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Facial image inpainting for big
data using an e�ective attention
mechanism and a convolutional
neural network

Xiaoman Lu*, Ran Lu, Wenhao Zhao and Erbin Ma

Department of Mathematics, College of Science, Northeastern University, Shenyang, Liaoning,

China

Big data facial image is an important identity information for people.

However, facial image inpainting using existing deep learning methods has

some problems such as insu�cient feature mining and incomplete semantic

expression, leading to output image artifacts or fuzzy textures. Therefore, it

is of practical significance to study how to e�ectively restore an incomplete

facial image. In this study, we proposed a facial image inpainting method using

a multistage generative adversarial network (GAN) and the global attention

mechanism (GAM). For the overall network structure, we used the GAN as

the main body, then we established skip connections to optimize the network

structure, and used the encoder–decoder structure to better capture the

semantic information of the missing part of a facial image. A local refinement

network has been proposed to enhance the local restoration e�ect and to

weaken the influence of unsatisfactory results. Moreover, GAM is added to

the network to magnify the interactive features of the global dimension while

reducing information dispersion, which is more suitable for restoring human

facial information. Comparative experiments on CelebA and CelebA-HQ big

datasets show that the proposed method generates realistic inpainting results

in both regular and irregular masks and achieves peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM), as well as other evaluation indicators

that illustrate the performance and e�ciency of the proposed model.

KEYWORDS

big data artificial intelligence (AI), deep learning algorithm, deep learning-based facial

image inpainting, generative adversarial network, convolutional neural networks

1. Introduction

With the rapid development of computer vision technology, digital images (Singh

and Goel, 2020) have become the mainstream of facial image acquisition. Normally,

people usually rely on electronic devices to obtain facial images; however, watermark

occlusion, smear, part of the area missing, and other problems often appear in the

transmission process of digital images (Baeza et al., 2009), preservation (Meyers and

Scott, 1994), and post-processing (Shen and Kuo, 1997), damaging the quality of

the facial image and resulting in poor visual feeling (Parmar, 2011). To solve the

abovementioned problems, related scholars began to study these kinds of problems and

proposed a series of novel inpainting approaches.
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Image inpainting is a very challenging task in image

processing (Elharrouss et al., 2020), and its purpose is to restore

and complete the missing or defaced image part. A new image

needs to be inferred and constructed according to the contextual

information of the damaged image and the overall image

structure (Jin et al., 2021). The restored image should have clear

textures and natural boundary pixels and conform to human

visual perception. Compared to other image inpainting tasks,

some similar image blocks cannot be found in other facial image

areas (Yang et al., 2020). For example, it is difficult to infer a

reasonable nose image based on the surrounding areas when the

nose part is missing, which may lead to an imbalance proportion

of facial images. For this problem, it is necessary to reconstruct

images that satisfy human visual perception according to a

large amount of prior information and contextual semantics

(Yeh et al., 2017).

Before deep learning methods were proposed, there were

two kinds of theoretical research in image inpainting, including

partial differential equations- and texture-based methods.

Bertalmio et al. (2000) used partial differential equations to

diffuse neighborhood pixel information to the missing area

using an isograd direction field. For images with small missing

areas, satisfactory results can be achieved. However, it is not ideal

for images with largemissing areas because this method does not

consider the semantic information of the image context. Efros

and Leung (1999) first proposed the generation of patch blocks

with similar textures using the extracted texture information of

the missing regions and then the use of the generated patch

blocks to fill in the missing regions. The disadvantage of this

method is that, although the missing area is filled, the filled

area is compact overall from the content level but not from

the pixel level. In other words, the repair result is not smooth

enough, with many traces of artificial processing. Criminisi et al.

(2004) established a block image restoration method based on

texture synthesis. In this method, a pixel randomly selected on

the image’s missing area boundary is taken as the center to

choose a certain size image texture block, which is then used to

repair the missing area. This image inpainting method can fill

in more appropriate texture information for the missing areas,

but because the contextual semantic information of an image is

ignored and contextual semantics of the repaired image becomes

incoherent, the complex facial image inpainting task cannot

be completed.

Deep-learning-based facial image inpainting technology

(Qin et al., 2021) is more suitable for a variety of restoration

scenarios than traditional image restoration methods. The

feature distribution dataset learned by a neural network is more

suitable for facial image restoration with a large missing area and

random damage. Not only are the texture details accurate but

also are the contours harmonized, and the facial image conforms

to the contextual semantics (Wei et al., 2019). After ongoing in-

depth research by relevant scholars, deep learning-based image

repair methods have produced a number of results.

Pathak et al. (2016) used a context encoder to complete an

image repair task, which was the first image inpainting method

based on a generative adversarial network (GAN). The generator

is divided into an encoder and a decoder (Sun et al., 2018). The

encoder is responsible for compressing and extracting feature

information from an incomplete image, and the decoder is

responsible for restoring an input-compressed feature to the

image. In this method, the context encoder can achieve a good

repair effect, but the generation antagonism losses adopted

by the context encoder considers only local information of

an incomplete region and not the overall semantic coherence

of the image. Iizuka et al. (2017) adopted a global–local

double discriminator to improve the context encoder. A local

discriminator was applied to the repair result of an incomplete

area, and a global discriminator was applied to the overall

repair result. This design ensured not only the accuracy of the

repair area but also the integrity of the final result. However,

the prediction results of this method are still inaccurate when

the large area facial image is missing. Yang et al. (2017)

proposed the use of content and texture generation networks

to complete the image repair task. The content generation

network is responsible for inferring the semantics and global

structure of an image, while the texture generation network is

responsible for generating high-frequency details of an image.

