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Research on reinforcement
learning-based safe
decision-making methodology
for multiple unmanned aerial
vehicles

Longfei Yue, Rennong Yang, Ying Zhang and Jialiang Zuo*

Air Tra�c Control and Navigation College, Air Force Engineering University, Xi’an, China

A systemwithmultiple cooperating unmanned aerial vehicles (multi-UAVs) can

use its advantages to accomplish complicated tasks. Recent developments in

deep reinforcement learning (DRL) o�er good prospects for decision-making

for multi-UAV systems. However, the safety and training e�ciencies of

DRL still need to be improved before practical use. This study presents

a transfer-safe soft actor-critic (TSSAC) for multi-UAV decision-making.

Decision-making by each UAV is modeled with a constrained Markov decision

process (CMDP), in which safety is constrained to maximize the return.

The soft actor-critic-Lagrangian (SAC-Lagrangian) algorithm is combined

with a modified Lagrangian multiplier in the CMDP model. Moreover,

parameter-based transfer learning is used to enable cooperative and e�cient

training of the tasks to themulti-UAVs. Simulation experiments indicate that the

proposed method can improve the safety and training e�ciencies and allow

the UAVs to adapt to a dynamic scenario.

KEYWORDS

multi-UAV, constrained Markov decision process, SAC-Lagrangian, transfer learning,

reinforcement learning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have achieved remarkable success

in civilian fields, such as disaster management (Erdelj and Natalizio, 2016), agriculture

protection (Faical et al., 2016), power line detection (Li et al., 2008), wireless relay

networks (Ouyang et al., 2014; Shi et al., 2020), and intelligence, surveillance, and

reconnaissance (Liu et al., 2019; Zhao et al., 2020). However, it is challenging for

a single UAV to accomplish tasks in highly complex, confrontational, and uncertain

environments due to the inherent shortcomings of small platforms, light payloads,

and limited functionality. A system with multiple cooperating UAVs (multi-UAV) is

more flexible and resilient to uncertainties and can accomplish complex, dull, dirty,

and dangerous tasks. The Unmanned Systems Integrated Roadmap released by the US

Department of Defense states that multi-UAV systems are an essential trend for future

UAV development (Wineefeld and Kendal, 2011). Therefore, multi-UAV cooperative

decision-making has become a hot research topic.
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Various scholars have extensively studied cooperative

decision-making for the multi-UAV systems. There are three

major approaches: rule-based (Gaertner, 2013; Ernest et al.,

2016), search-based (Ramirez et al., 2016; Zhen et al., 2018),

and learning-based approaches (Zhang et al., 2019; Sun et al.,

2020). A rule-based approach relies on expert knowledge to

make decisions by abstracting a problem-specific logic tree

with an IF-THEN structure. Gaertner (2013) studied air-combat

tactics for a UAV swarm, constructed a simple rule set, and

used agent-based modeling in a simulation analysis, which

identified some new swarm tactics. Ernest et al. (2016) developed

a two-vs.-four air-combat decision model based on genetic

fuzzy trees called ALPHA. It defeated a professional pilot in

simulated air combat. However, expert knowledge is incomplete

and hard-coded rules are limited such that this approach is

not flexible enough to cope with complex scenarios beyond

expert knowledge.

Search-based methods use some parallel search and iteration

mechanisms to find suboptimal solutions to an explicit objective

function. Ramirez et al. (2016) used a multiobjective genetic

algorithm to find a Pareto front solution to a multi-UAV

mission-planning problem. Zhen et al. (2018) proposed an

intelligent self-organizing ant colony optimization algorithm for

multi-UAV cooperative search-and-attack mission planning. It

can find optimal waypoints. However, this approach requires

explicit objective functions and performs an online search.

Therefore, the real-time performance of search-based methods

is poor. As the problem becomes more complex, the optimal

solution also becomes harder to find.

Learning-based methods apply reinforcement learning (RL),

a data-driven approach in which an agent learns the optimal

policy by trial and error. A neural network is used to map

states and actions. Zhang et al. (2019) proposed a three-

vs.-three air-combat method based on multi-agent RL. They

trained multiple agents in a swarm air-combat environment

and used scenario transfer training and self-play to improve

the learning efficiency of the multi-agent RL. Sun et al. (2020)

constructed an air-combat model based on a multi-agent

hierarchical policy gradient algorithm, which outperformed

other air-combat methods in terms of the agents’ offensive

and defensive abilities. Learning-based methods use offline

training and online testing frameworks, which can achieve

near real-time performance. Neural networks are used for

high-dimensional-state feature extraction and hence learning-

based methods are more suitable for complex decision-

making scenarios.

