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In this paper, a prescribed performance adaptive event-triggered consensus control

method is developed for a class of multiagent systems with the consideration of input

dead zone and saturation. In practical engineering applications, systems are inevitably

su�ered from input saturation. In addition, input dead zone is widely existing. As the

larger signal is limited and the smaller signal is di�cult to e�ectively operate, system

e�cacious input encounters unknown magnitude limitations, which seriously impact

system control performance and even lead to system instability. Furthermore, when

constrainedmultiagent systems are required to converge quickly, the followers would

achieve it with drastic and quick variation of states, which may violate the constraints

and even cause security problems. To address those problems, an adaptive event-

triggered consensus control is proposed. By constructing the transform function

and the barrier Lyapunov function, while state constrained is guaranteed, multiagent

systems quickly converge with prescribed performance. Finally, some examples are

adopted to confirm the e�ectiveness of the proposed control method.

KEYWORDS

prescribed time, prescribed performance, event-triggered strategy,multiagent systems, input

dead-zone, input saturation

1. Introduction

With the rapid development of science and technology, multiagent systems are widely used

in many fields, such as multirobot cooperation (Huang et al., 2018; Dai et al., 2021; Zhai et al.,

2021), unmanned surface vehicles (Zhou et al., 2020; Gu et al., 2021; Huang et al., 2021),

unmanned aerial vehicles (Gong et al., 2021; Tran et al., 2021; Zhou and Chen, 2021), and

other fields. The multiagent system cooperative control mainly includes consensus, formation,

and swarm, and the problem of consensus control, as the foundation of multiagent systems

cooperative control, has received much attention from scholars (Cai et al., 2021; Ning et al.,

2021; Su H. et al., 2021; Wang C. et al., 2021; Wei and Xiao, 2021). Cai et al. (2021) discussed

the consensus problem of linear multiagent systems by constructing an adaptive coupling

protocol. For second-order multiagent systems, a consensus algorithm was proposed based on

sampled-data strategy by Su H. et al. (2021). Combined with the designed Nussbaum functions,

the consensus problem of high-order nonlinear multiagent systems with unknown control

directions was solved by an adaptive consensus tracking control scheme (Wang C. et al., 2021).

It is noted that, while achieving systems consensus, taking the feature of convergence time into

consideration is necessary.

Then, finite-time control was established. With faster convergence speed and

robustness, it has received widespread attention (Li et al., 2020, 2021; Lu et al., 2021;

Wang et al., 2022b). By finite-time control, it can be guaranteed that the systems
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converge within finite time. To achieve system convergence within

predefined time for any initial states, the prescribed time control

was extendedly proposed (Ren et al., 2020; Guo et al., 2021; Wang

et al., 2021a; Chen et al., 2022; Gong et al., 2022). Focusing on

first-order multiagent systems with single-integrator dynamics, a

new control law with a scaling function was proposed (Chen et al.,

2022). For the cluster lag consensus problem of multiagent systems,

a distributed controller with time-varying gains was constructed

by Ren et al. (2020). All of them achieved the aim that systems

converge to preset states within predefined time, and the convergence

time is independent of initial states. In addition, not only system

convergence time but also transient performance and steady-

state performance are important in practical engineering systems.

It is a meaningful problem that how to develop a method to

achievemultiagent system convergence with prescribed performance,

especially while the system convergence time is settable.

Furthermore, many scholars have carried out a lot of research on

nonlinear problems, such as input delay (Sun et al., 2022a), input

hysteresis (Wang et al., 2021b), and time-varying mass (Sun et al.,

2021). As the restriction of controller elements, input saturation

is widely existing in systems. In prescribed time control, a large

amount of energy is used to guarantee that the systems converge

within a prescribed time. Especially when a short convergence time is

prescribed, the input saturation problem becomes particularly acute.

Therefore, input saturation is worth concerning when constructing

a controller, many results were presented (Bai et al., 2020; Song

et al., 2020; Cao et al., 2021; Min et al., 2021; Yang C. et al.,

2021). Cao et al. (2021) used a smooth function and the mean-

value theorem to approximate and transform the input saturation.

Bai et al. (2020) constructed auxiliary systems to compensate for

the influence of input saturation. On the contrary, due to the

insensitivity of components to some small signals, input dead

zone inevitably exists in systems. To reduce the impact of dead

zone, some compensation methods were developed (Zhou et al.,

2019; Ding et al., 2021; Lan et al., 2021; Jiang and Gao, 2022).

For large-scale semi-Markovian jump interconnected systems with

input dead zone, a local adaptive sliding mode control law was

designed by Ding et al. (2021). For the output uncertainty problem

caused by dead zone, a fuzzy algorithm was designed to deal

with it by Lan et al. (2021). As the existence of input dead zone

and saturation, many signals are difficult to perform effectively,

control performance is seriously degraded, and it even affects

system stability. To improve system reliability and practicability, it is

significant to consider them when constructing control methods for

multiagent systems.

With the improvement of safety performance requirements, the

problem of state constraints has received more and more attention.

Barrier Lyapunov functions, as a resultful way to constrain state, are

used to solve various violation of constraints (Su W. et al., 2021;

Zhao et al., 2021; Wang et al., 2022a; Wang N. et al., 2022). For

a class of nonlinear systems, a new tracking control scheme was

established based on barrier Lyapunov functions in Zhao et al. (2021).

For high-order nonlinear multiagent systems, the barrier Lyapunov

functions were used in the framework of the distributed adding-

one-power-integrator control in Wang N. et al. (2022). Nevertheless,

when systems required convergence in a short time, drastic variation

of states is unavoidable, which may be against state constrained. How

to balance state constraints and convergence time still needs to be

further discussed.

Inspired by the above discussion, for constrained uncertain

nonlinear multiagent systems with input dead zone and saturation,

a prescribed time adaptive event-triggered consensus control with

prescribed performance is developed. The main contributions are

summarized as follows:

• To achieve the goal of system converging with prescribed

performance within the prescribed time, the speed performance

function is developed by incorporating the speed function

into the performance function. By making blends and

transformations, the transform function and the barrier

Lyapunov function are constructed. Thus, prescribed time

convergent processes of the systems satisfy prescribed

performance, and the violation of state constrained is prevented.

• Both input dead zone and saturation exist in multiagent systems,

which impact system control performance. As the model is

non-smooth and the parameters are unknown, the design

of the control method becomes difficult. Thus, the model is

approximated by a non-affine smooth function and is further

rewritten as the form of linear input and approximation error

by the Mean Value Theorem. Moreover, an adaptive event-

triggered control method is constructed to compensate them.

• To further improve the wide applicability and flexibility of

the proposed method, the transform function and the barrier

Lyapunov function are applied in each step, and all errors

converge within the prescribed time.

The later sections are grouped as follows: Section 2 introduces

the preliminary, Section 3 displays the control method design

and stability analysis, Section 4 verifies the proposed control

method through some simulation cases, and the conclusion is given

in Section 5.

