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The dynamics of a robot may vary during operation due to both internal

and external factors, such as non-ideal motor characteristics and unmodeled

loads, which would lead to control performance deterioration and even

instability. In this paper, the adaptive optimal output regulation (AOOR)-based

controller is designed for thewheel-legged robotOllie to deal with the possible

model uncertainties and disturbances in a data-driven approach. We test

the AOOR-based controller by forcing the robot to stand still, which is a

conventional index to judge the balance controller for two-wheel robots. By

online training with small data, the resultant AOOR achieves the optimality of

the control performance and stabilizes the robot within a small displacement

in rich experiments with di�erent working conditions. Finally, the robot further

balances a rolling cylindrical bottle on its topwith the balance control using the

AOOR, but it fails with the initial controller. Experimental results demonstrate

that the AOOR-based controller shows the e�ectiveness and high robustness

with model uncertainties and external disturbances.

KEYWORDS

optimal control, output regulation, adaptive control, data-driven control, wheel-

legged robot

1. Introduction

The control performance deterioration on real robots is often blamed on the

inaccurate model. First, it is hard to model the robot accurately and to obtain the precise

model parameters. In addition, the robotic system may vary during operation, so the

inherent model also varies. Furthermore, some environmental changes in terrains, loads,

etc. are also reflected as variations in the robot dynamics. The model issue is troublesome

in general and could be hazardous for highly dynamic and statically unstable robots, such

as two-wheel and wheel-legged robots. For example, the model-based optimal control

is designed for the ballbot (Lauwers et al., 2006), but the model should be updated

when a load, such as an arm, is equipped (Nagarajan et al., 2012). In addition, for the
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wheel-legged robot Ascento (Klemm et al., 2020), the optimality

of the model-based control may be hard to be ensured when

the working condition changes. Furthermore, for the two-wheel

robot Segway, the robustness of the balance control may not

overcome working condition variations, which lead to serious

injuries (Ashurst and Wagner, 2015).

The issue on the model accuracy motivates the application

of non-model-based or data-driven control algorithms, such

as data-driven MPC (Willems et al., 2005; Jianwang and

Ramirez-Mendoza, 2022) and adaptive dynamic programming

(ADP) (Jiang and Jiang, 2012a, 2013, 2017; Bian and Jiang,

2016). For both of them, an optimal stabilizing controller can

be trained using small data without system identification, which

makes online implementation possible.

Particularly, the ADP consists of the policy iteration (PI)

method and the value iteration (VI) method. The ADP was

explored in our previous researches and proved to be useful,

especially for the balance control of configuration changeable

and statically unstable robots (Cui et al., 2021; Zhang et al.,

2022). By the PI, the initial control should be stabilizing but

not necessarily be optimal, and the training results in an

approximated optimal controller (Jiang and Jiang, 2012a,b). This

property is suitable when the configuration of the robot changes.

By the VI, the initial control can be arbitrary and even manual

or unstable. The training by the VI results in an initial optimal

controller at the cost of longer iterations to converge (Bian

and Jiang, 2016, 2022). This property is significant for statically

unstable robots, because the training can start without any

controller design. In the most recent study (Qasem et al., 2021),

the proposed hybrid iteration combines the advantages of PI and

VI. Moreover, the controller iteration in the ADP is robust to the

noisy data in sense of data with the bounded noise leading to a

controller bounded in a neighborhood of the nominal optimal

solution (Pang et al., 2022). Compared with reinforcement

learning applications on the balance control of two-wheel robots

(majorly in simulation) (Raudys and Šubonienė, 2020; Guo et al.,

2021), the ADP requires small data and the stability can be

proved theoretically, which enables the training on real robots

directly and removes the troublesome sim-to-real gap.

Besides the model uncertainty, another issue may affect the

control performance is unmodeled disturbances on real robots.