However, there are three issues with the latest learning-

basedmethods. First, they suffer from safety issues. The standard

RL algorithm maximizes only the sum of rewards during

exploration without considering unsafe behaviors, which is

unacceptable in many safety-critical domains. For example,

a UAV that interacts with the environment should never

perform an unsafe action while exploring, such as flying into

a hazardous area. For a multi-UAV formation, losing one

UAV may lead to mission failure. Therefore, it is essential

to improve the safety of multi-UAV systems. Second, training

inefficiency is also a critical problem, one that is limiting

the practical application of RL. Third, current research on

multi-UAV cooperative decision-making focuses on air-to-

air missions. In contrast, air-to-surface missions have not

been widely studied. The above three points are the primary

motivation of this study.

In this article, we studied a multi-UAV decision-making

problem for an air-to-surface mission, in which multiple

heterogeneous UAVs are expected to accomplish complex

tasks efficiently and safely through cooperation. Each UAV is

modeled as a constrained Markov decision process (CMDP;

Altman, 1999). An improved soft actor-critic-Lagrangian (SAC-

Lagrangian) algorithm (Ha et al., 2020) is used to solve

the optimal policy. Moreover, considering the similarity and

increasing difficulty of the cooperative tasks performed by the

multiple UAVs, transfer learning (TL; Glatt et al., 2016) is used

to improve the training efficiency. Our experimental results

demonstrate the effectiveness, generalization, and safety of the

proposed method, which we call the transfer-safe soft actor-

critic (TSSAC) method. The main contributions of this study are

as follows:

(1) An end-to-end safe RL algorithm is proposed for the UAV

decision-making problem. It maximizes task performance

while guaranteeing safety.

(2) To make the algorithm tunable for more complex

environments, damping is added to address the

oscillations of the standard Lagrange multiplier in the

SAC-Lagrangian algorithm.

(3) A parameter-based TL method is applied to improve

the training efficiency of the multiple UAV agents when

performing tasks. An agent can learn difficult tasks based

on simpler tasks.

The remainder of this study is structured as follows. We

introduced the theoretical background of RL and TL. Next, the

CMDP model built for the UAV decision-making problem is

presented, followed by the proposed TSSAC method. Then, the

simulation experiments conducted to test the safety, training

efficiency, and generalization of the proposed method are

detailed, followed by the final section that concludes this study

and discusses future work.

2. Background

2.1. Reinforcement learning

A branch of machine learning, RL uses the experience

gained by interacting with the environment via reward

feedback to improve a system’s ability to make decisions
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(Littman, 2015). RL is characterized as an interaction between

an agent and an environment, which can be modeled as a

Markov decision process. The agent’s goal is to maximize

the expected return in the entire decision-making process,

i.e., to find the optimal policy. Therefore, RL is a decision

optimization method.

2.2. Maximum entropy RL

Maximum entropy RL maximizes the expected return

while maximizing the entropy of the policy. It incorporates

the entropy of the stochastic policy into the reward to

encourage exploration.

Therefore, the policy loss can be described as follows:

Jπ (θ) =

T
∑

t=1

E
(st ,at)∼ρπθ

[

γ tr(st , at)+ αH(πθ (�|st))
]

, (1)

where J is the loss or objective function, θ represents the

parameters of the policy, H(πθ (�|st)) = − log(πθ (at|st)) is the

entropy of the policy, and the temperature parameter α controls

how important the entropy term is. Entropy maximization leads

to policies that can explore more and capture multiple modes of

near-optimal policies. For example, if multiple actions seem to

be equally good, the policy should assign to each action an equal

probability of being chosen.