2. Preliminaries and problem
description

2.1. System model

A class of multiagent systems included one virtual leader, and

M(M > 2) followers are considered. The i-th (i = 1, 2, · · · ,M)

follower is modeled as follows:









ẋi,k = xi,k+1 + fi,k
(

Xi,k

)

,
(

k = 1, 2, · · · ,m− 1
)

ẋi,m = ūi (ui) + fi,m
(

Xi,m

)

yi = xi,1

(1)

where xi,k
(

k = 1, 2, · · · ,m
)

and yi express the followers states and

the output. fi,k
(

Xi,k

)

represents the bounded external disturbances,

and Xi,k =
[

xi,1, xi,2, · · · , xi,k
]T

∈ Rk
(

k = 1, 2, · · · ,m
)

. In addition,

ui is input signal, ūi (ui) is system input with input dead zone and

saturation as shown in Figure 1, and it can be described as follows:

ūi (ui) =





















SU , ui > rsr

Dr (ui) , rdr < ui ≤ rsr

0, rdl < ui ≤ rdr

Dl (ui) , rsl < ui ≤ rdl

SL, ui ≤ rsl

(2)
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FIGURE 1

Input dead zone and saturation.

where SU > 0 and SL < 0 are system input saturation parameters,

and Dr (ui) and Dl (ui) are unknown nonlinear functions. Then, and

rsr and rsl are the saturation breakpoints, rdr and rdl are the dead-zone

breakpoints. They satisfy rsl < rdl < 0 < rdr < rsr .

Due to the nonlinear and non-smooth characteristics of ūi (ui), it

is difficult to directly design control method. As a result, the ūi (ui)

can be smoothly approximated as follows:

ūi (ui) = κi (ui) + εi (ui) (3)

where εi (ui) = ūi (ui) − κi (ui) expresses the approximation error,

and it satisfies |εi (ui)| ≤ ε̄i. The smoothing function κi (ui) can be

defined as follows:

κi (ui) =
SU
2 tanh θ1

(

ui −
rdr
θ1

− ιr

)

− SL
2 tanh θ2

(

ui −
rlr
θ2

+ ιl

)

+ SU
2 tanh (rdr + θ1ιr) −

SL
2 tanh (rdl − ιlθ2)

(4)

where ιr , ιl, θ1, and θ2 are positive parameters.

According to the Mean Value Theorem, the function κi (ui) =

κ̇i (uh)
(

ui − u0i
)

+ κi
(

u0i
)

holds for uh = lui +
(

1− l
)

u0i , where

κ̇i (uh) is the derivative of smoothing function κi (uh), and l is a

constant satisfies 0 < l < 1. Let u0i = 0, then κi (ui) is described

as κi (ui) = κ̇i (uh) ui. Then, define κ̇i (uh) = hi, and the system input

ūi (ui) can be rewritten as follows:

ūi (ui) = hiui + εi (ui) (5)

2.2. Graph theory

The communication topology of multiagent system which

includes M(M > 2) followers can be described as a digraph G =

(V ,E), and each follower can be expressed as a node. Then, V =

{1, · · · ,M} denotes the node set, and Vj × Vi ∈ E represents

the edge set between note j and note i. A =
[

aij
]

M×M
represents

the adjacency matrix among notes, where aij is the information

transmission coefficient between note j and note i. If note j can get

information from note i, then aij > 0. Otherwise, aij = 0. In addition,

the Laplacian matrix L is defined as L = D − A, where the diagonal

matrix is D = diag
[

d1, d2, · · · , dM
]

∈ RM×M with di =
∑M

j=1,j6=i aij.

For leader-follower multiagent systems, it can be represented by an

augmented graph Ḡ =
(

V̄ , Ē
)

, where V̄ = {0, 1, · · · ,M} describes

leader note 0 and followers note (1, · · · ,M), then V̄j × V̄i ∈ Ē.

Definition 1. The definition of i-th follower’s synchronization error

can be expressed as follows:

zi,1 =

M
∑

j=1

aij
(

yi − yj
)

+ bi
(

yi − y0
)

(6)

where y0 is the output signal of virtual leader, and bi denotes

the information transmission coefficient between virtual leader and

follower i. If the follower i can receive information from the leader,

bi > 0. Otherwise, bi = 0.

2.3. Radial basis function neural networks

For any continuous function ϕ
(

X̄
)

defined on a compact set

� ∈ Rp, it can be modeled by radial basis function neural networks

(RBFNNs). Radial basis function neural networks are expressed as

follows Sun et al. (2022b):

ϕ
(

X̄
)

= K∗T8
(

X̄
)

+ τ
(

X̄
)

,
∣
∣τ
(

X̄
)∣
∣ ≤ τ̄ (7)

where X̄ =
[

x1, x2, · · · , xp
]T

is input vector, and τ
(

X̄
)

presents the

approximation error, existing up bound τ̄ > 0 satisfying
∣
∣τ
(

X̄
)∣
∣ ≤ τ̄ .

Then, 8
(

X̄
)

=
[

81

(

X̄
)

,82

(

X̄
)

, · · · ,8q

(

X̄
)]T

expresses the basis

function vector, and q > 1 is number of neural network node. 8i

(

X̄
)

can be selected by the Gaussian functions as follows:

8i

(

X̄
)

= exp

(

−

∥
∥X̄i − X∗

i

∥
∥
2

π2
i

)

, i = 1, 2, · · · , q (8)

where X∗
i and πi are the center and width of the Gaussian function.

K∗ represents optimal weight value vector, and it can be described

as follows:

K∗ = arg min
K∈Rp

{

sup
X̄∈�

∣
∣
∣ϕ
(

X̄
)

− KT8
(

X̄
)
∣
∣
∣

}

(9)

where K =
[

K1,K2, · · · ,Kq

]T
is the weight vector.

2.4. Transform function

To constrain the system error within a prescribed region, the

prescribed performance function is introduced as follows:

Z (t) =
(

Z0 − Z∞
)

φ (t) + Z∞ (10)

where Z0 > 0 and Z∞ > 0 present the initial value and the final

value of the prescribed performance function. Then, φ (t) is a decay

function, which satisfies φ (0) = 1 and lim
t→∞

φ (t) = 0. Prescribed

performance of the system error z(t) satisfies
∣
∣z(t)

∣
∣ ≤ Z (t).

To enhance system convergence rate and achieve the final

prescribed performance within a prescribed time, the following speed

function is introduced:

v (t) =
(T − t)2

T2
, t ∈ (0,T] (11)

where T is a prescribed time that can be designed.
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Combining Equations (10), (11), the speed performance function

can be obtained as follows:

Zv (t) =
(

Z0 − Z∞
)

φ (t) v (t) + Z∞ (12)

Noting that the inequality Zv (t) ≤ Z (t) is keeping holds. Existing

parameters λ and Q satisfy λ ≤ Z0 and λQ−1 ≤ Z∞, and such

transform function is constructed as follows:

g (t) =







T2φ−1(t)

(1−Q−1)(T−t)2+Q−1T2φ−1(t)
, 0 ≤ t < T

Q, t ≥ T
(13)

Remark 1. According to the aforementioned deduction and analysis,

it is known that the prescribed time T is independent of the system

initial states and design parameters. Noting that λg−1 (t) ≤ Zv (t) is

always holds, it is extremely significant for the later deduction and

to prove.

2.5. Other preliminaries

Assumption 1. Zhang and Lewis (2012) the augmented graph Ḡ has

a spanning tree, in which the root of the spanning tree is the virtual

leader 0.