The disturbance may be caused by any mismatch between the

ideal simulation and the real robot, such as the terrain changes,

uncertain frictions and slight offsets of robot states, which

are hard to be sourced and analyzed completely. For wheel-

legged robots, a common consequence of these disturbances

is the steady-state error. In our previous works, although the

controller is stabilizing, the robot cannot stand still without extra

manual adjustment, which is mentioned as an unsolved problem

in Zhang et al. (2022). This phenomenon is common in real-

robot experiments of two-wheel and wheel-legged robots (Jung

and Kim, 2008; Huang et al., 2012; Zafar et al., 2019; Zhang et al.,

2019; Zhou et al., 2021), but it is unnoticed if the asymptotic

stability is not required strictly.

In the existing literature on wheel-legged robots, the steady-

state error is eliminated by the centroidal adjustment in Zhou

et al. (2019) and by arm acceleration control in Raza et al. (2021).

In addition to the case-by-case solutions to the disturbance,

a more systematic approach is to apply output regulation

on selected outputs (Isidori and Byrnes, 1990; Huang, 2004).

In Wang et al. (2021), the output regulation is applied to force

the robot to stand still using the cart-pole model where the

disturbance is estimated by an observer.

To overcome the both aforementioned issues by model

uncertainties and unmodeled disturbances, a novel solution is

the adaptive optimal output regulation (AOOR) (Gao and Jiang,

2016, 2022). Similar to the standard ADP, the training can be

conducted on real robots directly, and the system identification

is not needed. In the author’s previous researches, the optimal

output regulation has been applied to semi-autonomous

vehicles (Huang et al., 2019) and connected autonomous

vehicles (Gao et al., 2016, 2019; Gao and Jiang, 2017). However,

there is no application on balance augmentation for wheel-

legged robots.

In this paper, we design the AOOR-based controller on the

wheel-legged robot Ollie (Figure 1) to achieve non-model-based

optimal control and regulate it to stand still in various working

conditions. Compared with our previous works (Cui et al., 2021;

Wang et al., 2021; Zhang et al., 2022), the contributions in this

paper are concluded as follows.

• In Cui et al. (2021) and Zhang et al. (2022), the robot

is balanced but cannot stand still, which was stated as a

limitation of the ADP algorithm. In this paper, the problem

is solved by further regulating the velocity of the robot to

zero in a systematic approach.

• The robot was forced to stand still when it is at the

minimum height (Wang et al., 2021) based on the cart-pole

model, but this model-based method cannot keep the robot

standing still when robot configuration or the environment

changes. In this paper, the data-driven approach based on

the ADP is applied to regulate the robot adaptively.

• In addition to solving the problems in the scenarios of our

previous works, more challenging scenarios are invoked to

test the generality of the proposed control algorithm.

The structure of the remaining paper is as follows. In

Section 2.1, the robot system and the control framework

are introduced briefly, with the problem statement of the

control given in Section 2.3. In Section 3, the main controller

design based on the AOOR is provided with its algorithm. In

Section 4, the experiment results on the training process and

the related testing process using the AOOR-based controller

are demonstrated, and an interesting application is also shown.
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FIGURE 1

The wheel-legged robot Ollie. Many more maneuvers in action

and experimental data are shown in the accompanying video.

(A) Train the controller on a slope. (B) Test the controller to

balance a cup.

Finally, conclusions and several feasible future studies are given

in Section 5.

2. Robotic system and control
framework

2.1. Introduction to the robotic system

The robot we used in this paper is the wheel-legged robot

Ollie. This robot was self-developed by Tencent Robotics X and

was first released in both the plenary talk and the research paper

(Wang et al., 2021) at ICRA 2021. Ollie (mechanical model

shown in Figure 2) is designed using eight driving motors: four

motors on the hips, two motors on the tail and two motors on

the wheels. The five-bar linkage mechanism is used so that each

leg is actuated by two motors on the base, without actuators on

the knees. Based on the mechanical design, each five-bar leg is

able to move along the x and z-axis in the leg plane, which keeps

perpendicular to the robot base. Except for two-wheel balancing,

the robot has the ability to switch flexibly between two-wheel

and three-wheel modes. Moreover, the attitude of the base can

be adjusted by changing the height of each leg, i.e., distance

between the center of the wheel and the base in the leg plane.

