al., 2018) systems can generate and provide accurate answers
directly to users’ questions in less than a few seconds by
automatically analyzing thousands of articles, thus freeing users
from the time-consuming literature screening.

Building an efficient and accurate biomedical QA system is
challenging. Athenikos and Han (2010) have highlighted three
characteristics of biomedical QA: (1) large text corpora, (2) highly
complex domain-specific terminology, and (3) domain-specific
formats and question types. Meanwhile, the current biomedical
QA task suffers from the following difficulties. First, the low-
resource setting of biomedical QA limits the performance of deep
models. Second, the knowledge gap between biomedical experts
and machine learning experts brings difficulty in integrating
biomedical domain knowledge into predictive models. Lastly,
biomedicine is evolving rapidly, models developed for old tasks
may not suit the needs of emerging tasks (Jin et al., 2021).

The major problem of existing biomedical QA datasets is
the limited size caused by the high cost of manual annotation
(Jin et al., 2021). For example, a widely used dataset, BioASQ
(Tsatsaronis et al., 2015), has less than 3,000 training examples.
Annotation automation techniques have also applied to build
large scale biomedical QA datasets, and examples include
BioRead (Pappas et al., 2018), BMKC (Kim et al., 2018), and
emrQA (Pampari et al., 2018). The first two belong to cloze-style
QA, which requires a model to predict the masked bio-entities.
EmrQA is created by a novel method by re-purposing existing
annotations for other NLP tasks; the resulting corpus consists of
400,000QA pairs with evidence. However, current efforts of auto-
generation of biomedical QA samples mainly focus on factoid
questions, with answers that can be directly extracted from the
given context, which does not work well for QA systems in need
of reasoning over the context. To address this problem, a recent
effort by Jin et al. present PubMedQA (Jin et al., 2019), a yes/no
QAdataset created fromPubMed abstracts. Unlike prior datasets,
questions in PubMedQA are titles or derived from titles, and the
contexts are abstract bodies. To predict an answer, a model needs
to reason over the context, establishing a semantic connection
between a question and a context.

• We propose a sentiment-aware model named SentiMedQAer
that learns to answer yes/no questions given a biomedical
context. SentiMedQAer consists of a custom learning pipeline
that (1) uses BioBERT to encode tokens with contextual
and domain-specific embeddings, (2) fine-tunes Text-to-
Text Transfer Transformer (T5) and RoBERTa to integrate
sentiment information into the learning task, and (3) lastly
adopts an XGBoost model to learn a confidence score that can
determine the likely answer to the question.
• The proposed model is validated on the PubMedQA

dataset and outperforms the SOTA by 15.83% in accuracy
and outperforms a single human annotator by 5.91%,
demonstrating the efficacy of sentiment tendency in the task
of yes/no biomedical QA.

The rest of this article is structured as follows. A collection
of relevant studies are reviewed in Section 2. A description of
the dataset and the technical details of the proposed method

are provided in Section 3. We report the experimental settings,
implementation, and the results in Section 4. Lastly, Section 5
concludes the work with potential directions for future research.

2. RELATED WORK

2.1. Biomedical QA Datasets
A wide spectrum of open-domain QA datasets (Yang et al., 2015,
2018; Khot et al., 2020) have been developed and have attracted
considerable research attention in recent years. However, the
quality of biomedical QA datasets is limited mainly by the
size of annotated data. BioASQ (Tsatsaronis et al., 2015), a
representative biomedical QA dataset, only has less than 3,000
training examples, and most are simple factual QA instances.
BioRead (Pappas et al., 2018) and BMKC (Kim et al., 2018) are
cloze-style QA (Lewis et al., 2019) datasets that have been created
by masking bio-entities in the text and using the rest of the parts
as a context to predict the masked entities, similar to masked
language modeling used in BERT for self-supervised pre-training
(Mao, 2020). Arnold et al. propose Contextual Discourse Vectors
(Arnold et al., 2020) for health care document representation,
and sentence-level search is performed to find entities and
aspects used for resolving queries with short latency. Automated
generation of biomedical QA datasets, such as emrQA (Pampari
et al., 2018), have also been studied. These automated methods
can quickly generate a large dataset, but the generated QA
pairs mostly contain factoid questions with answers extracted
from the given contexts. This reasoning-free setting is not
practical in many real-world QA systems (Thorndike, 1973).
To this end, Jin et al. (2019) have developed PubMedQA, a
Yes/No type of biomedical QA dataset that contains sufficient
annotated QA instances (including 1,000 human-annotated
and 2,113,000 artificially generated) extracted from PubMed
abstracts; moreover, to answer a question, a model needs to
reason over the given context, namely the abstract body, which
is a more difficult but practical task. The novelty of PubMedQA
is the main reason for us to choose it as the learning task in this
study.