Assumption 2. The virtual leader output signal y0 is continuous

function with up bound ȳ0 and has n-th order derivatives.

Assumption 3. Yang P. et al. (2021) define adjacency matrix as B =

diag
[

b1, b2, · · · , bM
]

∈ RM×M . At least existing one bi satisfies bi >

0, so that L+ B is nonsingular.

Lemma 1. Liu et al. (2018) for any λ ∈ R and e ∈ R satisfy |e| ≤ λ,

the following inequality holds

log
λ2

λ2 − e2
≤

e2

λ2 − e2
(14)

Lemma 2. Wang et al. (2022c) for variables m ∈ R and n ∈ R,

existing constants a > 0, b > 0, and c > 0 satisfy

|m|a|n|b ≤
a

a+ b
c|m|a+b +

b

a+ b
c−

a
b |n|a+b (15)

Lemma 3. Zhang and Lewis (2012) define zM =
[

z1,1, z2,1, · · · , zM,1

]T
, YM =

[

y1, y2, · · · , yM
]T
, and

Yd =
[

yd, yd, · · · , yd
]T

︸ ︷︷ ︸

M

, satisfying

‖YM − Yd‖ ≤
‖zM‖

ςmin
(16)

where ςmin is the minimum singular value of L + B, and YM − Yd is

track error.

3. Controller design and ability analysis

3.1. Prescribed performance adaptive
event-triggered control design

Define the following coordinate transformations:

zi,k = xi,k − αi,(k−1), k = 2, · · · ,m (17)

ei,k = gizi,k, k = 1, 2, · · · ,m (18)

where zi,2, zi,3, · · · , zi,m represent error variables, and

αi,1,αi,2, · · · ,αi,m−1 express virtual controllers.

Step 1: According to Equation (18), the derivative of ei,1 can be

obtained as follows:

ėi,1 = ġizi,1 + giżi,1

= ġizi,1 + gi




(

bi + di
)

ẏi − biẏ0 −

M
∑

j=1

aijẏj





= ġizi,1 + gi




(

bi + di
) (

zi,2 + αi,1 + fi,1
)

− biẏ0 −

M
∑

j=1

aijẏj





= gi



χzi,1 +
(

bi + di
) (

zi,2 + αi,1 + fi,1
)

− biẏ0 −

M
∑

j=1

aijẏj





(19)

where χ = g−1
i ġi

The following modified barrier Lyapunov function Vi,1

is constructed.

Vi,1 =
1

2
log

λ2i,1

λ2i,1 − e2i,1
+

1

2βi,1
µ̃2
i,1 (20)

where λi,1 is the design parameter with λi,1g
−1
i (t) ≤ Zv

i,1 (t). It

should be indicated that the inequality
∣
∣ei,1

∣
∣ ≤ λi,1 holds when Vi,1

is bounded. βi,1 is a positive design parameter. µ̃i,1 = µi,1 − µ̂i,1 is

a parameter estimation error, µ̂i,1 is the estimation value of µi,1, and

µi,1 will be defined later.

Remark 2. To multiagent system, prescribed time convergence

progress meet prescribed performance while state constrained does

not being violated, the transform function and barrier Lyapunov

function are applied in Equations (18) and (20), and virtual controller

and adaptive law will be developed to ensure Vi,1 is bounded.

Moreover, similar application will be shown in each step to further

enhance system performance.

Taking the time derivation of Vi,1 and combining with Equation

(19), it can be obtained that

V̇i,1 =
ei,1gi

λ2i,1 − e2i,1



χzi,1 +
(

bi + di
) (

zi,2 + αi,1 + fi,1
)

− biẏ0 −

M
∑

j=1

aijẏj





−
1

βi,1
µ̃i,1

˙̂µi,1

=
ei,1gi

λ2i,1 − e2i,1

((

bi + di
) (

zi,2 + αi,1

)

+ ϕi,1

(

X̄i,1

))

−
1

βi,1
µ̃i,1

˙̂µi,1

(21)

where ϕi,1

(

X̄i,1

)

is smoothing function and is defined as follows:
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ϕi,1

(

X̄i,1

)

= χzi,1 +
(

bi + di
)

fi,1 − biẏ0 −

N
∑

j=1

aijẏj (22)

where X̄i,1 =
[

xi,1, xj,1, xj,2
]T
.

According to RBFNNs, it can be estimated with any given

σi,1
(

X̄i,1

)

ϕi,1

(

X̄i,1

)

= K∗T
i,1 8i,1

(

X̄i,1

)

+ τi,1
(

X̄i,1

)

, τi,1
(

X̄i,1

)

≤ τ̄i,1 (23)

Remark 3. The unknown and uncertainty of the multiagent system

will bring difficulties to the design of the control method. Neural

networks are introduced to approximate any unknown functions,

which is handled by Young’s inequality. In addition, selecting an

optimal weight value vector K∗ becomes difficult as the system gets

more complex. Thus, the unknown parameter is estimated by an

adaptive law ˙̂µi,1.

By utilizing Lemma 2, the following inequalities can be obtained:

∣
∣ei,1gi

∣
∣
(

bi + di
)

λ2i,1 − e2i,1
zi,2 ≤

(

bi + di
)2
g2i e

2
i,1

2
(

λ2i,1 − e2i,1
)2

+
z2i,2

2
(24)

∣
∣ei,1gi

∣
∣ϕi,1

λ2i,1 − e2i,1
≤

g2i e
2
i,1

∥
∥K∗

i,1

∥
∥
2∥
∥8i,1

∥
∥
2

2ℓ2i,1
(

λ2i,1 − e2i,1
)2

+
ℓ2i,1

2
+

g2i e
2
i,1

2ℓ̄2i,1
(

λ2i,1 − e2i,1
)2
+

τ̄ 2i,1ℓ̄
2
i,1

2

(25)

where ℓi,1 > 0 and ℓ̄i,1 > 0 are designed parameters.

Substituting into Equation (21), one has the following equation:

V̇i,1 ≤
ei,1gi

λ2i,1 − e2i,1

(

bi + di
)

αi,1 +
g2i e

2
i,1

∥
∥K∗

i,1

∥
∥
2∥
∥8i,1

∥
∥
2

2ℓ2i,1
(

λ2i,1 − e2i,1
)2

+
ℓ2i,1

2

+
g2i e

2
i,1

2ℓ̄2i,1
(

λ2i,1 − e2i,1
)2

+
τ̄ 2i,1ℓ̄

2
i,1

2
+

(

bi + di
)2
g2i e

2
i,1

2
(

λ2i,1 − e2i,1
)2

+
z2i,2

2
−

1

βi,1
µ̃i,1

˙̂µi,1

(26)

Define parameter Pi,1 =

g2i

2
(

λ2i,1−e2i,1

)

(

‖8i,1‖
2

ℓ2i,1
+ 1

ℓ̄2i,1
+
(

bi + di
)2
)

, the following inequality

can be obtained:

V̇i,1 ≤
ei,1gi

λ2i,1 − e2i,1

((

bi + di
)

αi,1 + zi,1Pi,1µi,1

)

+
ℓ2i,1

2
+

τ̄ 2i,1ℓ̄
2
i,1

2
+

z2i,2

2

−
1

βi,1
µ̃i,1

˙̂µi,1

(27)

where µi,1 = max
{∥
∥K∗

i,1

∥
∥
2
, 1
}

.