With an optimal mechanical design of legs, the robot can stride

over obstacles, jump, and flip, demonstrating its strong ability to

realize dynamic movements (Ackerman, 2021). The total weight

of Ollie is around 15 kg. The height of the robot is between 0.33

and 0.7 m.

2.2. Robotic control framework

In order to keep Ollie moving with agile and flexible body

poses at the same time of wheel balancing, the whole-body

FIGURE 2

Mechanical design of the robot Ollie and simplified model on

the sagittal plane, where the geometric center and the CoM are

marked in a hollow circle and a filled circle, respectively. The

actual pitch angle θ̄ is the subtraction of the measured value θ

and an o�set 1θ , i.e., θ = θ − 1θ . The displacement of the robot

in the x direction is denoted as x with its velocity ẋ. The wheel is

actuated by the motor torque τ .

FIGURE 3

Control framework of the robot system.

control (WBC) is used. The robotic control framework is shown

in Figure 3. See details of the whole-body dynamics model and

optimization formulation in the authors’ previous publication

(Zhang et al., 2022).

Before theWBCmodule, an individual controller is designed

to generate the reference torques τdes for the balancing task

due to the nonminimum-phase property of the wheel-legged

robot. Conventionally, references of the balancing task in the

WBC are usually generated by controller design based on a

simplified model (Klemm et al., 2020; Murtaza et al., 2020) or by

a manual tuning controller (Zambella et al., 2019). To overcome

the aforementioned model uncertainties and inaccuracy of

model parameters and external disturbances (formally stated
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in Section 2.3), the AOOR is used to calculate balancing

task references.

Other task references, such as attitudes and height of

the robot, are obtained from the motion generation and

classic controllers.

2.3. Problem statement

The problem mentioned in Zhang et al. (2022) is that it is

hard for such a wheel-legged robot to keep standing completely

still in different working conditions. In order to make the robot

stand still, the center of mass (CoM) and the middle of wheels

should be vertical. Therefore, the accurate estimation of the CoM

position is crucial for model-based controllers, but the deviation

from the expected position is inevitable in practice due to the

nonuniform mass distribution and the assembly errors. This is

presented in the sagittal plane in Figure 2, where the CoM of

the floating base is assumed to be consistent with the geometric

center but they are different in practice.

In the balancing task, the pitch angle θ , pitch angular velocity

θ̇ and the robot’s linear velocity ẋ are regulated to zero by

controlling the motor torque τ at the wheel. The balancing

system can be expressed in the linear form

ζ̇ = Aζ + Bτ , (1)

where ζ = [θ θ̇ ẋ]T , A ∈ R
n×n and B ∈ R

n×m (n = 3,m = 1).

It must be highlighted that, due to the uncertain factors of the

robotic system, it is hard to model an accurate expression of A

and B, and they are not used in this paper.

Particularly, considering the deviation of the CoM, the real

pitch angle is the subtraction of the measured value θ and an

offset1θ , i.e., θ = θ −1θ (Note that subtraction is used to keep

consistent with the formulation in Section 3), while the real value

and the measured value are equal for the other two states (θ̇ = θ̇ ,

ẋ = ẋ). Then, the dynamic model (Equation 1) is equivalent to

ζ̇ = Aζ + Bτ + D, (2)

where ζ = [θ , θ̇ , ẋ]T , D ∈ R
n×q (q = 1) and D =

A[−1, θ , 0, 0]T .

In addition, to stop the robot at a fixed position, ẋ is chosen

as the output to be regulated to zero, and the error is

e = Cζ = Cζ , (3)

where C = [0 0 1].

In this paper, we consider the balancing task in the WBC

framework with the system described in Equations (2) and (3)

with the unknown parameters A, B, and 1θ . The objective is to

stabilize the system by optimal control adaptively and to regulate

the output to zero.