Compared to previous methods, this method solves the problem

of high-resolution image repair. Yan et al. (2018) added a shift-

connection layer on the basis of the U-Net network. In this

method, pixel information from known regions is transferred

to the corresponding missing regions to assist the image repair

generated in the process of guided loss minimization, which

encodes and decodes the distance between the distribution and

the true distribution. However, due to the shortcomings of a

simple structure of the algorithm, it is not effective in restoring

facial images, which have problems such as blurred edges.

Although GANs are widely used in the field of image

inpainting, they still rely too much on the self-generation ability

of generative networks and have many problems to solve. For

example, when the texture structure of a facial image is more

complex, it is easy to appear fuzzy, semantic incoherence and

other phenomena. When the local feature of the facial image is

not clear, the information stored in the model is too large and

network training is prone to information overload.

To solve these problems, based on the normalization of

the feature layer output in the GAN and the guiding role of

the attention mechanism in image detail inpainting, this study

proposes a facial image inpainting method using a multistage

GAN based on a global attention mechanism (GAM) named

CLGN, where a generative network can accelerate the training

speed and improve training stability through feature layer

output normalization. By using step coiling instead of up-

sampling and full-connection layers, convolution can play a

good role in extracting image features. Meanwhile, GAM (Liu

et al., 2021) was introduced to enhance the guiding role of
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FIGURE 1

The model of generative adversarial networks (GANs).

important features during the image inpainting process. In

addition, a U-Net skip-connection (Ronneberger et al., 2015)

was introduced between the encoder and the decoder to reduce

information loss due to down-sampling and to optimize texture

consistency. The loss function is used as an important factor to

measure the generated image quality and loss (Gao and Fang,

2011), weighted reconstruction loss, perceptual loss, style loss,

and total variation (TV) loss, which were combined to optimize

the total loss of the generated network for model training.

Our study provides the following contributions:

• Building a multistage (crude-local-global) generative

network CLGN to capture feature information

from receptive fields of different sizes and enhance

presentation capabilities.

• Adding GAM to magnify the interactive features of

the global dimension while reducing information

dispersion, which is more suitable for restoring human

facial information.

• The proposed CLGN produces photorealistic and plausible

inpainting results on two datasets, CelebA and CelebA-HQ.

The remainder of this paper is organized as follows: Section

2 introduces the relevant theories used in our proposed

method. Section 3 shows the observation and motivation,

the network architecture, and loss functions. Section 4

focuses on comparative and ablation experiments of our

methods. Section 5 concludes and discusses future research.

2. Related theory

2.1. Generative adversarial networks

A generative adversarial network was proposed by

Goodfellow et al. (2014). In recent years, GANs have been

extensively studied in combination with other machine

learning algorithms in some specific applications, such as

semi-supervised learning (Odena, 2016), transfer learning

(Cho et al., 2017), and reinforcement learning (Wang et al.,

2020), and are widely used in image inpainting. GAN has

made a considerable breakthrough in image inpainting by

producing realistic images. The core idea of GAN comes the

“two-player zero-sum game” in game theory (Ge et al., 2018), in

which networks are optimized by cheating each other between

generators and discriminators, resulting in a Nash equilibrium.

The GAN consists of a generative network G and a discriminant

network D, and its structure is shown in Figure 1.

By learning the probability distributionmapping Pdata of the

real data, the generative networkG is expected to output content

G(z) close to the real data. The discriminant network D needs to

identify the source of the input data as much as possible, i.e.,

classify x and G(z). When the discriminant network D cannot

distinguish data sources, network performance is optimal. Its

objective function is as follows:

min
G

max
D

V (D,G) = Ex∼Pdata

[
log (D (x))

]

+Ez∼Pg

[
log (1− D (G (z)))

]
,

where G represents a generative network, D represents

a discriminant network, E(•) represents the mathematical

expectation, V represents the objective function, x represents

the sample, z represents random noise, and Pdata represents the

distribution of the real sample.

2.2. Visual geometry group network

The visual geometry group network (VGGNet) was

proposed by Karen Simonyan and Andrew Zisserman of the

Visual Geometry Group at the University of Oxford (Simonyan

and Zisserman, 2015). An outstanding contribution of VGGNet

is to demonstrate that small convolutions can effectively

improve performance by increasing network depth. VGG

expertly inherits the mantle of Alexnet while also exhibiting the

characteristics of a deeper network layer.

The structure of VGGNet is shown in Figure 2 (Noh

et al., 2015) and consists of five convolutional layers, three

fully connected layers, and softmax output layers. These layers

are separated by max-pooling (maximization pool), and the

activation units of all hidden layers adopt the ReLU function.