To guarantee theVi,1 bounded, constructing the virtual controller αi,1

and adaptive law ˙̂µi,1 as follows:

αi,1 =
1

(

bi + di
)

(

−γi,1zi,1 − zi,1µ̂i,1Pi,1
)

(28)

˙̂µi,1 =
e2i,1

λ2i,1 − e2i,1
βi,1Pi,1 − δi,1µ̂i,1 (29)

where γi,1 > 0 and δi,1 > 0 are design parameters.

Substituting Equations (28), (29) into Equation (26), one has the

following equation

V̇i,1 ≤ −
γi,1e

2
i,1

λ2i,1 − e2i,1
+

δi,1

βi,1
µ̃i,1µ̂i,1 +

ℓ2i,1

2
+

τ̄ 2i,1ℓ̄
2
i,1

2
+

z2i,2

2
(30)

Step k (k = 2, 3, · · · ,m − 1) : According to the definition of

error ei,k in Equation (18), the derivative of ei,k can be obtained

as follows:

ėi,k =ġizi,k + giżi,k

=ġizi,k + gi
(

zi,k+1 + αi,k + fi,k − α̇i,k−1

)

=gi
(

χzi,k + zi,k+1 + αi,k + fi,k − α̇i,k−1

)

(31)

where α̇i,k−1 =
k−1∑

j=1

∂αi,k−1

∂xi,j
ẋi,j +

k−1∑

j=1

M∑

l=1

∂αi,k−1

∂xl,j
ẋl,j +

k−1∑

j=1

∂αi,k−1

∂y0
ẏ0 +

k−1∑

j=1

∂αi,k−1

∂µ̂i,j

˙̂µi,j.

The following barrier Lyapunov function Vi,k is constructed:

Vi,k = Vi,k−1 +
1

2
log

λ2
i,k

λ2
i,k

− e2
i,k

+
1

2βi,k
µ̃2
i,k (32)

where λi,k is the design parameter with λi,kg
−1
i (t) ≤ Zv

i,k (t), βi,k is

positive design parameter, µ̃i,k = µi,k − µ̂i,k is parameter estimation

error, µ̂i,k is the estimation value of µi,k, and µi,k will be defined later.

Taking the time derivation of Vi,k and substituting Equation (31),

the following equation can be obtained:

V̇i,k =V̇i,k−1 +
ei,kgi

λ2
i,k

− e2
i,k

(

χzi,k + zi,k+1 + αi,k + fi,k − α̇i,k−1

)

−
1

βi,k
µ̃i,k

˙̂µi,k

=V̇i,k−1 +
ei,kgi

λ2
i,k

− e2
i,k

(

zi,k+1 + αi,k + ϕi,k

(

X̄i,k

))

−
1

βi,k
µ̃i,k

˙̂µi,k

(33)

where ϕi,k

(

X̄i,k

)

is smoothing function and is defined as follows:

ϕi,k

(

X̄i,k

)

= χzi,k + fi,k − α̇i,k−1 (34)

where X̄i,k =
[

xi,1, . . . , xi,k, xj,1, . . . , xj,k, µ̂i,1, . . . , µ̂i,k−1

]T
.

According to RBFNNs, the function can be estimated with any

given τi,k
(

X̄i,k

)

ϕi,k

(

X̄i,k

)

= K∗T
i,k 8i,k

(

X̄i,k

)

+ τi,k
(

X̄i,k

)

, τi,k
(

X̄i,k

)

≤ τ̄i,k (35)

By utilizing Lemma 2, the following inequalities can be deduced:

∣
∣ei,kgi

∣
∣ zi,k+1

λ2
i,k

− e2
i,k

≤
g2i e

2
i,k

2
(

λ2
i,k

− e2
i,k

)2
+

z2
i,k+1

2
(36)

∣
∣ei,kgi

∣
∣ϕi,k

λ2
i,k

− e2
i,k

≤
g2i e

2
i,k

∥
∥
∥K∗

i,k

∥
∥
∥

2∥
∥8i,k

∥
∥
2

2ℓ2
i,k

(

λ2
i,k

− e2
i,k

)2
+

ℓ2
i,k

2
+

g2i e
2
i,k

2ℓ̄2
i,k

(

λ2
i,k

− e2
i,k

)2
+

τ̄ 2
i,k

ℓ̄2
i,k

2

(37)

where ℓi,k > 0 and ℓ̄i,k > 0 are designed parameters.
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Substituting the inequalities into Equation (33), hence

V̇i,k ≤V̇i,k−1 +
ei,kgi

λ2
i,k

− e2
i,k

αi,k +
g2i e

2
i,k

∥
∥
∥K∗

i,k

∥
∥
∥

2∥
∥8i,k

∥
∥
2

2ℓ2
i,k

(

λ2
i,k

− e2
i,k

)2

+
ℓ2
i,k

2
+

g2i e
2
i,k

2ℓ̄2
i,k

(

λ2
i,k

− e2
i,k

)2

+
τ̄ 2
i,k

ℓ̄2
i,k

2
+

g2i e
2
i,k

2
(

λ2
i,k

− e2
i,k

)2
+

z2
i,k+1

2
−

1

βi,k
µ̃i,k

˙̂µi,k

(38)

Define Pi,k =
ei,kgi,k

2zi,k

(

λ2
i,k
−e2

i,k

)

(

‖8i,k‖
2

ℓ2
i,k

+ 1
ℓ̄2
i,k

+ 1

)

and µi,k =

max

{∥
∥
∥K∗

i,k

∥
∥
∥

2
, 1

}

, one has

V̇i,k ≤
ei,kgi

λ2
i,k

− e2
i,k

(

αi,k + zi,kPi,kµi,k

)

+
ℓ2
i,k

2
+

τ̄ 2
i,k

ℓ̄2
i,k

2
+

z2
i,k+1

2

−
1

βi,k
µ̃i,k

˙̂µi,k

(39)

To guarantee theVi,k bounded, constructing the virtual controller

αi,k and adaptive law ˙̂µi,k as follows:

αi,k = −γi,kzi,k − zi,kµ̂i,kPi,k −
λ2
i,k

− e2
i,k

g2i
zi,k (40)

˙̂µi,k =
e2
i,k

λ2
i,k

− e2
i,k

βi,kPi,k − δi,kµ̂i,k (41)

where γi,k > 0 and δi,k > 0 are design parameters.