2.2. Yes/No QA
Yes/No questions have been widely adopted in existing QA
datasets, such as HotpotQA (Yang et al., 2018), ShaRC (Saeidi
et al., 2018), BioASQ, Natural Questions (Kwiatkowski et al.,
2019), PubMedQA, SciFact (Wadden et al., 2020), and BoolQ
(Clark et al., 2019). Although the answer is short and binary,
it could be challenging to reason over the given context to
give an accurate answer. BoolQ is an example that consists of
yes/no questions collected in an unconstrained setting using
open-domain corpora. Being a domain-specific version of BoolQ,
PubMedQA only considers biomedical short texts, namely
PubMed abstracts, most of which are semi-structured with parts
of aim, method, result, and conclusion.

The yes/no QA task can be intuitively formatted as a binary
classification problem, where the input should include the
question and the context, and the answer is either yes or no.
Feature-based approaches (Somasundaran et al., 2007; Oh et al.,
2012) have been investigated over a decade ago, and recently
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proposed solutions mostly employ deep neural structures (Ye
et al., 2019), along with transfer learning (Jin et al., 2019) to
optimize the usage of domain knowledge. Pre-trained models,
such as ELMo (Peters et al., 2018), ELECTRA (Clark et al., 2020),
BERT (Devlin et al., 2018), and its variants (Jin et al., 2019; Liu
et al., 2019), have shown superior performance and refreshed the
SOTA records. This study extensively leverages transfer learning,
including the use of BioBERT (Liu et al., 2019) to build token
embeddings and fine-tuning of two T5 models and a RoBERTa
model as the essential components of the proposed learning
pipeline. Our method posts a 15.83% gain in accuracy compared
to the SOTA on the PubMedQA dataset.

2.3. Sentiment-Enhanced QA
Sentiment analysis (Feldman, 2013; Zhang et al., 2018) has been
a core downstream task in NLP, aiming to detect the emotional
tendency in a given text. A few studies have explored the
interconnection between sentiment analysis and QA, driven by
an intuition that “if something undesirable happens, the reason
is also often something undesirable, and if something desirable
happens, the reason is also often something desirable,” quoted
from Oh et al. (2012). The existence of sentiment correlation
between the question, the context, and the answer has been
verified in prior efforts (Somasundaran et al., 2007; Ku et al.,
2008; Oh et al., 2012; Elalfy et al., 2015; Eskandari et al., 2015;
Pang and Ngo, 2015). Somasundaran et al. (2007) propose
to use attitude as a part of the feature set to improve QA
performance. Similar ideas have been explored in why-QA (Oh
et al., 2012), community QA (Elalfy et al., 2015; Eskandari et al.,
2015), opinion QA (Ku et al., 2008; Pang and Ngo, 2015), how-
QA (Ye et al., 2019), and yes/no QA (Sarrouti and El Alaoui,
2017). Inversely, QA-style sentiment classification has also been
investigated (Shen et al., 2018). The most related study to our
work is by Sarrouti and El Alaoui (2017), who develop a yes/no
answer generator using sentiment word scores. Specifically,
their proposed method labels each token of the context with a
sentiment score using SentiWordNet (Baccianella et al., 2010),
and the global sentiment score of the given context can be
calculated and used to predict the answer. The major differences
between our work and (Sarrouti and El Alaoui, 2017) are: (1)
our transfer learning-based pipeline can effectively integrate
biomedical knowledge into the QA system, (2) we utilize the
sentiment information of the question, context, long answer, and
short answer to determine a prediction jointly, and (3) our work
is validated on PubMedQA with more challenging QA instances
that require reasoning.

3. MATERIALS AND METHODS

3.1. Dataset
The PubMedQA (Jin et al., 2019) dataset is developed by Jin et
al. at the University of Pittsburgh in 2019, and it is regarded
as the first QA dataset for reasoning about biomedical research
texts, in particular their quantitative content, necessary to answer
a biomedical question. All sample instances of PubMedQA are
collected from PubMed abstracts. The dataset consists of 1k
expert-labeled, 61.2k unlabeled, and 211.3k artificially generated

TABLE 1 | Profile of PubMedQA.