2.3. CMDP

Like a Markov decision process (Baxter, 1995), CMDP is

formally defined as a tuple
〈

S,A, p, r, c,C, γ
〉

, with a continuous

and bounded state space S, a continuous and bounded action

space A, a state transition function p : S × A × S → R that

represents the transition probabilities from a state by taking

an action to the next state, a reward function r : S × A →

[rmin, rmax] that indicates the instant reward after taking action

a ∈ A in the state s ∈ S, a cost function c : S× A → [cmin, cmax]

for evaluating the safety constraint, a given cost threshold C, and

a discount factor γ ∈ [0, 1). The goal of the agent is to learn a

policy that maximizes the expected return for each episode such

that the costs of a constraint violation remain below the given

threshold C (Ray et al., 2019):















max
π

E
(st ,at)∼ρπ

[

∑

t
γ tr(st , at)

]

,

s.t. E
(st ,at)∼ρπ

[

∑

t
γ tc(st , at)

]

≤ C,
(2)

where ρπ is the trajectory distribution, and the expectation of

long-term costs generated by the feasible policies is less than or

equal to C (Yang et al., 2021).

The constrained optimization problem of CMDP in the

maximum entropy RL framework becomes (Ha et al., 2020):















max
π

E
(st ,at)∼ρπ

[

∑

t
γ tr(st , at)+ αH(πθ (�|st)

]

,

s.t. E
(st ,at)∼ρπ

[

∑

t
γ tc(st , at)

]

≤ C,
(3)

where E
(st ,at)∼ρπ

[

− log(πθ (at|st))
]

≥ H0, ∀t so that the policy

entropy satisfies the entropy constraintH0.

A constrained optimization problem can be solved

by the Lagrange multiplier method (Bertsekas, 1982). By

introducing the Lagrange multiplier β , Equation (3) becomes

an unconstrained optimization problem:

min
β

max
π

L(π ,β)
.
= f (π)− βg(π)

where f (π) = E
(st ,at)∼ρπ

[

∑

t
γ tr(st , at)+ αH(πθ (�|st)

]

and g(π) = E
(st ,at)∼ρπ

[

∑

t
γ tc(st , at)

]

− C.

(4)

2.4. Transfer learning

Transfer learning (TL) is a machine learning method that

improves the training efficiency for a new task by transferring

knowledge about source tasks to a new task as shown in Figure 1.

Humans learn new knowledge based on the knowledge

and experience accumulated by our ancestors. There are three

standard TL methods: parameter-based, feature-based, and

instance-based methods (Cook et al., 2013; Zhong et al., 2018;

Song et al., 2020). This study applies a parameter-based TL

method. When learning a target task, knowledge about source

tasks can be saved as network parameters. This approach is

efficient and easy to implement.

3. Problem formulation

This section describes the air-to-surface mission for the

multi-UAV system. A kinematic model is constructed for the

UAVs. Then, the decision-making process of each UAV is

formulated as a CMDP.

3.1. Mission description

The goal of the air-to-surface mission is to autonomously

and cooperatively fire a missile at the opponent’s surface-to-air

missile (SAM) and the target (Kim et al., 2019). Suppose that

the opponent has one SAM, one target, and three radar sites.

The positions are known in advance through satellite imagery.

The SAM is responsible for protecting important targets, such
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FIGURE 1

Schematic of TL.

FIGURE 2

Multi-UAV cooperative decision-making scenario for the strike mission. The formation can choose the original path (case 1) or an alternative

path (case 2) when flying to the SAM airspace.

as an airport. The radar sites can detect incoming UAVs and are

considered to be hazards. Our multi-UAV formation consists of

three heterogeneous UAVs: a decoy UAV, a detection UAV, and a

strike UAV. The decoy UAV carries decoy payloads and is tasked

to lure the SAM system to turn its radar on. The detect UAV

is responsible for locating the SAM and identifying the target

accurately. The strike UAV will lock onto and hit the target.

The three UAVs must avoid detection by maneuvering around

the hazards and finally hit the target to complete the mission.

Each UAV is modeled as an RL agent. Figure 2 is a schematic of

this mission.

As shown in the left side of Figure 2, the detecting and

weapon launch ranges of small UAVs (blue-dashed and blue

solid circles) are shorter than those of the SAM (red-dashed

and red solid circles). Therefore, once the multi-UAV formation

reaches the SAM and target airspace, it must implement fine

cooperative decisions to complete the strike mission. First,

to induce the SAM radar to turn on, the decoy UAV must
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TABLE 1 Task allocation.