Substituting Equations (40), (41) into Equation (39), it can be

obtained as follows:

V̇i,k ≤ V̇i,k−1 −
γi,ke

2
i,k

λ2
i,k
−e2

i,k

+
δi,k
βi,k

µ̃i,kµ̂i,k +
ℓ2
i,k

2 +
τ̄ 2
i,k

ℓ̄2
i,k

2 +
z2
i,k+1

2 −
z2
i,k

2

= −
k∑

j=1

γi,je
2
i,j

λ2i,j−e2i,j
+

k∑

j=1

δi,j
βi,j

µ̃i,jµ̂i,j +
k∑

j=1

(
ℓ2i,j
2 +

τ̄ 2i,j ℓ̄
2
i,j

2

)

+
z2
i,k+1

2

(42)

Step m: To relieve system communication pressure, an adaptive

event-triggered strategy is constructed as follows:













̟i (t) = − (1+ ζi)

(

ᾱi tanh
(
zi,mᾱi
oi

)

+
zi,m

2(1−ζi)
2

)

ui (t) = ̟i (tω) , ∀t ∈ [tω , tω+1)

1i (t) = ̟i (t) − ui (t)

tω+1 = inf {t ∈ R ||1i (t)| ≥ ζi |ūi (t)| + σi}

(43)

where 0 < ζi < 1, σi > 0, and oi > 0 are design parameters. The

intermediate signal ᾱi is defined as follows:

ᾱi = ηiαi,m (44)

where ηi = h−1
i , and αi,m is virtual controller, which will be

constructed later. Consider hi is unknown constant, by utilizing η̂i,m

to estimate ηi,m, and η̃i,m = ηi,m − η̂i,m is the estimation error. Then,

ᾱi can be rewritten as follows:

ᾱi = η̂iαi,m (45)

Remark 4. Consider the restricted communication resources, an

event-triggered scheme (Equation 43) is established to reduce

unnecessary communication transmission. At the same time, an

intermediate signal with adaptive law is established in Equation (44)

to compensate the impact of dead zone and saturation.

According to Equation (43), one has

ui =
ω̄i − vi,1σi

1+ vi,2ζi
(46)

where
∣
∣vi,1

∣
∣ ≤ 1,

∣
∣vi,2

∣
∣ ≤ 1.

For any constant x ∈ R and y > 0, the inequality 0 ≤ |x| −

x tanh
(
x
y

)

≤ 0.2875y holds. Then, it can be obtained as follows:

zi,m (ui) =− zi,m

(
(1+ ζi) ᾱi

1+ vi,2ζi
tanh

(
zi,mᾱi

oi

)

+
(1+ ζi) zi,m

2
(

1+ vi,2ζi
)

(1− ζi)
2
+

vi,2σi

1+ vi,2ζi

)

≤
∣
∣zi,mᾱi

∣
∣−

∣
∣zi,mᾱi

∣
∣− zi,mᾱi tanh

(
zi,mᾱi

oi

)

−
e2i,m

2(1− ζi)
2

+

∣
∣
∣
∣

zi,mσi

(1− ζi)

∣
∣
∣
∣

≤ zi,mᾱi + 0.2785oi +
σ 2
i

2
(47)

According to Equation (18), the derivative of ei,m can be obtained as

follows:

ėi,m =ġizi,m + giżi,m

=ġizi,m + gi
(

ūi + fi,m − α̇i,m−1

)

=gi
(

χzi,m + hiui + εi + fi,m − α̇i,m−1

)

(48)

where α̇i,m−1 =
m−1∑

j=1

∂αi,m−1

∂xi,j
ẋi,j +

m−1∑

j=1

M∑

l=1

∂αi,m−1

∂xl,j
ẋl,j +

m−1∑

j=1

∂αi,m−1

∂y0
ẏ0 +

m−1∑

j=1

∂αi,m−1

∂µ̂i,j

˙̂µi,j.

The following barrier Lyapunov function Vi,m is constructed:

Vi,m = Vi,m−1 +
1

2
log

λ2i,m

λ2i,m − e2i,m
+

1

2βi,m
µ̃2
i,m +

hi

2ρi,m
η̃2i,m (49)

where λi,m is the design parameter with λi,mg
−1 (t) ≤ Zv

i,m (t), βi,m

and ρi,m are positive design and positive parameter. µ̃i,m = µi,m −

µ̂i,m is parameter estimation error, µ̂i,m is the estimation value of

µi,m, and µi,m will be defined later.

Taking the time derivation of Vi,m, it can be obtained as follows:

V̇i,m =V̇i,m−1 +
ei,mgi

λ2i,m − e2i,m

(

χzi,m + hiui + εi + fi,m − α̇i,m−1

)

−
1

βi,m
µ̃i,m

˙̂µi,m −
hi

ρi,m
η̃i,m ˙̂ηi,m

(50)
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Combined with Equation (47), one has

V̇i,m =V̇i,m−1 +
ei,mgi

λ2i,m − e2i,m

(

χzi,m + αi,m − hiη̂iαi,m +
0.2785hioi

ei,m

+
hiσ

2
i

2ei,m

+ εi + fi,m − α̇i,m−1

)

−
1

βi,m
µ̃i,m

˙̂µi,m −
hi

ρi,m
η̃i,m ˙̂ηi,m

(51)

Define the smoothing function ϕi,m

(

X̄i,m

)

as follows:

ϕi,m

(

X̄i,m

)

=χzi,m +
0.2785hioi

ei,m
+

hiσ
2
i

2ei,m
+ fi,m − α̇i,m−1

+
ε̄2i

(

λ2i,m − e2i,m
)

2ei,mgi

(52)

where α̇i,m−1 =
∑m−1

j=1
∂αi,m−1

∂xi,j
ẋi,j +

∑m−1
j=1

∑M
l=1

∂αi,m−1

∂xl,j
ẋl,j +

∑m−1
j=1

∂αi,m−1

∂y0
ẏ0 +

∑m−1
j=1

∂αi,m−1

∂µ̂i,j

˙̂µi,j.

By utilizing Lemma 2, the following inequalities can be deduced

as follows:

ei,mgi

λ2i,m − e2i,m
εi ≤

e2i,mg
2
i

2
(

λ2i,m − e2i,m
)2

+
ε̄2i

2
(53)

According to the RBFNNs, the function can be estimated with any

given τi,m
(

X̄i,m

)

ϕi,m

(

X̄i,m

)

= K∗T
i,m8i,m

(

X̄i,m

)

+ τi,m
(

X̄i,m

)

, τi,m
(

X̄i,m

)

≤ τ̄i,m (54)

where X̄i,m =
[

xi,1, . . . , xi,m, xj,1, . . . , xj,m, µ̂i,1, . . . , µ̂i,m−1

]T
.

According to Lemma 2, the following inequalities can

be obtained:

∣
∣ei,mgi

∣
∣ϕi,m

λ2i,m − e2i,m
≤
g2i e

2
i,m

∥
∥K∗

i,m

∥
∥
2∥
∥8i,m

∥
∥
2

2ℓ2i,m
(

λ2i,m − e2i,m
)2

+
ℓ2i,m

2
+

g2i e
2
i,m

2ℓ̄2i,m
(

λ2i,m − e2i,m
)2

+
τ̄ 2i,mℓ̄2i,m

2
(55)

where ℓi,m > 0 and ℓ̄i,m > 0 are designed parameters.