3. AOOR-based balance control
algorithm

One possible way to keep the wheel-legged robot standstill

while balancing is to design a controller based on the AOOR. A

similar data-driven optimal output regulation for linear systems

with exogenous disturbances is proposed in Gao and Jiang

(2016), but the controller design based on the similar data-

driven method on the balance augmentation of wheel-legged

robots is not trivial. In this section, we design the AOOR-based

controller for the particular application on the balancing task of

wheel-legged robots.

3.1. Model-based optimal output
regulation

The standard state feedback control of the system

(Equation 1) is

τ = −Kζ (4)

when (A,B) is stabilizable, where K ∈ R
n×1 is a stabilizing

feedback gain. The control law can be rewritten in the equivalent

form for the system (Equation 2) as

τ = −Kζ + L (5)

where L = KZ + T with Z = [1θ 0 0]T . In the control law

(Equation 5), the first term regulates the state ζ , and the second

term compensates the uncertainty D. Then, the original system

(Equation 1) is asymptotically stable (limt→∞ ζ = 0) if the

unknown Z and T are solvable by the regulator equation (see

the proof in Huang, 2004):

0 = AZ + BT + D,

0 = CZ.
(6)

Due to the specific underactuated dynamics of the wheel-

legged robot, there exists a unique solution of the regulation

equation. It is self-evident because the steady-state must be

ζ = [1θ , 0, 0] for the standstill condition, and the torque

is then fixed. However, for other types of robots, there may

exist multiple solutions, and an optimization problem can be

designed to solve the optimal solution (Gao and Jiang, 2016).

In this paper, the optimality is represented by solving

the following constrained optimization problem for the state

feedback control.

min
τ

∫ ∞

0

(
ζ
T
Qζ + Rτ2

)
dt

subject to (Equation 1)

(7)
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1: Apply the initial stabilizing control

τ = −K0ζ + β with the exploration noise β(t),

and collect data on [t0, ts].

2: Compute the matrices in Equations (13) and

(14).

3: Ensure the rank condition holds.

rank([6ζ ,ζ ,6ζ ,τ ,6ζ ]) =
n(n+1)

2 + n(m+ q) = 12,

rank([6 ζ̂ ,̂ζ ,6 ζ̂ ,τ ,6 ζ̂ ]) =
n(n+1)

2 + n(m+ q) = 12.

4: Set j = 0.

5: While ‖Pj+1 − Pj‖ < ǫ with some small ǫ

6: Solve Pj, K j+1 and D by

9




vec(Pj)

vec(K j+1)

vec(DTPj)


 = 8

where

9 =

[
3ζ ,ζ ,−26ζ ,ζ (In

⊗
KT
j R)− 26ζ ,τ (In

⊗
R),−26ζ ,τ

]

8 = −6ζ ,ζvec
(
Q+ KT

j RK j

)
.

7: End while

8: Set K∗ = K j+1, P∗ = Pj as optimal solutions for

Equation (7).

9: Solve S(̂Z) by

9̂




vec(P∗)

vec(K∗)

vec((DT − S(̂Z))P∗)


 = 8̂

where

9̂ =

[
3ζ̂ ,̂ζ ,−26ζ̂ ,̂ζ (In

⊗
K∗TR)− 26ζ̂ ,τ (In

⊗
R),−26ζ̂ ,τ

]

8̂ = −6 ζ̂ ,̂ζvec
(
Q+ K∗TRK∗

)
.

10: Solve Z and T by Equation (12).

11: Let L = K∗Z + T, the optimal output

regulation law is

τ = −K∗ζ + L.

Algorithm 1. Adaptive optimal output regulation.

where Q ∈ R
n×n is positive-definite and R ∈ R is positive. The

optimal solution is represented by the optimal feedback gain

K∗ = −R−1BTP∗ (8)

where the positive-definite P∗ is the solution of the algebraic

Riccati equation (ARE) (Lewis et al., 1995).

3.2. Data-driven optimal output
regulation

In the data-driven approach, the main objective is to remove

the dependency on the model parameter A, B and D, and

determine the optimal solution (K∗,P∗) and (Z,T).