UAV Task Description

Decoy UAV 1 D(DetectUAV,Hazard) > R4 ,D1 = D(DecoyUAV, SAM),R3 < D1 ≤ R4

Detect UAV 2 D(DetectUAV,Hazard) > R4 ,D2 = D(DetectUAV, SAM),R3 < D2 ≤ R2

Strike UAV 3 D(StrikeUAV,Hazard) > R4 ,D3 = D(StrikeUAV, SAM),D3 < R1

FIGURE 3

Schematic of safe RL.

continually fly between the SAM detection radius R4 and the

SAM launch radius R3. Second, when the SAM radar turns on,

the detect UAV must quickly enter within its detection radius

R2 so that it can detect and identify the target. Third, the strike

UAV immediately enters within its weapon launch radius R1 and

hits the target. Figure 2 is the mission scenario described by Kim

et al. (2019), which inspired our study.

In conclusion, the decoy UAV needs to avoid the hazards,

reach the target area, and induce the SAM radar to turn

on. This is task 1. The detect UAV needs to avoid the

hazards, enter within its detection radius, and detect the

target. This is task 2. The strike UAV needs to avoid the

hazards, enter within its launch radius, and hit the target.

This is task 3. If the UAVs complete tasks 1, 2, and 3,

the mission is a success. The tasks are summarized in

Table 1. D is a distance function. D1, D2, and D3 indicate

the distances between the SAM and each of the three

UAVs, respectively.
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3.2. UAV kinematic model

A UAV is modeled using a kinematic equation with three

degrees of freedom: heading, pitch, and roll. However, a UAV

is not required to operate at high mobility in an actual mission

due to weapon and sensor limitations. For simplicity, we

developed a simple UAV kinematic model for the three UAVs

as follows:











ẋ(t)

ẏ(t)

ϕ̇(t)

v̇(t)











=











v(t) cosϕ(t)

v(t) sinϕ(t)

ω(t)

u(t)











, (5)

where x and y are the coordinates of the UAV in two

dimensions, ϕ and v are the heading and speed of the

UAV, and ω and u are the angular velocity and acceleration

of the UAV, respectively. To ensure that each UAV has a

stable heading and velocity, we controlled the angular velocity

and acceleration.

In addition, the position, velocity, and heading constraints

were modeled as the lower and upper bounds:



















0 ≤ x ≤ xmax,

0 ≤ y ≤ ymax,

vmin ≤ v ≤ vmax,

ϕmin ≤ ϕ ≤ ϕmax.

(6)

3.3. CMDP modeling

Multi-UAV cooperative decision-making is a sequential

decision problem and an optimization problem with safety

constraints (avoiding flying into hazardous airspace). Therefore,

it is mathematically formalized as a CMDP. Figure 3 shows the

interactions between the agent and the environment in CMDP.

In this study, each UAV is an agent interacting with the

environment, which is modeled as a CMDP. The state space,

action space, reward function, and cost function are designed

as follows.

3.3.1. State space

In the CMDP, the state space should contain the critical

information needed for the agent to make decisions. It evaluates

the agent’s current situation and then guides it to complete the

task. Therefore, the state space is designed as follows:

st = [xt , yt , vt ,ϕt , lt], (7)

where xt and yt are the coordinates of a UAV at time t, vt and

ϕt are the speed and heading, and lt is the distance between the

TABLE 2 The settings of the reward function.

Description Reward function

Success reward rdone1 = 10

Distance reward r
approach
2 = dt−1 − dt

Step penalty r
step
3 =− 0.1

FIGURE 4

Oscillations on the concave Pareto front.

UAV and the target. The target position is detected by satellites

and the relative distance can be obtained with the radar sensors

on the UAV.

3.3.2. Action space

The agent selects an action and transitions to the next state.

The state transition function is the UAV kinematics model as

shown in Equation (5). Therefore, the action space is designed

as follows:

at = [ωt , ut]. (8)

By directly controlling ω and u, the UAV can maintain

a reasonable speed and a stable heading to accomplish the

mission better.

3.3.3. Reward function

The reward function is a feedback signal from the

environment. It is used to evaluate the actions of an agent. An

agent receives a reward signal only when it completes a task, but

a sparse reward is not conducive to learning the policy for an

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1105480
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yue et al. 10.3389/fnbot.2022.1105480

FIGURE 5

Overview of our proposed framework.

agent. Therefore, a dense reward function is designed according

to expert knowledge.

The reward function in this study is divided into

three parts: a positive reward rdone1 for the success of the

task, a dense reward r
approach
2 for inducing the agent to

approach the target, and a negative reward r
step
3 for the time

consumed by the agent in completing the task, as shown

in Table 2.