Substituting the inequalities into Equation (51), one has

V̇i,m ≤V̇i,m−1 +
ei,mgi

λ2i,m − e2i,m
αi,m +

g2i e
2
i,m

∥
∥K∗

i,m

∥
∥
2∥
∥8i,m

∥
∥
2

2ℓ2i,m
(

λ2i,m − e2i,m
)2

+
ℓ2i,m

2

+
g2i e

2
i,m

2ℓ̄2i,m
(

λ2i,m − e2i,m
)2

+
τ̄ 2i,mℓ̄2i,m

2

+
e2i,mg

2
i

2
(

λ2i,m − e2i,m
)2

−
1

βi,m
µ̃i,m

˙̂µi,m

− hiη̃i,m

(

ei,mgi

λ2i,m − e2i,m
αi,m + ρ−1

i,m
˙̂ηi,m

)

(56)

Define Pi,m =
g2i

2
(

λ2i,m−e2i,m

)

(

‖8i,m‖
2

ℓ2i,m
+ 1

ℓ̄2i,m
+ 1

)

and µi,m =

max
{∥
∥K∗

i,m

∥
∥
2
, 1
}

, it can be deduced as follows:

V̇i,m ≤V̇i,m−1 +
ei,mgi

λ2i,m − e2i,m

(

αi,m + zi,mPi,mµi,m

)

+
ℓ2i,m

2

+
τ̄ 2i,mℓ̄2i,m

2
−

1

βi,m
µ̃i,m

˙̂µi,m

− hiη̃i,m

(

ei,mgi

λ2i,m − e2i,m
αi,m + ρ−1

i,m
˙̂ηi,m

)

(57)

To guarantee the Vi,m bounded, constructing the virtual controller

αi,m and adaptive laws ˙̂µi,m and ˙̂ηi,m as follows:

αi,m = −γi,mzi,m − zi,mµ̂i,mPi,m −
λ2i,m − e2i,m

g2i
zi,m (58)

˙̂µi,m =
e2i,m

λ2i,m − e2i,m
βi,mPi,m − δi,mµ̂i,m (59)

˙̂ηi,m = −
ei,mgiρi,m

λ2i,m − e2i,m
αi,m − ξi,mη̂i,m (60)

where γi,m > 0, δi,m > 0, and ξi,m > 0.

Remark 5. Because the input dead-zone and saturation

nonlinearities are unknown, parameters of them are difficult to

obtained. Thus, an intermediate signal ᾱi with adaptive law is

designed to compensate them, and the approximation error is

simultaneously handled by RBFNNs and adaptive law. The design

difficulties caused by unknown parameters are effectively avoided.

Substituting Equations (58)–(60) produces Equation (57):

V̇i,m ≤V̇i,m−1 −
γi,me

2
i,m

λ2i,m − e2i,m
+

δi,m

βi,m
µ̃i,mµ̂i,m

+
ξi,mhi

ρi,m
η̃i,mη̂i,m +

ℓ2i,m

2
+

τ̄ 2i,mℓ̄2i,m

2
−

z2i,m

2

=−

m
∑

j=1

γi,je
2
i,j

λ2i,j − e2i,j
+

m
∑

j=1

δi,j

βi,j
µ̃i,jµ̂i,j +

ξi,mhi

ρi,m
η̃i,mη̂i,m

+

m
∑

j=1

(

ℓ2i,j

2
+

τ̄ 2i,jℓ̄
2
i,j

2

)

(61)

According to Lemma 1 and Lemma 2, the following inequalities hold:

log
λ2i,j

λ2i,j − e2i,j
≤

e2i,j

λ2i,j − e2i,j
(62)

η̃i,mη̂i,m ≤
1

2
η2i,m −

1

2
η̂2i,m (63)

µ̃i,jµ̂i,j ≤
1

2
µ2
i,j −

1

2
µ̂2
i,j (64)
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Based on Equations (61)–(64) can be converted as follows:

V̇i,m ≤−

m
∑

j=1

γi,j log
λ2i,j

λ2i,j − e2i,j
−

m
∑

j=1

δi,j

2βi,j
µ2
i,j −

ξi,mhi

2ρi,m
η2i,m

+

m
∑

j=1

(

δi,j

2βi,j
µ̂2
i,j +

ℓ2i,j

2
+

τ̄ 2i,jℓ̄
2
i,j

2

)

+
ξi,mhi

2ρi,m
η̂2i,m

≤− ŴiVi,m + ϒi

(65)

where ϒi =
m∑

j=1

(

δi,j
2βi,j

µ̂2
i,j +

ℓ2i,j
2 +

τ̄ 2i,j ℓ̄
2
i,j

2

)

+
ξi,mhi
2ρi,m

η̂2i,m, Ŵi =

min
{

γi,j
2 , δi,j, ξi,m, j = 1, 2, · · · ,m

}

.

3.2. System stability analysis

Theorem 1. For uncertain nonlinear multiagent systems with input

dead zone and saturation, by constructed virtual controllers

(Equations 28, 40, and 58), adaptive laws (Equation 29, 41, 59, and

60), and event-triggered strategy (Equation 43), the following results

can be achieved:

(1) All the signals of systems are bounded, and system error zi,j
converges to prescribed regions

{

zi,j
∣
∣
∣
∣zi,j
∣
∣ ≤ Q−1λi,j

}

within

prescribed time T.

(2) System performance satisfies prescribed performance function

Zi,j (t) and system states are fulfilling the constraints.

(3) There exits the minimum interval time between any twice

triggering, so Zeno Behavior can be surely avoided.

Proof of Theorem 1 (1). The following total Lyapunov function

is constructed:

V =

M
∑

i=1

Vi,m (66)

According to Equation (65), the following equation is obtained:

V̇ ≤ −ŴV + ϒ (67)

where ϒ =
M∑

i=1
ϒi and Ŵ = min {Ŵi, i = 1, 2, · · · ,M}.

Integrating the Equation (67), one has

0 ≤ V ≤ e−Ŵt

(

V (0) −
ϒ

Ŵ

)

+
ϒ

Ŵ
(68)

According to the definition of V , it can be included that ei,j, µ̃i,j and

η̃i,m all are bounded for j = 1, 2, · · · ,m, i = 1, 2, · · · ,M. Since µi,j

and ηi,m are constant, then µ̃i,j = µi,j − µ̂i,j and η̃i,m = ηi,m − η̂i,m,

it can be deduced that µ̂i,j and η̂i,m are bounded. In addition, based

on the definition of αi,j, it can be deduced that αi,j is bounded, and

existing up bound satisfies
∣
∣αi,j

∣
∣ ≤ α∗

i,j. Based on the definition of

Vi,m, the following inequality holds:

log
λ2i,j

λ2i,j − e2i,j
≤ e−Ŵt

(

V (0) −
ϒ

Ŵ

)

+
ϒ

Ŵ
(69)

Thus, the solution ei,j can be deduced as follows:

∣
∣ei,j
∣
∣ ≤ λi,j

√

1− e−s < λi,j (70)

where s = 2
(

e−Ŵt
(

V (0) − ϒ
Ŵ

)

+ ϒ
Ŵ

)

> 0

Then, combined with Equations (13), (18), one has

∣
∣zi,j
∣
∣ ≤

λi,j

gi
=







(

1− Q−1
)
(
T−t
T

)2
φ (t) λi,j + Q−1λi,j, 0 ≤ t < T

Q−1λi,j, t ≥ T

(71)

Thus, all the signals are bounded, and error zi,j converges

to prescribed areas
{

zi,j
∣
∣
∣
∣zi,j
∣
∣ ≤ Q−1λi,j

}

within the prescribed

time T.