VGG uses multiple convolution layers with smaller convolution

kernels (3 × 3) to replace one convolution layer with a larger

convolution kernel. On the one hand, parameters can be

reduced. On the other hand, it is equivalent to perform more

non-linear mapping, which can increase the network’s ability to

fit and express.

2.3. Global attention mechanism

In recent years, attentionmechanisms have been widely used

in many applications (Zn et al., 2021). The convolutional block

attention module (CBAM) (Woo et al., 2018) sequentially places
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FIGURE 2

The structure of a VGG16 module. The face images are adapted from the celeba-HQ dataset, which comes from Karras et al. (2017).

FIGURE 3

The model of convolutional block attention module (CBAM).

the channel and spatial attention operation, while the bottleneck

attention module (BAM) (Park et al., 2018) does it in parallel.

However, both of them ignore channel-spatial interactions and

consequently lose cross-dimensional information.

Therefore, GAM that boosts network performance by

keeping the amount of information to a minimum and zooming

in on the global interaction representation has been proposed.

GAM (Liu et al., 2021) is a simple yet effective attention

module that reserves information to magnify the “global”

cross-dimensional interactions. The GAM adopts the sequential

channel-spatial attention mechanism from CBAM (Woo et al.,

2018), which is an elementary yet practical attention module

for feed-forward convolutional neural networks. CBAM can

be regarded as a dynamic selection process for inputting

important information into an image, which significantly

improves the performance level of many computer vision tasks

and plays an important part in image inpainting with complex

image structures.

The internal structure of CBAM is shown in Figure 3. We

set the intermediate feature map F ∈ R
C×H×W as input. CBAM

deduces an attention map in two separate dimensions, channel

and space, which are shown as a one-dimensional (1D) channel

attention map Mc ∈ R
C×1×1 and a two-dimensional (2D)

spatial attentionmapMs ∈ R
1×H×W . In conclusion, the general

process of the attention module can be represented as:

{
F
′ = Mc(F)⊗ F,

F
′′ = Ms(F

′)⊗ F
′,

where ⊗ indicates an element-wise multiplication and F′′ is

named as the final refined output. The detailed operations for

each module are described as follows.

For the channel attention module, first, we applied

both average pool and max pool operations to gather

spatial information, producing two disparate spatial context

descriptors: F
c
avg and F

c
max representing the max-pooling

features. Then, we sent two descriptors to a shared network to

produce a channel attention mapMc ∈ R
C×1×1.

To cut down parameter overhead, we set the hidden

activation size R
C/r×1×1, where r is the reduction ratio.
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Finally, the output feature vectors are conflated by element-

wise summation after we applied the shared network to

each descriptor. In conclusion, the channel attention is

represented by:

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(F
c
avg))+W1(W0(F

c
max))),

where σ indicates the sigmoid function, W0 ∈ R
C/r×C ,

andW1 ∈ R
C×C/r .

For the spatial attention module, firstly, we introduce the

average and maximum pools on the canal axis and connect

them to establish an adequate feature description so that spatial

attention can be calculated. In cascaded feature descriptors,

we used the convolution layers to create a spatial attention

pattern Ms (F) ∈ RH×W in which positions of emphasis or

suppression can be encoded. In particular, we created two 2D

maps: Fsavg ∈ R
1×H×W and Fsmax ∈ R

1×H×W , which reflect

the average characteristics of swimming pools in the canal and

theirmaximum characteristics. Then, a 2D spatial attention table

is output after being connected to the standard convolution

layer and convoluted at its end. Spatial attention is calculated

as follows:

Ms (F) = σ (f 7×7([AvgPool(F);MaxPool(F)]))

= σ (f 7×7([Fsavg; F
s
max])),

where σ represents the sigmoid function and f 7×7 denotes a

convolution operation with the filter size of 7× 7.

3. Proposed method

3.1. Observation and motivation

Traditional image inpainting methods are based on texture

extension (Bertalmio et al., 2000) or similar block matching

(Criminisi et al., 2004). These methods do not repair some

damaged images with large missing areas and complex

structures of missing areas. Especially, in facial image inpainting,

the big challenge is how to ensure the overall consistency

of the inpainting results and restore the missing details and

textural features.

In this study, we put forward a facial image inpainting

method using an attention-based multistage GAN followed

by a crude-local-global framework. Considering that missing

areas of different sizes can be solved, the proposed network

contains a three-stage network for image inpainting to combine

the networks with different receptive fields. The network

structure and the corresponding loss functions are described

in Section 3.2.

3.2. Network architecture

3.2.1. Crude inpainting network

Our crude inpainting network NetC employs an encoder–

decoder framework with the addition of a skip connection,

consisting of eight down- and up-sampling operations. We

used long skip connections to transmit information from the

encoder to the decoder to restore information lost during down-

sampling. The receptive field resolution is 766×766 and is nearly

three times larger than the input image resolution with a size

of 256× 256.

For a convolutional neural network, a large receptive field

is helpful to the whole image inpainting. At the input end, the

network receives an input image Iin and a binary maskM, which

describe the missing areas. Note that the missing pixel is equal to

1 and the valid pixel is equal to 0. Meanwhile, at the output end,

the network exports an inpainting image ICout .