PQA-L PQA-U PQA-A

# QA pairs 1,000 612,000 2,113,000

Question O.Q. title O.Q. title O. title converted to Q.

Labels Yes/no/maybe Unlabeled Generated yes/no

Yes% 55.20% - 92.80%

No% 33.80% - 7.20%

Maybe% 11.00% - 0

QA instances. Each QA instance of PubMedQA includes four
components: (1) a question that is either the title of a article or
derived from an existing article title, (2) a context, which is the
corresponding abstract with the conclusion statement removed,
(3) a long answer, which is the conclusion part of the abstract
that may or may not answer the question, and lastly (4) a short
answer in the form of “yes/no/maybe” that serves as a summary
of the conclusion.

The dataset consists of three subsets, denoted as PQA-L
(labeled), PQA-U (unlabeled) and PQA-A (artificially generated).
PQA-L and PQA-U are created based on PubMed articles that
have a question mark in the title and a structured abstract
with a conclusion. These articles are placed in a collection
called pre-PQA-U. Each article instance in pre-PQA-U consists
of three parts: (1) a question, i.e., the original title, (2) a
context, i.e., the abstract without the conclusion, and (3) a long
answer, i.e., the conclusion in the abstract. Two annotators with
biomedical background are employed to label 1,000 instances
of pre-PQA-U with yes/no/maybe annotations, producing PQA-
L. The annotation process is briefly described as follows: an
instance is randomly sampled from pre-PQA-U, an if the instance
is answerable with yes/no/maybe, it is sent to the annotators; the
first annotator labels the instance based on the question, context,
and the long answer, while the second annotator only uses the
question and context to label the instance; if both annotators have
the same label, the instance, with the label, is added to PQA-
L, otherwise, the two annotators attempt to resolve the dispute;
if an agreement is reached, the labeled instance is accepted, or
the instance is removed, and the annotators move to the next
iteration. It is noted that reasoning is highly required for the
second annotator since the long answer is not provided. The
first annotator, on the other hand, works in a reasoning-free
setting, with the long answer available. The remaining unlabeled
instances of pre-PQA-U that are yes/no/maybe answerable are
added to the PQA-U collection. Lastly, PQA-A is built using a
simple heuristic to convert the original title to a question form
and generate noisy yes/no labels for the instances. Compared to
BioASQ, PubMedQA is larger and is a yes/no/maybe type of non-
factual dataset. Table 1 shows the profile information of the three
dataset collections, and Table 2 shows an annotated training
example. To conduct a fair comparison, this study follows the
data split setting utilized in the original article of PubMedQA
(Jin et al., 2019), which divides the 1k human-labeled instances
in PQA-L into two equal halves, obtaining a validation and a
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TABLE 2 | A sample with annotation in the PubMedQA dataset.

Article ID 23831910

Question Double balloon enteroscopy: is it efficacious and safe in a community setting?

Context Aim: Double balloon enteroscopy (DBE) has been extensively used in tertiary referral centers... Methods: From March

2007 to January 2011, 88 DBE procedures were performed on 66 patients. Indications included evaluation

anemia/gastrointestinal bleed... Results: The mean age was 62 years. Thirty-two patients were female, 15 were

African-American; 44 antegrade and 44 retrograde DBEs were performed...

Long answer Conclusion: DBE appears to be equally safe and effective when performed in the community setting as compared to a

tertiary referral center with a comparable yield, efficacy, and complication rate.

Answer Yes

test set, with 500 instances for each set. This way, we conduct
hyperparameter tuning using the validation set and evaluate the
model on the test set.

3.2. Learning Task
Let M = {mi}

N
i=1 denote a collection of N labeled abstracts

indexed by i. Each abstract can be divided into four parts
that make a four-tuple, namely (qi, ci, li, ai), which represent the
question title, the context (i.e., the main abstract body without
the conclusion), the conclusion, and the short answer (i.e.,
yes/no/maybe) to the question. Our learning task here is to train
a model with samples (xi, yi), where xi = (qi, ci, li), and yi = ai.
After training, when fed with an xi, the model can generate an
answer ŷi that approximates the ground truth yi. In addition to
this main learning task, there are several auxiliary tasks, defined
in the following subsections, that jointly accomplish the main
task.