To determine the optimal feedback gain K∗,

by utilizing the collected data ζ (t) and τ (t), the

optimization problem (Equation 7) is solved iteratively.

Particularly, the dependency on A is removed by the

Lyapunov equation

− KT
j RK j − Q = AT

j Pj + PjAj (9)

where j is the index of iteration. Meanwhile, the dependency on

B is removed by the gain iteration

K j+1 = R−1BTPj. (10)

In addition, D is set as a variable to be determined in each

iteration. When K and P converge, the results can be proved as

the optimal solutions K∗ and P∗ (Kleinman, 1968).

To determine the regulation parameters (Z,T), a basis of Z

is defined as Ẑ = [1 0 0]T such that Z = αẐ with a scalar α

and the second equation in the regulator (Equation 6) is satisfied.

Notice that the construction of the basis of Z is slightly different

fromGao and Jiang (2016) in this particular application onOllie.

Then, by defining a Sylvester map S :Rn 7→ R
n by S(Z) = −AZ,

the first equation in the regulation equation is rewritten as

S(Z) ≡ αS(̂Z) = BT + D = P∗K∗TRT + D (11)

where B is represented by Equation (10) using K∗ and P∗ from

the previous step, and D is solved in the previous step.

Then, if S(̂Z) is available, the pair (Z,T) can be computed by

solving the following linear equation

[
S(̂Z) 0 −P∗K∗TR

Ẑ −I 0

] 


α

Z

T


 =

[
D

0

]
. (12)

Finally, by setting L = K∗Z + T, the optimal output

regulation law in Equation (5) is attained.

The proposed AOOR is provided in Algorithm 1, with the

related matrices defined in Equations (13) and (14), where the

notation vec() denotes the vectorization, and
⊗

denotes the

Kronecker product. It is suggested to check the conditioning

number of 9 and 9̂ to avoid potential numerical problems

caused by ill-conditioned matrix. The general idea of the proof

follows fromGao and Jiang (2016), but the AOOR-based control

is applied for the specific problem on the balance augmentation

of wheel-legged robots. Due to the page limit, the detailed proof

is omitted.

3ζ ,ζ =

[
ζ

⊗
ζ
∣∣t1
t0
, ζ

⊗
ζ
∣∣t2
t1
, . . . , ζ

⊗
ζ
∣∣ts−1
ts

]T

6ζ ,ζ =

[∫ t1

t0

ζ
⊗

ζdt,

∫ t2

t1

ζ
⊗

ζdt, . . . ,

∫ ts

ts−1

ζ
⊗

ζdt

]T

6ζ ,τ =

[∫ t1

t0

ζ
⊗

τdt,

∫ t2

t1

ζ
⊗

τdt, . . . ,

∫ ts

ts−1

ζ
⊗

τdt

]T

6ζ =

[∫ t1

t0

ζdt,

∫ t2

t1

ζdt, . . . ,

∫ ts−1

ts

ζdt

]T

(13)
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3ζ̂ ,̂ζ =

[
ζ̂

⊗
ζ̂

∣∣∣
t1

t0
, ζ̂

⊗
ζ̂

∣∣∣
t2

t1
, . . . , ζ̂

⊗
ζ̂

∣∣∣
ts−1

ts

]T

6ζ̂ ,̂ζ =

[∫ t1

t0

ζ̂
⊗

ζ̂dt,

∫ t2

t1

ζ̂
⊗

ζ̂dt, . . . ,

∫ ts

ts−1

ζ̂
⊗

ζ̂dt

]T

6ζ̂ ,τ =

[∫ t1

t0

ζ̂
⊗

τdt,

∫ t2

t1

ζ̂
⊗

τdt, . . . ,

∫ ts

ts−1

ζ̂
⊗

τdt

]T

6ζ̂ =

[∫ t1

t0

ζ̂dt,

∫ t2

t1

ζ̂dt, . . . ,

∫ ts−1

ts

ζ̂dt

]T

(14)

4. Experimental results

4.1. Experimental setup

In the experiment, the control framework in Figure 3 is

realized by the CPU PICO-WHU4 at a frequency of 1 k Hz.