Proof of Theorem 1 (2). From Equation (71), it is obvious that
∣
∣zi,j
∣
∣ ≤

λi,jg
−1
i (t), according to the definition λi,jg

−1
i (t) ≤ Zv

i,j (t), inequality
∣
∣zi,j
∣
∣ ≤ Zv

i,j (t) is holds. Combined with Zv
i,j (t) ≤ Zi,j (t), it can be

deduced that
∣
∣zi,j
∣
∣ ≤ Zi,j (t) is always holds. Therefore, systems error

zi,j satisfies prescribed performance function Zi,j (t).

Remark 6. According to the aforementioned deduction and

analysis, it is obvious that both the final convergence area
{

zi,j
∣
∣
∣
∣zi,j
∣
∣ ≤ Q−1λi,j

}

and convergence time T are prescribed.

In addition system convergence progress satisfies prescribed

performance function. From (70), it can be known that
∣
∣zi,j
∣
∣ can

become smaller, by increasing the design parameters γi,j, βi,j, and

ρi,m and decreasing design parameters δi,j and ξi,m. However, both

convergence time and convergence area are not affected by the

adjustment of design parameters γi,j, δi,j, ξi,m, βi,j, and ρi,m.

In addition, according to Equation (71), it is obvious that
∣
∣zi,1

∣
∣ ≤

λi,1
gi
.

Applying Lemma 3, inequality
∣
∣yi − y0

∣
∣ ≤

λi,1
Qςmin

is holds. As y0

satisfies y0 ≤ ȳ0, it can be obtained that xi,1 ≤
λi,1

Qςmin
+ ȳ0. Define

λi,1 ≤ Qςmin

(

Bi,1 − ȳd
)

, hence xi,1 ≤ Bi,1 is holds.

Similarly, it is obvious that
∣
∣zi,2

∣
∣ ≤

λi,2
gi

holds from Equation (71).

Due to zi,2 = xi,2 − αi,1, it can be obtained that xi,2 ≤ Q−1λi,2 + αi,1.

Consider the αi,1 satisfies
∣
∣αi,1

∣
∣ ≤ α∗

i,1, and xi,2 ≤ Q−1λi,2 + α∗
i,1.

Define λi,2 ≤ Q
(

α∗
i,1 + Bi,k

)

, hence xi,2 ≤ Bi,2 is holds. Similarly,

existing xi,j ≤ Bi,j is holds for j = 3, · · · ,m

Remark 7. Most prescribed time control focuses on system

convergence time but ignores the problem that, during rapid

convergence progress, the system states may be out of safe ranges.

To address the problem, by combining barrier Lyapunov function

and transform function, achieving system quick convergence while

ensuring state constraints.

Proof of Theorem 1 (3). According to Equation (43), the derivative of

1i (t) satisfies the following:

d

dt
|1i (t)| ≤ | ˙̟ i (t)| ≤

⌢
̟ i (72)

Due to lim
tω→tω+1

1i (t) ≥ ̟i (t)− ui (t) and 1i (tω) = 0, the following

equation is obtained:

lim
tω→tω+1

d

dt
|1i (t)| ≥

ζi |ūi (t)| + σi

tω+1 − tω
≥

σi

tω+1 − tω
(73)

Subsequently,

tω+1 − tω ≥
σi
⌢
̟ i

> 0 (74)
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FIGURE 2

Topology of communication graph.

Thus, it can be concluded that interval time existing lower bound
σi
⌢
̟ i

guarantees systems to avoid Zeno Behavior, and by increasing

the design parameters σi, the minimum interval time can be longer.

Then, more communication resources can be saved by increasing

design parameters ζi.

The proof is completed.

The proposed theorem has been proved. By the proposed

adaptive event-triggered consensus control method, it can be

achieved that system convergence with prescribed performance while

suffering from input dead zone and saturation.

Remark 8. Based on the prescribed performance function,

the transform function and the barrier Lyapunov function are

constructed and applied in each step. Therefore, the developed

control method not only makes the system quickly converge in

the prescribed area but also avoids states violating constrained. By

introducing RBFNNs and designing adaptive laws, achieve unknown

input dead-zone and saturation compensation in the prescribed time.

4. Simulation

In this section, to prove the effectiveness of the control method

developed in this study, some simulation experiments are presented.

The MASs include four follower agents and one virtual leader is

considered, and the topology of the communication graph is shown

in Figure 2.

4.1. Example A

The model of i-th(i=1,2,3,4) follower is given as follows:









ẋi,1 = xi,2 + fi,1
(

Xi,1

)

ẋi,2 = ūi (ui) + fi,2
(

Xi,2

)

yi = xi,1

(75)

where unknown external disturbance expressed as fi,1
(

Xi,1

)

=

0.2 sin(2xi,1) and fi,2
(

Xi,2

)

= 0.2 sin(2xi,1xi,2). The dead-zone

breakpoints are selected as rdl = −0.8 and rdr = 1, saturation

breakpoints are selected as rsl = −20 and rsr = 25, and saturation

values are SU = 25 and SL = −20. In addition, the unknown

nonlinear functions are Dr(ui) = SU
rsr−rdr

(ui − rdr) and Dl(ui) =
SL

rsl−rdl
(ui − rdl).

The prescribed time is selected as T = 1.2, and then, prescribed

performance functions are selected as Zi,1 = (5− 0.05) e0.1t + 0.05

and Zi,2 = (10− 0.1) e0.1t + 0.1. Furthermore, transform function

parameter is given as Q = 100. Define the values of state constraints

as xi,1 < 2 and xi,2 < 5, then λi,1 = 5 and λi,2 = 10 are selected.

The developed adaptive event-triggered consensus control

method is as follows:

αi,1 =
1

(

bi + di
)

(

−γi,1zi,1 − zi,1µ̂i,1Pi,1
)

(76)

˙̂µi,1 =
e2i,1

λ2i,1 − e2i,1
βi,1Pi,1 − δi,1µ̂i,1 (77)

αi,2 = −γi,2zi,2 − zi,2µ̂i,2Pi,2 −
λ2i,2 − e2i,2

g2i
zi,2 (78)

˙̂µi,2 =
e2i,2

λ2i,2 − e2i,2
βi,2Pi,2 − δi,2µ̂i,2 (79)

˙̂ηi,2 = −
ei,2giρi,2

λ2i,2 − e2i,2
αi,2 − ξi,2η̂i,2 (80)













̟i (t) = − (1+ ζi)

(

ᾱi tanh
(
zi,2ᾱi
oi

)

+
zi,2

2(1−ζi)
2

)

ui (t) = ̟i (tω) , ∀t ∈ [tω , tω+1)

1i (t) = ̟i (t) − ui (t)

tω+1 = inf {t ∈ R ||1i (t)| ≥ ζi |ūi (t)| + σi}

(81)

The parameters of radial basis functions are selected as followers:

8i

(

X̄i

)

= exp

(

−

∥
∥X̄i − X∗

i

∥
∥
2

π2
i

)

, i = 1, 2, · · · , 5 (82)

where the inputs of the RBFNNs are X̄1,1 =
[

x1,1, x2,1, x2,2, ẏ0
]T
,

X̄2,1 =
[

x2,1, x3,1, x3,2, ẏ0
]T
, X̄3,1 =

[

x3,1, x4,1, x4,2, ẏ0
]T
, X̄4,1 =

[

x4,1, x1,1, x1,2, ẏ0
]T
, X̄1,2 =

[

x1,1, x1,2, x2,1, x2,2, µ̂1,1

]T
, X̄2,2 =

[

x2,1, x2,2, x3,1, x3,2, µ̂2,1

]T
, X̄3,2 =

[

x3,1, x3,2, x4,1, x4,2, µ̂3,1

]T
, and

X̄4,2 =
[

x1,1, x1,2, x2,1, x2,2, µ̂4,1

]T
. Then π2

i = 2. The parameters

of event-triggered strategy are selected as ζi = 0.4, σi = 2.5, and

oi = 0.3, and remaining parameters and initial states are given in

Table 1.