3.3. An Overview of the Learning
Framework
Figure 1 presents an overview of the SentiMedQAer learning
framework. We fine-tune two T5 networks: one transforms a
context ci to a short form hi, using li as the training target; the
other transforms a concatenation of qi and hi to a short form
gi, using ai as the training target. Taking hi and gi, a RoBERTa-
based sentiment classifier is trained, using ai’s sentiment, si, as a
label. Also, hi and gi are fed into the RoBERTa-based sentiment
classifier to produce ui and vi, respectively. Finally, a sampling
module is employed to pair ui and vi, creating sentiment samples
to train a XGBoost classifier, which outputs Ti, a sentiment
confidence score in the range of 0 and 1. Ti is employed to
determine the final answer of the question.

3.4. BioBERT for Word Embedding
BioBERT (Lee et al., 2020) is a BERT variant pre-trained on
PubMed articles for adapting the biomedical domain. There are
two typical ways to apply BioBERT to downstream tasks: first,
BioBERT can be fine-tuned on a specific dataset to suit the target
learning task (Jin et al., 2019); second, BioBERT can be treated
as a neural encoder that transforms word tokens of input texts
to word embeddings (Naseem et al., 2020). Since BioBERT has
been pre-trained on a large biomedical corpus with over a million
PubMed articles, it presents superior performance in a variety of
biomedical NLP tasks, compared to BERT and other pre-training

models (Lee et al., 2020). In this study, we choose the second
strategy since BioBERT can generate high-quality contextual
embeddings with rich domain knowledge. Each word token is
converted to a 768-dimensional embedding. These embeddings
serve as input for the next stage in the pipeline.

3.5. Fine-Tuning T5
T5 models a wide range of NLP tasks (e.g., machine translation,
question answering, text summarization, etc.) as a text-to-text
problem. T5 adopts the vanilla transformer with an encoder-
decoder structure, and pre-trained on a colossal, cleaned version
of Common Crawl’s web crawl corpus (c4), which consists of
750GB English texts. The self-supervised pre-training offers three
options: predicting the next word (i.e., language modeling),
BERT-like objective (predicting the original token that is
masked/replaced), and deshuffling (predicting the original text
that is rearranged). A recent study has shown the potential of T5
in QA tasks (Zhou and Zhang, 2021) due to its ability to extract
key information from the context, where questions and answers
are derived from.

The fine-tuning of T5 for our case involves two tasks to
transform the long context and question to the short forms that
preserve the essential information of a sample. The first task,
defined in Equations 1 and 2, fine-tunes T5 with the samples
in Dc = {(ci, li)}, where ci is the input, and li is the target. The
tuned T5, with optimized parameters θc, can transform a context
ci to its short form hi, similar to a summary of the context. The
second task, given in Equations 3 and 4, fine-tunes T5 with the
samples in Dqh = {([qi; hi], ai)}, where the input is [qi; hi], a
concatenation of qi and hi, and the training target is the short
answer ai. Another tuned T5, with parameters θqh, is obtained to
transform [qi; hi] to gi.

θc ← argmin
θ

L(T5θ (ci), li) (1)

hi = T5θc (ci) (2)

θqh← argmin
θ

L(T5θ ([qi; hi]), ai) (3)

gi = T5θqh
([qi; hi]) (4)

3.6. Fine-Tuning RoBERTa
RoBERTa (Liu et al., 2019) optimizes the training of BERT with
the following strategies: (1) using the same masked language
modeling task but removing the next sentence prediction
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FIGURE 1 | Learning framework of SentiMedQAer: Two T5 models are fine-tuned to produce short forms of the context and the question, which are fed into a

RoBERTa model that outputs their sentiment representations. A sampling module is employed to pair these sentiment values utilized to train an XGB classifier, which

outputs a confidence score that determines the final prediction result.

task for self-supervised training; (2) using larger mini batches
and learning rates; (3) pre-training on larger corpora with
longer time. RoBERTa achieves SOTA on the widely used
NLP benchmark, General Language Understanding Evaluation
(GLUE).