Here, dt−1 and dt are the distances between the UAV and

the SAM at the previous and current time steps. When dt−1 >

dt , the UAV is close to the SAM, and therefore, r
approach
2 >

0; when dt−1 < dt , the UAV is far from the SAM, and

therefore, r
approach
2 < 0.

In addition, the three UAVs receive rdone1 under different

conditions. The decoy UAV receives rdone1 when it completes

task 1 (it enters the area between the detection radius and

launch radius R3 of the SAM). The detect UAV receives

rdone1 when both the decoy UAV has completed task 1 and

it completes task 2 (the distance between the detect UAV

and the target is less than its detection range R2). The strike

UAV obtains rdone1 when both it completes task 3 and the

detect UAV has completed task 2. Therefore, rdone1 is given

as follows:

rdone1 =



































10 to DecoyUAV, if R3 < D1 ≤ R4,

10 to Detect UAV, if R3 < D1 ≤ R4

and R1 < D2 ≤ R2,

10 to Strike UAV, if R3 < D1 ≤ R4

and R1 < D2 ≤ R2 and D3 < R1.

(9)
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The overall reward function is the sum of the

three subrewards:

r = k1r
done
1 + k2r

approach
2 + k3r

step
3 , (10)

where k1, k2, and k3 are the weights.

3.3.4. Cost function

The cost function improves the safety of the agent. For

each step during training, if the agent takes an unsafe

action or moves within range of the hazards, it receives a

cost c. The cumulative costs of the agent during training

cannot exceed the cost threshold C. Therefore, the agent

must make relatively few unsafe actions to satisfy the safety

constraint when exploring. The cost function is defined

as follows:

c =

{

1, if the UAV stays within range of the hazards,

0, else.
(11)

4. Method

For the multi-UAV cooperative decision-making problem,

this study used a SAC (Haarnoja et al., 2018a), which is

an efficient maximum entropy RL algorithm. To improve

the safety of each UAV during exploration, an improved

safe RL algorithm was used to solve the CMDP model

established in the “CMDP modeling” section. However, it is

challenging to train multiple UAVs simultaneously. Moreover,

learning by the multi-agent system is inefficient. Thus,

considering the similarity and increasing difficulty among

the three tasks, a parameter-based TL method was used

to train the detect UAV and strike UAV models based

on the converged decoy UAV and detect UAV models,

respectively. Finally, the TSSAC algorithm is proposed to

improve training efficiency.

4.1. SAC-Lagrangian

SAC is a model-free, off-policy, actor-critic algorithm

following the maximum entropy RL framework. It is sample-

efficient and robust. Therefore, we used SAC to train agents in

this study.

SAC-Lagrangian, namely SAC combined with the Lagrange

multiplier method, is an efficient safe RL algorithm. The loss

functions used for Equation (4) are given below. Their derivation

is described in detail in the literature (Haarnoja et al., 2018b; Ha

et al., 2020).

1. Decompose the cooperative task as Table 1 into

three related subtasks: 1, 2, and 3; load task 1;

2. Initialize the network parameters of the replay

buffer: M,Q,π ,α,β;

3. Initialize the target network weights: Q′;

4. For each epoch do

5. Initialize state s0 for the agent;

6. For each environment step do

7. Sample the action from the policy π;

8. Execute action at and get the next state st+1 and

reward rt from the environment;

9. Store the tuple st , at , rt , st+1, dt to M;

10. End for

11. For each gradient step do

12. Randomly sample a batch of memories from M;

13. Update the policy (Equation 12), the Q network

(Equation 13), the temperature parameter (Equation

14), the cost coefficient (Equation 15), and the

target network weights (soft update);

14. End for

15. End for

16. Save the network parameters as N1 and load

task 2;

17. Transfer: N1 → N2, fine-tune the hyperparameters,

do second pretraining in 2-15;

18. Save network parameters as N2 and load task 3;

19. Transfer N2 → N3, fine-tune the hyperparameters,

do training in 2-15.

Algorithm 1. Transfer-safe soft actor-critic algorithm (TSSAC).

The policy loss is:

Jπ (θ) = E
(st ,at)∼ρπ

[

α logπθ (at|st) − Qr
w(st , at)

+βQc
w(st , at)

]

, (12)

where w represents the parameters of the critic and β is the

safety coefficient or Lagrange multiplier. We used Qr
w(st , at) to

represent the reward critic and Qc
w(st , at) for the safety critic.