The simulation results are shown in Figure 3. Figure 3A presents

the follower output signal and leader output signal, and Figure 3B

shows the states of each follower. From Figures 3A, B, it is obvious

that followers track the leader quickiy, and state constraints are not

violated at the same time. Figures 3C, D present the synchronization

error and dynamics error of each follower. It can be seen that all

errors converge in prescribed area within prescribed time (T =

1.2s), and convergence progress meet the prescribed performance.

Figure 3E displays the systems input and event-triggered input, and

it can be seen that the input is suffered from the input dead zone
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TABLE 1 System’s initial states and controller parameters of Example A.

Case xi,1 xi,2 γi,1 γi,2 δi,j βi,j ξi,2 ρi,m

I [0.2, 0.4,−0.2,−0.4] [0, 0, 0, 0] [20, 15, 14, 18] [12, 10, 8, 4] [2, 1.5] [0.01, 0.05] 0.05 2

II [0.3, 0.5, 0.8, 1] [0.4, 0.8, 1.4, 1.2] [20, 15, 14, 18] [12, 10, 8, 4] [2, 1.5] [0.01, 0.05] 0.05 2

III [0.3, 0.5, 0.8, 1] [0.4, 0.8, 1.4, 1.2] [25, 20, 15, 14] [20, 15, 15, 10] [1, 2] [0.02, 0.01] 0.2 2.5

FIGURE 3

Simulations results of Example A case I. (A) Followers’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2. (E)

systems input ūi and event-triggered input ̟i. (F) Time intervals.

and saturation. And the triggered time intervals are presented in

Figure 3F, it can be shown that the maximum interevent intervals

from follower 1 to follower 4 are 0.15s, 0.22s, 0.20s, and 0.22s.

To verify the convergence performance and time are not affected

by systems initial states and control parameters, and ensure state

constraints at the same time, two simulation experiments are done

again for different design parameters and different initial states.

The states and errors of two simulations are shown in Figures 4, 5.

For different parameters or initial states, two similar results can be

obtained: Each follower converge to the leader quickly while state

constraints are not violated. All errors prescribed time convergence

progress meet the prescribed performance. The simulation results

verified the effectiveness of the developed control method.

4.2. Example B

To further verify the applicability of the constructed method, a

class of constrained single-link robotic arm systems with input dead

zone and saturation are adopted, and the models of i-th(i=1,2,3,4)
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FIGURE 4

Simulation results of Example A case II. (A) Follower’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2.

FIGURE 5

Simulation results of Example A case III. (A) Followers’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2.
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arm are given as follows:








ẋi,1 = xi,2
ẋi,2 = J−1

i ūi (ui) − J−1
i fi (X)

yi = xi,1

(83)

where xi,1 and xi,2, respectively, represent the i-th link angle and

angular velocity. Then, Ji = 1 is the inertia moment. For fi (X) =

(

Bixi,2 + GiLi sin
(

xi,1
))

, Bi = 1 is the viscous friction coefficient,

Gi = 9.8 and li = 0.1 represent the mass and length of the i-th link,

X =
[

xi,1, xi,2
]T
.

In Example B, a shorter prescribed time is selected as T =

1; then, prescribed performance functions are given as Zi,1 =

(3.75− 0.05) e0.1t + 0.05 and Zi,2 = (7.5− 0.1) e0.1t + 0.1.

Furthermore, transform function parameter is given as Q = 75.

TABLE 2 System’s initial states and parameters of Example B.

Case xi,1 xi,2 γi,1 γi,2 δi,j βi,j ξi,2 ρi,m

I [0.2, 0.3,−0.2,−0.3] [0.1, 0.2, 0.3, 0.4] [24, 28, 14, 20] [16, 18, 16, 14] [3, 2] [0.01, 0.01] 0.1 2.5

II [0.2, 0.4, 0.2, 0.6] [0.4, 0.3, 0.2, 0.1] [24, 28, 14, 20] [16, 18, 16, 14] [3, 2] [0.01, 0.01] 0.1 2.5

III [0.2, 0.4, 0.2, 0.6] [0.4, 0.3, 0.2, 0.1] [30, 20, 15, 18] [25, 15, 20, 12] [5, 4] [0.03, 0.2] 0.2 3

FIGURE 6

Simulation results of Example B case I. (A) Followers’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2. (E) systems

input ūi and event-triggered input ̟i. (F) Time intervals.

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1103462
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Yue et al. 10.3389/fnbot.2022.1103462

FIGURE 7

Simulation results of Example B case II. (A) Followers’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2.

FIGURE 8

Simulation results of Example B case III. (A) Followers’ outputs yi. (B) Followers’ states xi,2. (C) Synchronization error zi,1. (D) Dynamics error zi,2.
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Define the same state constraints values as xi,1 < 2 and xi,2 < 5,

then λi,1 = 3.75 and λi,2 = 7.5 are chosen. The parameters of the

event-triggered strategy are the same as in Example A. The remaining

parameters and initial states are given in Table 2.

From the simulation result in Figure 6, it can be seen that

similar control performance in Example A is shown. Considering

different design parameters and different initial states in Table 2, two

simulation experiments are done ulteriorly. The system states and

error convergence progress are displayed in Figures 7, 8. According

to the result from Figures 6–8, it is obvious that system quickly

converges in the prescribed area with prescribed performance while

affected by input dead zone and saturation, and state constraints

are guaranteed. Therefore, the effectiveness of the proposed control

method is confirmed.

5. Conclusion

This study has discussed the prescribed performance consensus

problem of constrained multiagent systems with input dead zone and

saturation. An adaptive event-triggered consensus control method

is developed to address the problem. To compensate for the impact

caused by unknown input dead zone and saturation, adaptive laws

and RBFNNs are adopted to deal with them. Based on constructed

transform function and barrier Lyapunov function, the control

method is designed by backstepping technology, which guarantees

the system convergence performance and prevents constraint

violation. Under the proposed control method, all followers achieve

prescribed time and preset precision synchronization, irrespective

of the presence of limited bandwidth, input dead zone, and

saturation. Some simulations show the feasibility of the proposed

control method. In future studies, we tend to discuss the consensus

problem when the parameters of input dead zone and saturation

are unknown and time-varying. Moreover, how to compensate for

actuator failures and the input time delay is also an interesting topic

that merits research.
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