In this study, we fine-tune RoBERTa to obtain a sentiment
estimator, which outputs a sentiment value with a given input
message. The task of fine-tuning RoBERTa is formally described
in Equations 5 and 6, where si is the binary sentiment indicator
determined by the short answer ai; if ai is a “No”, the associated
sentiment is negative, otherwise it is positive, as defined in
Equation 5. Both hi and gi are paired with si to form a dataset
Dgh = {(gi, si)}

⋃

{(hi, si)}, used to fine-tune RoBERTa based on
Equation 6. The tuned RoBERTa has a parameter set θhg , which
maps hi to ui and gi to vi (see Equations 7 and 8), both of which
are float tensors that quantify the sentiment tendency of hi and
gi, respectively.

si =

{

0 ai = No

1 otherwise
(5)

θhg ← argmin
θ

L[(RoBERTaθ (hi), si)+ (RoBERTaθ (gi), si)] (6)

ui = RoBERTaθhg (hi) (7)

vi = RoBERTaθhg (gi) (8)

3.7. Training an XGBoost Classifier
Once ui and vi are generated for all samples in the training
set, we store them in two sets U = {ui}

N
i=1 and V = {vi}

N
i=1,

respectively. A sampling module is then employed to construct
training samples for an XGBoost classifier. Specifically, we draw
samples from U and V to obtain a collection of data points,
denoted by DUV = {[(ua, vb)i, ki]}, where ua ∈ U, vb ∈
V , and ki is defined in Equation 9. In other words, a =
b indicates that ua and vb are from the same abstract and
should have the same sentiment tendency, making a positive
example (i.e., ki = 1); otherwise, we have a negative example
(i.e., ki = 0). We train an XGB classifier on DUV (given
in Equation 10). The trained XGB classifier takes an input
(ui, vi) and outputs a confidence score ti between 0 and 1,
indicating the chance that ua and vb are generated from the
same abstract.

ki =

{

0 a 6= b for (ua, vb)i ∈ DUV

1 otherwise
(9)

θuv ← argmin
θ

L[(XGBθ ((ua, vb)i), ki)] (10)

ti = XGBθuv ((ua, vb)i) (11)
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3.8. Prediction
The previous steps have set up the models used for prediction.
During inference, a question and the given context are fed into
the T5 models to produce the short forms, and then converted
to sentiment values, namely, u and v, by the RoBERTa model.
Lastly, the XGBoost estimator takes as input u and v and outputs
a confidence score ti that determines the prediction result of
the main learning task. Specifically, if ti is larger than a given
confidence threshold, we output vi as a predicted answer for
qi; otherwise, we add noise to the embedding of [qi; hi], and
repeat the steps given by Equations 4, 8, and 11, to regenerate
ti until the confidence is larger than the threshold. The idea of
adding noise to the word embeddings is fromWang et al. (2019).
A similar procedure is adopted in our study. Specifically, the
noise vector is sampled from a Gaussian distribution modeled
on the word embeddings in the training data. We add the
noise vector to [qi; hi] and divide the result by two to obtain a
new embedding for the following steps. As discussed in Wang
et al. (2019), this noise adding step potentially benefits the
performance. The rationale is that the noise is generated from a
Gaussian distribution modeled on the original training data, and
adding such a noise helps diversify the data and thus serves as a
test time augmentation strategy.

3.9. Performance Metric
We adopt the same performance metrics as Jin et al. (2019),
including accuracy (Acc) and the F1 score. Due to the class
imbalance issue, Acc does not sufficiently reflect the true
performance since it may drive the learning algorithm to predict
all samples as the major class label and can still obtain a high
Acc. For our case, this could lead to many false negatives, i.e.,
the “No/Maybe” answers are misclassified to “Yes” answers.
Therefore, F1 is adopted as a secondary metric. F1 is defined
on top of precision (Pre) and recall (Rec). With the given true
positives (TP), true negatives (TN), and false positives (FP), and
false positive (FP) the definitions of Acc, Pre, Rec, and F1 can be
given below.

Acc =
TP + TN

TP + FP + TN + FN
× 100% (12)

Pre =
TP

TP + FP
× 100% (13)

Rec =
TP

TP + FN
× 100% (14)

F1 = 2×
Pre× Rec

Pre+ Rec
× 100% (15)

4. EXPERIMENTS AND RESULTS

4.1. Implementation Details
The T5 small variant was adopted in this study due to its
lightweight setting, with six transformer layers, eight-head
attention, 512-dimensional word embedding, 2048-dimensional
forward sublayer, resulting in 60M trainable parameters. All

TABLE 3 | Hyperparameter setting for T5 small.

Hyperparameter Tuned range Opt.

Weight decay 0.01 0.01

Dropout probability 0.1 0.1

Steps 20,000 20,000

Optimizer Adam Adam

Learning rate [1E-2, 1E-3, 1E-4] 1E-3

Batch size [8, 16, 32] 32

TABLE 4 | Hyperparameter setting for RoBERTa.