To weaken the blur effect and improve the restoration effect

of inpainting images, a patch-based discriminator with spectral

normalization was also applied. The inputs for the discriminator

were a ground truth image and the inpainting image ICout , while

the output was a 2D feature map where the shape is R32×32.

The function of the discriminator is to determine whether each

element in the feature map is true or false.

3.2.2. Local development network

To further optimize the local refinement, we designed a

surface-deep network called the local refinement network NetL,

which includes two down-sampling operations, four residual

blocks, and two up-sampling operation, as shown in the middle

row of Figure 4.

Due to its surface nature, this network has a small receptive

field with the size of 109 × 109 for each output neuron. The

local area of the above-mentioned rough inpainting results was

then processed in a sliding window manner. Because of this

design, some missing areas, such as the local structures and

the textures, can be properly repaired by the surrounding local

image information. Moreover, this process is not affected by the

long distances and content not being filled. In addition, more

residual blocks are introduced into this network, which can

gradually make the receptive field larger and significantly reduce

the model generalization error.

3.2.3. Global attention-based network

After the local refinement network process, some unresolved

visual artifacts are properly removed with the help of

surrounding local areas. Nevertheless, some missing areas (e.g.,

facial features such as the eyes or the mouth that are easily

mismatched) still need to be better refined when capturing

information from the corresponding large surrounding areas. In

view of this fact, a global attention-based network is established,
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FIGURE 4

The network architecture of our proposed method CLGN. The purple block in the local development network indicates a two-layer residual

block (He et al., 2016). The three yellow blocks represent the GAM attention modules with resolutions of 16 × 16, 32 × 32, and 64 × 64,

respectively. The green blocks represent the convolutional layer and the blue blocks represent the decoder. The face images are adapted from

the celeba-HQ dataset, which comes from Karras et al. (2017).

which can expand the scope of access to information for a

neuron in two ways, i.e., the attention mechanism and a large

receptive field.

Considering that a crude inpainting network has enough

receptive fields to cover the whole image area, we exploited

the basic structure of GAM. Based on this, three CBAMs

are added in front of the decoder, aiming to attain a global

attention-based network NetG (see the three yellow blocks in

the third row of Figure 4). Moreover, considering that the local

development network can already provide relatively correct

image restoration results, there is a major trend for a novel

network NetG based on the attention mechanism to become

more stable and robust. Some existing studies (Yu et al., 2018,

2019) used the attention mechanisms to calculate the correlation

between contextual information and the missing areas. In this

study, a lightweight and powerful GAM attention module along

two separate dimensions (i.e., channel and spatial) was used.

A feature map F ∈ R
C×HW is given, and the affinity si,j ∈

R
HW×HW of Fi and Fj is computed by:

si,j =
exp(̂si,j)∑
k exp(̂si,j)

,̂ si,j =<
Fi

||Fi||
,

Fj

||Fj||
> .

Note that the weighted average version F is F̃ = F ∗ S ∈

R
C×HW in terms of matrix multiplication.

In the end, we connected F and F̃. Then, we introduced a

1 × 1 convolutional layer to maintain the number of inchoative

channels F.

3.3. Loss functions

3.3.1. Reconstruction loss

In terms of pixel-level supervision, we used weighted

l1 loss as the reconstruction loss to measure the distance

between the ground truth Igt and the generated image

Iout , let:

Lvalid
C = 1

sum(1A−M)
||(ICout − Igt)⊙ (1A −M)||1,

Lhole
C = 1

sum(M)
||(ICout − Igt)⊙M||1,

where 1A means the indicator function, Igt is the ground

truth image, ⊙ is the element-wise product operation, and

sum(M) is the number of non-zero elements in M. Then, the

pixel-wise reconstruction loss is formulated as:

L
C
r = L

C
valid + λh · L

C
hole.

In addition, the first training target of the local refinement

network (NetL) is the weighted reconstruction loss LL
r , which is
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the same as Equation (7) except for replacing Icout with ILout in

Equation (6).

3.3.2. Adversarial loss

In this study, we used the least square loss function for

GAN loss. Least square loss (Mao et al., 2017) not only enhances

stability during the training process but also develops generator

performance with the aid of more gradients. Then, we define the

corresponding loss functions for the crude inpainting network

and discriminator as:

ICmer = Iin ⊙ (1A −M)+ ICout ⊙M,

LCG = EImer ∼ pImer(Imer)
[
(D(ICmer)− 1)

2
]
,

LD =
1

2
EI−pdata(I)[(D(Igt)− 1)2]

+
1

2
EImer∼pImer(Imer)[(D(I

c
mer))

2],

where 1A represents the indicator function, E means

mathematical expectation, ICmer is the merged image, and Igt is

the ground truth image.

3.3.3. Total variation loss

In signal processing, TV denoising is a noise-removal

process (Liu et al., 2018). It is based on the principle that signals

with excessive and possibly spurious detail have high TV, that

is, the integral of the absolute image gradient is high. Following

Liu et al. (2018), we used TV loss as a smoothing penalty. The

formula is as follows:

L
L
tv = ||ILmer(i, j+ 1)− ILmer(i, j)||1

+||ILmer(i+ 1, j)− ILmer(i, j)||1.

where the calculation process is precisely the same as that of

ICmer, i.e., Equation (8).