The soft Q function is trained to minimize the soft

Bellman residual. The critic loss can be expressed by the

following equation:

JQ(w) = E
(st ,at)∼ρπ

[

1

2
(Qw(st , at)− (r(st , at)

+γ E
st+1∼ρπ (s)

[Vθ̄ (st+1)]))
2

]

, (13)

where Vθ̄ is the target value function.
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FIGURE 6

Simulation environment.

The entropy constraint loss function is:

J(α) = E
(st ,at)∼ρπ

[

−α logπθ (at|st)− αH0
]

, (14)

whereH0 is the minimum expected entropy.

We learn β by minimizing the safety loss function as

Equation (15). So β will be decreased if Qc
w(st , at) ≤ C, else β

will be increased to guarantee more safety.

J(β) = E
(st ,at)∼ρπ

[

β(C − Qc
w(st , at))

]

. (15)

The policy is learned by solving the corresponding gradient

of the loss function and updating the network parameters using

the gradient descent algorithm.

4.2. Modified Lagrange multiplier method

The Lagrange multiplier method transforms the constrained

optimization problem into a dual problem through a linear

combination of the objective function and constrained

condition, as shown in Equation (4).

However, it never converged into a solution in practice.

As long as the constraint was violated, β kept increasing.

However, when we suddenly satisfied the constraint again,

β remained large. It took several steps before the gradient

descent pushed β back to zero. As long as β was positive,

the solution was pushed further away from the constraint.

Eventually, β became zero, the constraint was ignored,

and the optimization process continued. However, when the

solution accidentally hit the constraint again, the whole cycle

repeated. This optimization method oscillated on the Pareto

front, especially on the concave Pareto front. Figure 4 shows

the standard Lagrange multiplier method oscillating on the

Pareto front.

Therefore, we introduced a modified differential method

of multipliers proposed by Platt and Barr (1987), which

is the modified Lagrange multiplier method. Intuitively, the

Lagrange multiplier β can be viewed as the potential energy

of an oscillating system. By damping this energy, we can

prevent the system from oscillating eternally and make it a
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TABLE 3 Simulation parameters.

Hyperparameter Value Symbol

State dimension 5

Action dimension 2

Number of layers for actor 3

Number of layers for critic 3

Number of nodes for actor (256, 256, 2)

Number of nodes for critic (256, 256, 1)

Active function ReLU

Learning rate 0.001 η

Reward decay factor 0.99 γ

Max step per epoch 4,000

Epochs 50

Replay size 1,000,000 M

Polyak 0.995 τ

Minibatch size 256

Entropy constraint −1.0 H0

Cost threshold 3 C

Cost per step for hazards 1 γ

Initial entropy coefficient 0 α

Initial cost coefficient 0 β

Damping scale factor 10 kd

Number of seeds 3

Reward function weights (1, 1, 1) (k1 , k2 , k3)

Strike UAV launch range 10 R1

Detect UAV detection range 13 R2

SAM launch range 17 R3

SAM detection range 20 R4

Simulation step (second) 0.1

tunable algorithm for the stochastic gradient descent and SAC-

Lagrangian. Therefore, Equation 12 becomes:

Jπ (θ) = E
(st ,at)∼ρπ

[

α logπθ (at|st) − Qr
w(st , at)

+(β − ξ )Qc
w(st , at)

]

, (16)

ξ = kd × (C − Qc
w(st , at)), (17)

where ξ is a damping factor and kd is a damping scale coefficient.

We used this modified Lagrange multiplier method to tune

the balance between the losses using a stochastic gradient

descent, regardless of the shape of the invisible Pareto front.

This approach requires significantly less effort for tuning the

hyperparameters. The optimization procedures do not need to

be iterated as much, and they will be more robust to the initial

parameter values too.

4.3. TSSAC

We used a parameter-based TL method to improve the

training efficiency of SAC-Lagrangian, which is called TSSAC.

In practice, the model trained on the source task was saved

and transferred as the initialization of the target task model

to accelerate learning and improve the training efficiency.

The target task model continues to be trained to gain

new knowledge.

Therefore, the training flow of this study is as follows. First,

the decoy UAV model was trained on task 1, and the weights

and bias parameters of the current networks were saved as N1.