Parameters Tuned range Opt.

Sequence length 128 128

Train batch size [4, 8, 16] 16

Dev batch size 8 8

Test batch size 8 8

Learning rate [1E-5, 3E-5, 1E-4, 3E-4] 1E-4

Epoch number [3, 6, 9] 3

Warmup 0.1 0.1

Dropout 0.1 0.1

TABLE 5 | Hyperparameter setting for XGB.

Hyperparameter Tuned range Opt.

eta 0.015 0.015

max_depth [3, 5, 10] 5

n_estimator [20, 40, 60] 20

sub_sample 0.5 0.5

scale_pos_weight 1.75 1.75

random_state 2 2

eval_metric logloss logloss

objective binary:logistic binary:logistic

num_round 50 50

test_frac 0.2 0.2

experiments were implemented using Python 3.6.7 and PyTorch
1.7.1 and conducted on a Windows 10 workstation with an
i7-10875h CPU and a Tesla V100 16G GPU.

4.2. Hyperparameters
The hyperparameters used for training/fine-tuning the models
are listed in Tables 3–5. For each model in the learning pipeline,
we tune a subset of hyperparameters using a grid search. In
addition, for the confidence threshold mentioned in Section 3.8,
we also perform a linear search in the range of 0 and 1 with an
interval of 0.1, and the best threshold used in the experiment is
0.4. The best combinations of hyperparameters were adopted to
build the final model.

4.3. Benchmarks
Results from the prior two studies are used for comparison.
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TABLE 6 | Fine-tuning T5 based on Equation 1.

Epoch T.L. V.L. ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum G.L.

1 1.73 0.99 5.25 4.17 6.53 5.27 1.9

2 0.14 0.09 84.61 86.12 91.51 91.49 29.8

3 0.1 0.06 91.59 90.12 91.6 91.58 33.9

T.L., training loss; V.L., validation loss; G.L., generated length.

TABLE 7 | Fine-tuning T5 based on Equation 3.

Epoch T.L. V.L. ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum G.L.

1 0.23 0.23 82.25 67.19 82.24 82.19 11.41

2 0.23 0.21 84.69 70.5 84.68 84.68 7.46

3 0.18 0.2 85.27 71.19 85.26 85.25 4.44

TABLE 8 | Fine-tuning RoBERTa.

Epoch T.L. V.L. Acc Err. rate

1 0.53 0.44 0.82 0.18

2 0.13 0.11 0.97 0.03

TABLE 9 | Ablation study.

Model Acc F1 Inference speed (s)

Fine-tuned BioBERT 66.51 52.48 1.59

SentiMedQAer w/o T5 81.83 74.17 2.05

SentiMedQAer 83.91 76.92 0.41

TABLE 10 | Comparison with the benchmarks.

Model Year Acc F1

Fine-tuned BioBERT Jin et al.

(2019)

2019 66.51 52.48

Single human performance Jin

et al. (2019)

2019 78.0 -

Multi phase BioBERT Jin et al.

(2019)

2019 68.08 52.72

BioELECTRA Kanakarajan et al.

(2021)

2021 64.2 -

SentiMedQAer (ours) 2021 83.91 76.92

The bold values indicate the highest score for each metric.

• Multi-phase BioBERT was developed by Jin et al. (2019),
in which the PubMedQA dataset was created. The authors
adopted a multi-phase fine-tuning strategy to tune the
BioBERT model. Specifically, the model was sequentially fine-
tuned on PQA-A, bootstrapped PQA-U, and finally PQA-L
with either (Q, L) or (Q, C) as the input. Results showed
that the multi-phase BioBERT outperformed other design
alternatives.

• BioELECTRA (Kanakarajan et al., 2021) is a version of
ELECTRA (Clark et al., 2020) but pretrained on the
biomedical corpora. ELECTRA introduced a novel pre-
training task, named replaced token detection (RTD), which
was proposed to replace the mask language modeling (MLM)
task adopted in BERT (Devlin et al., 2018). Instead of
masking the input tokens, RTD pollutes the input by replacing
some tokens with alternative ones sampled from a generator.
Meanwhile, a discriminator is trained to predict whether or
not each token in the polluted input sentence is a replaced
one. RTD is more efficient and effective than MLM because
the former predicts every token’s genuineness rather than a
subset of masked tokens. Therefore, the pre-trained models
using RTD could generate contextual embeddings with higher
quality, compared to BERT (Clark et al., 2020). BioELECTRA
is obtained by pre-training ELECTRA from scratch on a large
biomedical text collection that consists of PubMed abstracts
and PMC full text articles. Based on Kanakarajan et al. (2021),
BioELECTRA achieved SOTA on all of the 13 tasks in the
BLURB benchmark (Gu et al., 2020), and PubMedQA was one
of the datasets.