3.3.4. Perceptual loss

To better renovate the structural and textual information,

we apply the perceptual loss (Johnson et al., 2016) based on

VGG-16 (Simonyan and Zisserman, 2015), which is trained in

ImageNet beforehand. Unlike the pixel-level reconstruction loss

and TV loss mentioned above, which are done in pixel space,

the perceptual loss is calculated in feature space. Furthermore,

perceptual loss is shown by:

L
L
per =

∑

i

||Fi(I
C
out)− Fi(Igt)||1

+||Fi(I
L
mer)− Fi(Igt)||1

,

where is the feature map of the ith layer in the VGG-

16 network (Simonyan and Zisserman, 2015), which is

pretrained, i ∈ {5, 10, 17}.

3.3.5. Style loss

Style loss represents the difference in the Gram matrix

between the features of the synthesized image and the features

of the style image, ensuring that the style of the generated image

matches the style image. Here, we define style loss as follows:

L
L
sty =

∑

i

||Gi(I
L
out)− Gii(Igt)||1

+||Gi(I
L
mer)− Gii(Igt)||1

,

where Gi(·) = Fi(·)Fi(·)
T is the Gram matrix.

3.3.6. Style loss

For a crude inpainting network, we summarized the total

loss of NetC :LC = LC
valid

+ λh.L
C
hole

+ λg · LC
G. It should be

noted that we set λh = 6 and λg = 0.1 in all experiments.

For the local development network, the target for the local

refinement network NetL is defined as:

LL = L
L
valid + λh · L

L
hole + λTV · LL

TV + λper · L
L
per

+λsty · L
L
sty

In our experiments, we discovered that weight losses in Liu

et al. (2018) were correspondingly balanced in the order of

magnitude, so the weight setting was adopted. We set λh =

6,λtv = 0.1,λper = 0.05, and λsty = 120 in a special way.

For a GAM attention-based global refinement network, we

found that the training target LG of NetG is almost consistent

with LL of NetL, and we only need to replace ILout with IGout in

the corresponding positions of LL.

In this connection, the novel inpainting network CLGN is

trained using an “end-to-end” method, and the overall CLGN

output becomes the final image inpainting result. The sum total

of three subnetworks and a discriminator is the final training

loss, i.e., LC + LL + LG + LD.

4. Experiments

4.1. Experimental settings

4.1.1. Experimental platform and parameters

For network training, the hardware platform is an AMD

EPYC 7302 16-Core Processor CPU, a single GeForce RTX

3090 (31GB), and the software platform is PyTorch1.3.0. During

training, each image and mask were resized to 256 × 256 by

bicubic interpolation, and there are no data arguments. The
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Adam optimizer is used with an initial learning rate of 0.0002

for the first 100 epochs and later decays the learning rate to 0

for the next 100 epochs to fine-tune the model. In addition, the

first-order momentum was set as β1 = 0.5 and the second-order

momentum was set as β2 = 0.999.

4.1.2. Data sets

The proposedmethod is evaluated on two datasets of CelebA

(Liu et al., 2015) and CelebA-HQ (Karras et al., 2017). The

CelebA (Liu et al., 2015) face dataset is an open dataset from

the Chinese University of Hong Kong, which contains 202,599

facial images of 10,177 celebrity identities, and all of them are

well-labeled. It is a very useful dataset for face-related training.

We randomly selected 40,000 of these faces for our experiment.

The 40,000 images are divided into a training set of 36,000

images and a test set of 4,000 images. The CelebA-HQ (Karras

et al., 2017) dataset is a high-quality version of CelebA. It is a

celebrity face attribute dataset containing 30,000 face images.

We randomly select 27,000 images as the training sample and

3,000 images as the testing sample.

To train our network, we used irregular masks based

on the quick draw irregular mask data set (QD-IMD)

(Iskakov, 2021). Moreover, when testing the network,

the irregular mask data provided by Liu et al. (2018)

was used to assess our training result. Note that the

irregular mask set includes 12,000 masks, which were

divided into six categories with different coverage rates,

i.e., (0.01, 0.1],(0.1, 0.2],(0.2, 0.3],(0.3, 0.4],(0.4, 0.5](0.5, 0.6].

4.2. Performance comparison

To show the inpainting performance of the proposed

method, we first introduced our evaluation indicators and then

compared quantitative measurements, visual comparisons, and

subjective evaluations separately.

The following six mainstream image inpainting methods

are used to compare with the proposed network: CA (Yu

et al., 2018): A model trained in two stages of coarse and fine

precision, which used a contextual attention mechanism in a

fine precision network in the form of two codecs in series.

GMCNN (Wang et al., 2018): A generative multicolumn neural

network architecture in the form of three codecs in parallel.