Second, we loaded the trained N1 as the initialization of the

detect UAV network, and the detect UAV model was trained

on task 2. We loaded the decoy UAV model as the judgment

condition for the completion of task 2. The weights and bias

parameters of the networks were saved as N2. Finally, we loaded

convergedN2 as the initialization of the strike UAVnetwork, and

the strike UAV model was trained on task 3. It should be noted

that we loaded the decoy UAV and detect UAV models as the

judgment condition for the completion of task 3. The research

framework for multi-UAV cooperative decision-making based

on TSSAC was depicted in Figure 5. Algorithm 1 shows the

details of the TSSAC algorithm.

Thus, we obtained a multi-UAV cooperative decision-

making model. For online testing, the three trained UAVmodels

were loaded simultaneously to verify the performance of the

overall model.

5. Experiments and discussion

5.1. Experimental settings

A light multi-UAV cooperative decision-making

environment was constructed in this study. The scenario

is a square of area 100 km × 100 km. The maximum range of

the decoy UAV, detect UAV, and strike UAV is 20 km, 13 km,

and 10 km, respectively. The SAM launch, detection, and other

hazards ranges are 17 km, 20 km, and 12 km, respectively, as

shown in Figure 6.

The size of the scenario was normalized to the range (0,

1) during training, which facilitates neural network training

and prevents the gradient from vanishing. The angular velocity

and acceleration ranges were both normalized to [−1, 1],

squashed by the activation function tanh. The simulation
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FIGURE 7

Comparison of the five algorithms during training. (A) The task performance curve of the detect UAV. (B) The safety curve of the detect UAV. (C)

The task performance curve of the strike UAV. (D) The safety curve of the strike UAV.

FIGURE 8

Cost coe�cient curve.

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1105480
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yue et al. 10.3389/fnbot.2022.1105480

FIGURE 9

E�ectiveness during testing.

step size was 0.1 s. The hyperparameter settings are listed in

Table 3. The Adam optimizer was employed for gradient descent

optimization (Kingma and Ba, 2014).

5.2. Results and discussion

We ran experiments using the TSSAC method in the

simulation environment. First, we trained the decoy UAV,

detect UAV, and strike UAV. We recorded the rewards

and costs during training and testing and compared them

with the results from proximal policy optimization (PPO)

(Schulman et al., 2017), soft actor-critic (SAC), constrained

policy optimization (CPO) (Achiam et al., 2017), and SAC-

Lagrangian benchmark algorithms. Both PPO and SAC

are conventional RL algorithms, whereas CPO and SAC-

Lagrangian are safe RL algorithms. Finally, we tested online the

effectiveness, generalization, and trajectories of the agents for the

different algorithms.

5.2.1. Training results

After training 50 epochs, the task performance (average

epoch return) and safety curves (average epoch costs) during

the training of the five algorithms were obtained. The task

performance and safety curves of the detect UAV and the strike

UAV are shown in Figure 7.

Figures 7A, C show that the three SAC-based algorithms

outperformed the PPO and CPO algorithms in terms of

convergence speed and final performance. The maximum

entropy framework and stochastic actor of SAC enhance the

exploration capability of the agent and the off-policy improves

the sample efficiency. Due to the combination of safety

constraints, SAC-Lagrangian has a lower final task performance

and learning efficiency than SAC. The TSSAC algorithm uses

TL, so that learning is more efficient and convergence is faster

while ensuring that the final performance is the same as that

of SAC-Lagrangian.

The red dashed lines in Figures 7B, D are the cost threshold.

The SAC and PPO algorithms violate the cost threshold because
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FIGURE 10

Comparison of five algorithms during testing. (A) Task performance/reward test. (B) Safety test.

TABLE 4 Comparison of test performance.

Algorithm Success rate Average cost

PPO 92% 3.8

SAC 98% 5.0

CPO 76% 3.0

SAC-Lagrangian 96% 3.0

TSSAC 96% 3.0

they maximize only the rewards and do not consider the safety

constraint. Therefore, the cumulative costs violate the cost

threshold. In contrast, the CPO, SAC-Lagrangian, and TSSAC

algorithms, which consider the safety constraint, all satisfy the

cost threshold. The CPO and SAC-Lagrangian algorithms reach

the cost threshold. TSSAC performed better because it is based

on the pretrained SAC-Lagrangian model as the agent’s policy is

more conservative and safer.

Figure 8 plots the cost coefficient β . After adding damping,

β is more stable. Therefore, the performance curve of TSSAC

converges more easily.