In addition, Jin et al. (2019) also reported the human
performance evaluated from a single annotator.

4.4. Model Fine-Tuning
Table 6 reports the fine-tuning results for T5 based on Equation
1. T5 was fine-tuned with three epochs until the training and
validation losses converge. We also adopted the ROUGE score to
measure the quality of generated text (i.e., ci), compared against
the target text (i.e., li). Results show that all four ROUGE scores
were over 90%, meaning that the tuned T5 model has learned to
transform a context to its associated conclusion. Similar results
can be found in Table 7, which shows the fine-tuning results
for T5 based on Equation 3. It is noted that the effect was
not as good as the previous task since the ROUGE scores are
below 90, and the worst one, ROUGE-2, is only 71.19%. The
results show that the second fine-tuning task is more difficult
than the first one. After all, the model needed to learn how
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FIGURE 2 | Confusion matrices for (A) the fine-tuned BioBERT and (B) SentiMedQAer.

to map a long text (i.e., [qi; hi]) to a very short one (i.e., ai),
and the underlying reasoning logic is difficult. Lastly, Table 8
shows the tuning results of RoBERTa based on Equation 6. It is
observed that after two epochs, the model achieved a training
Acc of 0.97.

4.5. Ablation Study
Table 9 shows the results of ablation study that compares
three design alternatives. The first model directly fine-tuned
BioBERT on the PubMedQAdataset without using any sentiment
information. The third model is the full setting of the proposed
SentiMedQAer, and the second model removes the T5 module
from the full setting. The job of T5 is to transform the long
contexts and questions to their short forms, which is optional.
It is observed that fine-tuning BioBERT resulted in the worst
performance, with an Acc of 66.51% and an F1 of 52.48%,
which is aligned with the result in Jin et al. (2019). The addition
of sentiment information significantly boosts the performance,
with a gain of 15.32% in Acc and 21.69% in F1 for the
second model, compared to the fine-tuned BioBERT baseline.
Moreover, we show that adding a T5 module to the second
model can further boost the Acc and the F1 by 2.08% and 2.75%,
respectively, meaning that T5 can extract essential knowledge
from the otherwise long abstract and benefit the reasoning. We
also report the inference speed for the three models in the
last column of Table 9. The speed is measured by the average
inference time (in second) per sample. It is noted that adding
sentiment analysis into the pipeline incurs extra time (1.59 vs.
2.05), which is expected. However, the inclusion of T5 greatly
reduces the inference time to 0.41 s, because T5 is trained to
transform a long piece of text in the sample to a short form,

only keeping the critical information. Thus, the sample size is
reduced, which benefit the inference speed since less tokens
need to be processed. This result also justifies the necessity
of T5.

4.6. Comparison With the SOTA
We report a performance comparison between the proposed
method and prior two studies in Table 10. It can be seen
that the proposed SentiMedQAer model posted the best
performance in both Acc and F1, outperforming the SOTA,
multi-phase BioBERT, by 15.83% in Acc and 24.44% in F1, and
also outperforming another strong baseline, BioELECTRA, by
19.69% in Acc. Figure 2 compares the confusion matrices of
the fine-tuned BioBERT and the proposed SentiMedQAer
on the test set. Compared to BioBERT, SentiMedQAer
reduces the error rate by 14.44, 5.26, and 3.76%, for the
categories of “Yes”, “No”, and “Maybe”, respectively. The results
demonstrate the superiority of SentiMedQAer and validate the
importance of sentiment tendency that can effectively boost the
prediction performance.

4.7. Error Analysis
We conduct error analysis on the samples that are misclassified
by SentiMedQAer. Two categories of errors have been observed.
We provide our interpretation below.