MEDFE (Liu et al., 2020): A mutual encoder–decoder CNN

with feature equalizations for joint recovery of architecture and

texture. RFR (Li et al., 2020): An advanced image inpainting

method in feature space with recurrent feature reasoning and

knowledge-continued attention. MADF (Zhu et al., 2021): A U-

shaped framework with mask-aware dynamic filtering for image

inpainting with a point-wise normalization. LG-net (Quan et al.,

2022): A multilayer network architecture for image inpainting

to combine networks with different receptive fields, considering

the complexity of missing regions.

4.2.1. Evaluation methods

To objectively evaluate the inpainting performance of

different inpainting methods, the following objective indicators

are used to evaluate the inpainting quality under the same

experimental conditions:

l1 loss function (Gao and Fang, 2011): By calculating the sum

of the absolute difference between the inpainting image and the

original image, the similarity between the two images at the pixel

level can be evaluated.

l1 =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣.

Peak signal-to-noise ratio (PSNR) (Hore and Ziou, 2010):

It is defined by the maximum possible pixel value Z and mean

square error (MSE) between images.





MSE = 1
n

n∑
i=1

(
yi − ŷi

)2

PSNR = 10log10

(
Z2

MSE

) ,

where Z is equal to 255. The value of PSNR is usually

between 20 and 40. The higher the value, the better the quality.

Structural similarity (SSIM) (Wang et al., 2004): This index

compares the SSIM between images based on a comparison of

the brightness and contrast characteristics of the images, and it

can be shown by:

SSIM
(
yi, ŷi

)
=

(
2µyiµŷi + C1

) (
σyi ŷi

+ C2

)

(
µyi

2 + µŷi
2 + C1

) (
σyi

2 + σŷi
2 + C2

) ,

where µ and σ represent the mean and variance of image

pixels, respectively.

Frechet inception distance (FID) (Heusel et al., 2017): It is

a performance index for calculating the distance between a real

image and a modified image feature vector. The lower the FID

score, the better the image quality generated, and the higher the

similarity to the original image.

4.2.2. Quantitative comparison results

For quantitative evaluation, l1 loss function (Gao and Fang,

2011), PSNR (Hore and Ziou, 2010), SSIM (Wang et al., 2004),

and FID (Heusel et al., 2017) are evaluation metrics. The results

are shown in Tables 1, 2.

Tables 1, 2 compare the parameters of the seven methods

used in the CelebA and CelebA-HQ data sets under four
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TABLE 1 Quantitative comparisons of ours with the other six methods in CelebA.

Masks CA GMCNN MEDFE RFR LG-net Ours

ℓ1(%)† 1–10% 1.77 1.54 1.43 1.57 0.44 0.39

20–30% 5.28 3.01 3.72 3.74 2.45 2.19

40–50% 7.92 4.63 7.64 6.51 5.31 5.11

AVG 4.99 3.06 4.26 3.94 2.73 2.56

PSNR‡ 1–10% 33.12 36.29 36.21 37.26 40.72 42.25

20–30% 24.07 28.33 27.85 29.14 30.67 31.66

40–50% 21.11 26.08 23.50 25.23 26.09 26.56

AVG 26.10 30.23 29.19 30.54 32.49 33.49

SSIM‡ 1–10% 0.971 0.977 0.990 0.990 0.995 0.996

20–30% 0.901 0.928 0.945 0.952 0.962 0.986

40–50% 0.853 0.895 0.844 0.899 0.911 0.913

AVG 0.908 0.933 0.926 0.947 0.956 0.965

FID† 1–10% 2.14 0.82 0.79 0.85 0.40 0.41

20–30% 6.82 2.26 3.21 2.73 2.11 2.07

40–50% 12.39 4.51 7.19 5.22 4.60 5.02

AVG 7.11 2.53 3.73 2.93 2.37 2.50

‡Higher is better.
†Lower is better.

TABLE 2 Quantitative comparisons of ours with the other six methods in CelebA-HQ.

Masks CA GMCNN MEDFE RFR LG-net Ours

ℓ1(%)† 1–10% 1.86 1.14 1.02 1.59 0.46 0.39

20–30% 5.33 3.05 3.68 3.58 2.38 2.11

40–50% 7.84 4.51 7.65 6.44 5.27 5.03

AVG 5.01 2.90 4.12 3.87 2.70 2.51

PSNR‡ 1–10% 32.66 35.96 36.13 36.39 40.04 41.53

20–30% 23.94 28.52 27.75 29.07 30.54 31.33

40–50% 21.98 25.89 23.47 25.09 26.01 26.55

AVG 26.19 30.12 29.12 30.18 32.19 33.14

SSIM‡ 1–10% 0.971 0.984 0.990 0.991 0.995 0.997

20–30% 0.903 0.933 0.943 0.957 0.968 0.987

40–50% 0.853 0.897 0.865 0.902 0.917 0.921

AVG 0.909 0.938 0.932 0.950 0.960 0.968

FID† 1–10% 2.06 0.85 0.84 0.86 0.39 0.37

20–30% 6.97 2.24 3.17 2.67 2.08 2.11

40–50% 12.42 4.56 7.12 5.21 4.61 4.47

AVG 7.15 2.55 3.17 2.91 2.36 2.31

‡Higher is better.
†Lower is better.

different indexes. The smaller the l1 and FID index values,

the better the quality of figures, and the larger the PSNR and

SSIM index values, the better the quality of figures. Through

quantitative analysis, we can see that, under different coverage

and indicators, our method generally outperforms the others.