5.2.2. Experiment I: E�ectiveness

We loaded the trained model and tested it online to verify

the effectiveness of TSSAC. Figure 9 shows that the decoy UAV

can avoid the hazards and then fly stably between the detection

and launch ranges of the SAM to induce the SAM to turn its

radar on. The detect UAV can also avoid hazards. At the same

time, it locates the SAM and the target when they are within its

detection range. The strike UAV adjusts its heading and waits

for the detect UAV to locate and identify the target and then

quickly hit it. The target turns black after being hit. Therefore,

the three trained UAV models can engage in online cooperative

decision-making to accomplish their tasks well.

We also tested the distribution of rewards and costs, as

shown in the box plots in Figure 10. Figure 10A indicates

that the task performance/reward during testing of the five

algorithms was consistent with that during training as shown

in Figure 7A. The CPO algorithm results in a large variance

in reward distribution and poor task performance due to

its learning inefficiency. The SAC-based algorithm has a

smaller variance for reward distribution and more stable and

excellent performance.

The TSSAC algorithm achieves better final performance and

stability than the SAC-Lagrangian algorithm due to TL.

Figure 10B shows that the costs of the PPO, SAC, and CPO

algorithms exceed the cost threshold during testing, whereas the

SAC-Lagrangian and TSSAC algorithms are both within the cost

threshold. Therefore, the TSSAC algorithm is safer than these

algorithms and can guarantee safety during testing.

We randomly initialized the scenario layout and ran the test

50 times to compare the success rates of the five algorithms. The

success rate is calculated as the number of times all three tasks

were successful as a percentage of the total number of simulation

runs. The results are shown in Table 4.

Table 4 shows that the SAC algorithm has the highest success

rate but the highest average cost as it sacrifices safety. Both CPO

and PPO have lower success rates due to lower returns. However,

TSSAC had the same success rate of 96% as SAC-Lagrangian

while also guaranteeing safety.

5.2.3. Experiment II: Generalization

In a real-world scenario, the UAVs need to strike

dynamic and time-sensitive targets. Therefore, we tested the

generalization of the models when the target and the SAM

were in a different initial position. The results are shown in

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1105480
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yue et al. 10.3389/fnbot.2022.1105480

FIGURE 11

Generalization of the models.

Figure 11. The models were still able to complete their tasks

cooperatively. This is because they were trained with different

initial positions. For each epoch, the layout was randomly

initialized, so the agents were implicitly trained for different

scenarios. Therefore, the TSSAC algorithm is robust and can

adapt to uncertain scenarios.

5.2.4. Experiment III: Safety

To analyze the safety issues, we tested the safety of the

conventional RL algorithm SAC and the safe RL algorithm

TSSAC. SAC applies hazard penalties for unsafe actions as

negative rewards, which can improve safety to a certain extent.

The resulting trajectories of the agents are shown in Figure 12.

The SAC algorithm achieves some degree of safety by setting

a penalty. When the penalty is 0, the agent ignores the first

hazard and directly crosses the hazard region. When the penalty

is −10, the agent slightly avoids the hazard region to increase

the task reward. When the penalty is −15, the agent completely

avoids the hazard but maneuvers too far from it, which reduces

the task reward, and so the agent behaves conservatively. When

the penalty is −50, the agent completely avoids the hazard to

maximize the reward but does not complete the task. Therefore,

it is hard to balance effectiveness and safety by setting penalties.

In contrast, TSSAC uses the hazard as a safety constraint. The

agent was able to ensure that the cost threshold was not violated

during training and can realize a trade-off between reward and

safety. It completes the task while guaranteeing safety.

6. Conclusion

In this study, we present an end-to-end TSSAC method for

multi-UAV cooperative decision-making. The decision-making

process for each UAV is modeled as a CMDP. An improved

SAC-Lagrangian algorithm was used to solve it, which improves

the safety of the UAVs. A multi-UAV cooperative decision-

making framework combining TL is proposed to improve the

training efficiency of a multi-UAV system. The experimental

results demonstrate the effectiveness, generalization, and safety

of the proposed TSSAC approach during training and testing.

Therefore, TSSAC enables a multi-UAV system to adapt to
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FIGURE 12

Safety analysis of the UAV trajectories.

dynamic changing scenarios and achieve cooperative decisions

to accomplish complicated tasks.

In the future, we will apply this method to a high-fidelity

digital simulation environment to enhance the adversarial game

for both sides. Furthermore, we will study and propose new

efficient cooperative decision-making methods for large-scale

multi-agent UAV swarms.
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