• Several samples have shown both positive and negative
statements in the long answer (i.e., the conclusion), which
may confuse our model. For example, given a question “Is
the zeolite hemostatic agent beneficial in reducing blood loss
during arterial injury?” and a long answer “we observed
that zeolite tends to reduce blood loss, however could not

Frontiers in Neurorobotics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 773329

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhu et al. SentiMedQAer

stop bleeding completely. We believe that further clinical
trials are needed...”. The ground truth answer is “yes”, and
our model predicted “no” due to the opposite sentiment
tendencies expressed by words “tends to reduce” and “however
could not”.
• Several samples with a ground truth answer “maybe” have

also been misclassified. For instance, a sample with a question
“Should chest wall irradiation be included after mastectomy
and negative node breast cancer?”, a long answer “Post-
mastectomy radiotherapy should be discussed for a sub-group
of node-negative patients...”, and a context “Factors associated
with increased risk of local failure were age < or = 40
years and tumor size greater than 20mm, without statistical
significance.” For this case, our model predicted “no”, which
may be due to the “without statistical significance” in the
context.

Both error types are hard cases. To help the model improve on
these cases, more similar samples are needed. However, in the
original dataset, these cases are rare since most scientific findings
are directly and explicitly described in the abstract. One potential
way to address this issue is to employ generative models such
as generative adversarial networks (Goodfellow et al., 2020) or
GPT-3 (Floridi and Chiriatti, 2020) to create synthetic samples of
these types.

5. DISCUSSION

Transfer learning has recently been applied to numerous natural
language processing (NLP) tasks, and question answering (QA)
is one of them. Transfer learning allows a model to inherit
domain knowledge obtained from an existing model that
has been sufficiently pre-trained on a large domain-specific
corpus in a self-supervised way. This study proposes a transfer
learning-based sentiment-aware model, named SentiMedQAer,
for biomedical QA. The proposed method consists of a learning
pipeline that utilizes BioBERT to encode text tokens with
contextual and domain-specific embeddings, fine-tunes Text-
to-Text Transfer Transformer (T5) and RoBERTa models to
integrate sentiment information into the model, and trains an
XGBoost classifier to output a confidence score to determine
the final answer to the question. We validate SentiMedQAer on
PubMedQA, a biomedical QA dataset with reasoning-required
yes/no questions. Results show that our method outperforms
the SOTA by 15.83% and a single human annotator by 5.91%,
demonstrating the effectiveness of SentiMedQAer in the task
of yes/no biomedical QA. Sentiment in this study serves
as an indicator for weakly supervised learning, which has
become a popular learning paradigm recently. It is surprising
that adding sentiment analysis into the model can boost
the performance by a large margin, which demonstrates an
important application of sentiment analysis as an auxiliary
component in a learning framework. It is promising to see

more applications of sentiment models in a wider range of
NLP tasks.

The performance boost brought by SentiMedQAer can greatly
improve the accuracy for medical QA applications, which can
be extensively utilized by medical, clinical, and pharmaceutical
researchers and practitioners on a daily basis. A typical use case
is to build a QA engine in the medical domain. Users can send
questions (which need to be transformed to yes/no questions)
to the backend server, which hosts the a collection of models.
The fist step is to find the most similar question stored in the
database, and then SentiMedQAer can do its job and return an
answer to the client user. Although popular search engines in
the market are intelligent enough to answer generic questions,
building a domain-specific QA engine is still of high demand and
poses great challenges. SentiMedQAer offers one potential route
to fulfill this need.

This study has the following limitations that will be addressed
in future work. First, the proposed method should be validated
in datasets other than PubMedQA. The reason why we chose
PubMedQA as the learning task is that the short form of the
answers, namely “yes/no/maybe”, clearly indicates the sentiment
tendency. The idea of integrating sentiment information into
the learning pipeline allows a model to use the sentiment as
knowledge to guide the training. This philosophy can be utilized
in other QA tasks or even a wider range of NLP tasks. It is a
definite plan for us to keep exploring this direction. Second, it is
desirable to reveal how sentiment can help boost the performance
of a QA task in a more interpretable way, which is not sufficiently
studied in this work. Also, to what degree the prediction of a
QA sample can be explained by its associated sentiment remains
to answer. Third, this study does not take data augmentation
into account, which is worth further investigation. The creation
of the PubMedQA was time-consuming since it is expensive
to manually annotate the dataset, leading to a low-resource
task. The PQA-A dataset that includes artificially generated
answers was developed to address this problem. The efficacy
of PQA-A has been verified. However, it would be interesting
to explore other approaches to generate high-quality artificially
labeled QA samples, especially for the hard cases mentioned
in Section 4.7.
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