Only when the GMCNN image inpainting method deals with

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1111621
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lu et al. 10.3389/fnbot.2022.1111621

facial images with large area coverage (more than 40% coverage),

some evaluation indexes are better than our method. A possible

FIGURE 5

Visual comparison of di�erent image inpainting methods on

CelebA-HQ and ParisView datasets with regular masks. Obvious

di�erences on the faces are highlighted by red boxes. The face

images are adapted from the celeba-HQ dataset, which comes

from Karras et al. (2017).

reason is that the jump connection between the residual

blocks in our network pays too much attention to the shallow

feature information of the image and neglects the processing of

the global semantics. In addition, our performance on PSNR

and SSIM assessment was significantly better than the other

methods, showing that the facial image recovered by ourmethod

was of high quality and had a high SSIM with the original image.

4.2.3. Visual comparison

To better illustrate the inpainting effect, we compared the

visual results from different image inpainting methods. As

shown in Figure 5, the results of three different methods under

the regular mask of CelebA are shown in the first and second

lines, while the results of CelebA-HQ datasets are shown in the

third and fourth lines. The hole size of the square mask was set

as 128× 128, and the radii of the circle mask was set as 64. From

Figure 5, we found that facial images with rectangular masks

restored by CA (Yu et al., 2018) and MADF (Zhu et al., 2021)

tend to be fuzzy, and problems such as chromatic aberration

and excessive discontinuity appear at the edges of the restored

areas in the lips and eyeballs. However, facial images restored by

the proposed method have clear facial features and good color

consistency, making it difficult to distinguish the original image

FIGURE 6

The comparison of di�erent image inpainting methods on CelebA-HQ and ParisView with irregular masks. The face images are adapted from

the celeba-HQ dataset, which comes from Karras et al. (2017).
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FIGURE 7

Statistical results from a user study on the CelebA data set. The value shows the percentage of each method chosen as the better one.

FIGURE 8

Statistical results of a user study on the CelebA-HQ data set. The value shows the percentage of each method chosen as the better one.

from the restored image with the naked eye. All these verify the

effectiveness of the proposed method.

To further verify the inpainting effect of our method, we

compared the inpainting performance of our method with other

competitors on irregular masks.

The corresponding results are shown in Figure 6. The output

images from the six different image inpainting methods of

CelebA are shown in the first three lines, while the results from

the CelebA-HQ dataset are shown in the last three lines.

Compared to the results generated with CA (Yu et al.,

2018) and GMCNN (Wang et al., 2018), CLGN eliminated the

phenomenon of blurring and distortion in the repair region,

and the generation results was smoother and achieved a perfect

transition from the damaged region to the undamaged region.

MEDFE (Liu et al., 2020) and RFR (Li et al., 2020) offer

excellent inpainting performance when the area to be repaired

is small. However, for a large area of masks, they showed a

wavy visual blur of water, which affects the overall observation

effect of the inpainting image. Compared with MADF (Zhu

et al., 2021), our GAM attention module-based method is more

robust and stable depending on the good results of the local

refinement network.
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4.2.4. User study

Because the evaluation metrics are not exactly fit human

perception, we performed a user study on the Google Forms

platform to further compare the visual quality of our method

with six other mainstream image inpainting methods. For

comparison, we randomly selected 10 pairs of CelebA (Liu

et al., 2015) and CelebA-HQ (Karras et al., 2017), where each

pair contains two inpainting images, one by a comparable

method and another by our method. Note that the input images

are covered by the same masked region. Then, we invited 24

volunteers for choosing the more natural and realistic images

from each pair. In the end, we totally collected 2,880 votes. From

Figures 7, 8, it can be concluded that our method is significantly

more likely to be chosen than the other six methods, indicating

that the visual quality of inpainting images of our method

is superior.

4.3. Ablation studies

To verify the effectiveness of the loss function and a

multistage network in our proposed method, ablation studies

were performed on CelebA (Liu et al., 2015) and CelebA-HQ

FIGURE 9

The output images of three subnetworks.

(Karras et al., 2017). The ablation experiment in this study

as divided into three parts, which analyze the weighted loss

network design, and GAM, respectively.

4.3.1. Network design

There are three subnetworks in our method: crude

inpainting work NetC , local development network NetL, and a

global attention-based network NetG. By comparing different

variants of CLGN, the effectiveness of our network design can

be verified and evaluated. Figure 9 shows the visual comparison,

and Table 3 presents the corresponding numerical results. Note

that we used incomplete images with one central square hole size

of 128× 128.

By comparing the results of “NetC” (C), “NetC +NetL” (C+

L), “NetC +NetG” (C + G), “NetC +NetL +NetG” (C + L+ G)

in Table 4, we conclude that our proposed a multistage network,

especially the global attention-based network, has a great effect

on the inpainting results. This is probably because different types

of networks can handle different types of visual artifacts. Hence,

the more types and number of networks, the better the image

processing effect.

In addition, we analyzed our proposed method by

comparing the inpainting results of three subnetworks and drew

a conclusion from Figure 9 that the visual quality of the output

images is getting better.

As shown in the first row of Figure 9, since the role of NetC

is to repair the image initially, the output image has a small

range of blur. Moreover, NetL removes local blur, especially

those in the face by using the local information and NetG,

finally, recovers complete semantic information and the image

is restored to a maximum extent.

TABLE 4 The ablation of attention mechanism on CelebA.

Strategy PSNR SSIM FID LPIPS

w/o GAM 21.43 0.892 11.28 0.203

w/one CBAM 21.68 0.907 7.90 0.169

w/one GAM 21.79 0.923 8.12 0.178

w/three CBAM 22.98 0.976 7.13 0.126

TABLE 3 The ablation of network design on CelebA and CelebA-HQ data sets.

CelebA data set CelebA-HQ data set

Network C C + L C + G C + L + G Network C C + L C + G C + L + G

ℓ1(%)† 7.16 6.98 7.03 6.82 ℓ1(%)† 4.29 4.54 4.57 4.42

PSNR‡ 23.01 23.05 23.08 23.14 PSNR‡ 26.03 26.37 26.35 26.48

SSIM‡ 0.948 0.971 0.969 0.980 SSIM‡ 0.948 0.977 0.974 0.988

‡Higher is better.
†Lower is better.
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FIGURE 10

The outputs of di�erent network frameworks with di�erent attention mechanisms. Here “C” indicates a crude inpainting network, “L” means a

local refinement network, and “G” means a global refinement network without any attention mechanism. “G_CBAM” means a global refinement

network based on CBAM, while “G_GAM” means a GAM-based global refinement network. Obvious di�erences on the faces are highlighted by

red boxes. The face images are adapted from the celeba-HQ dataset, which comes from Karras et al. (2017).

TABLE 5 The ablation of loss functions on the CelebA data set.

Strategy PSNR SSIM FID LPIPS

w/o reconstruction loss 23.01 0.958 7.62 0.128

w/o adversarial loss 22.93 0.931 7.27 0.134

w/o TV loss 23.04 0.943 7.31 0.151

w/o perceptual loss 22.73 0.907 7.18 0.133

w/o style loss 22.98 0.972 7.23 0.136

All 23.14 0.980 7.11 0.124

4.3.2. Attention mechanism

To study the key role of GAM in the network, we conducted

an ablation experiment on it. We attempted the following

situations: remove the attention mechanism, place CBAM, and

deploy GAM. The experimental results are presented in Table 4.

From Table 4, it can be concluded that FID is greatly affected.

while others are only a little affected by the attentionmechanism.

Moreover, compared to CBAM, GAM has an excellent effect on

facial image inpainting.

Next, we analyzed and compared the visual results of the

different networks in Figure 10. From Figure 10, the results of

“NetC+NetL” can only roughly repair the whole image, but there

are artifacts or mismatches in the eyes, the mouth, and other

parts. In contrast, attention mechanism-based network is more

coordinated in global semantics and has a high similarity with

the original image.

4.3.3. Loss functions

In our study, we introduced five loss functions, namely

reconstruction loss, adversarial loss, TV loss, perceptual loss,

and style loss. Then, we conducted ablation experiments on the

CelebA-HQ (Karras et al., 2017) dataset by removing these five

loss functions from the network and analyzing the PSNR, SSIM,

FID, and learned perceptual image patch similarity (LPIPS)

values of the inpainting images. Note that we used incomplete

images with one center square hole size of 128 × 128. From

Table 5, it can be concluded that reconstruction loss plays

the most critical role in performance optimization and that

perceptual loss and style loss have the least impact on the

performance of image inpainting.

5. Conclusions and future works

Facial image inpainting technology has practical significance

in many fields. In this study, we proposed a multistage GAN

(CLGN) for GAM-based facial image inpainting. This method

combined the normalization of feature layer output in a deep

convolutional GAN with the guidance of GAM to improve the

robustness and accuracy of image detail recovery. As human
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faces have a common structure with different features such as

the nose, the mouth, and the eyes, a multistage (crude-local-

global) network can play the complete restoration role in distinct

parts. Moreover, a skip connection was introduced using an

encoder-decoder network to compensate for the loss of features

due to down-sampling. The proposed method was compared

with several inpainting methods on CelebA (Liu et al., 2015) and

CelebA-HQ (Karras et al., 2017), and it had better performance

than the mainstream traditional image inpainting method in

both qualitative and quantitative analyses.

However, from the perspective of inpainting results,

although our methods can predict a reasonable result according

to the incomplete image, there are still some inevitable

differences in color and texture details compared to the actual

values. The guidance of structural information ensures its overall

structure to some extent, but it is difficult to approach the true

value for high-level semantic repairs such as the human eyes

and mouths. From the perspective of the training process, large

datasets can ensure that network training fits the model better,

but at the same time, the long training time of the network

becomes a thorny problem. Therefore, in subsequent study, we

should focus on the facial image inpainting of higher semantics,

which can ensure the credibility of the results and bring them

closer to their actual value. At the same time, when designing

a network for large data sets, network performance should be

guaranteed and network training time should be minimized.
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