The rotation of the floating base is measured by the onboard

IMU at a frequency of 400 Hz. The experimental data are saved

at a frequency of 1 k Hz. The rotation of each actuated joint

is measured by the motor encoder. The reference velocity and

the reference height of the robot are set by the operator using a

remote controller.

4.2. Training

We train the data-driven optimal output regulation

controller for Ollie in four scenarios to deal with uncertainties

in model and disturbances. In our previous work (Cui et al.,

2021; Zhang et al., 2022), the robot kept balanced, but it

could not stand still, which was mentioned as a limitation.

Hence, in the first two scenarios, we deal with the asymptotic

stability problem in our previous works where the robot

is at the height 0.33 m (Figure 4A) and the height 0.5 m

(Figure 4B). Furthermore, we invoke two more challenging

scenarios. In the third scenario, we mount an eccentric load

of 3.5 kg in the front of the floating base (Figure 4C). As the

floating base is about 11 kg, the heavy load would change

the equilibrium point significantly. In the fourth scenario,

we train the robot on a slope (Figure 4D). It is clear that

extra torque is required to compensate for the component of

gravity in the direction of the slope, which in turn implies

that the equilibrium point changes. Notice that no information

of the load (e.g., mass, shape, location) and the slope (e.g.,

gradient) is used in the training process, and they are treated as

unknown disturbances.

During the training, the initial controller gain K0 =

[−74 − 26 − 10] is used, which is close to the resultant

controller obtained from the VI training in Zhang et al. (2022).

As the controller is stabilizing, the robot can move forward

and backward repeatedly according to the remote control and

the exploration noise β(t) = 1.6 sin(8π t) + 0.8 cos(12π t) is

used to trigger more informative data. Training data of 6 s

are collected for each experiment with the sampling interval

0.015 s. It means that, in Algorithm 1, t0 = 0, ts = 6 s,

and tk+1 − tk = 0.015 s. Considering the sampling rate of 1

k Hz, there are 400 elements in each matrix in Equations (13)

and (14). As suggested in Jiang and Jiang (2017), it is a good

practice to guarantee the full rank condition in Alglorithm 1 by

collecting data for which every matrix in Equations (13) and

(14) has elements more than twice as many as the required

rank. Hence, the full rank condition would be satisfied easily in

this work.

The training data when the robot is at the height 0.33 m and

when the robot is at the height 0.5 m on the slope are shown

in Figures 5, 6 respectively as an example, where the oscillation

implies the exploration noise. Other training data are given in

the accompanying video.

Finally, by setting Q = diag(900, 400, 150), R = 1

in Algorithm 1, the control parameters of the four training

converge to

K∗
a = [−67.96 − 29.13 − 9.20], La = −4.21

K∗
b = [−80.92 − 27.38 − 10.79], Lb = −1.78

K∗
c = [−86.61 − 27.37 − 10.89], Lc = −5.97

K∗
d = [−61.04 − 19.86 − 7.97], Ld = 1.30

(15)

by the stopping criterion ǫ = 10−4 in 19, 18, 16, and 21

iterations, respectively (Figure 7). It should be highlighted that

the fast convergence enables Algorithm 1 to be implemented

online. Moreover, the robustness of the ADP-based algorithm

guarantees the convergence to a small neighborhood of the

optimal solution when noisy data are used (Pang et al.,

2022).

The tuning of the parameter Q and R follows the

standard process of LQR design. It is noticed in Zhang et al.

(2022) and its accompanying video that the motor input

is oscillating, which is caused by the overlarge regulation

on the pitch angle of the robot. In this paper, the first

diagonal term of Q is reduced accordingly. Moreover, by

manual testing, the convergence of the algorithm is most

sensitive on the third diagonal term of Q, whose feasible

range is from 90 to 280. In addition, the second diagonal

term of Q should be larger than 180, and the first diagonal

term can be any positive value. These results indicate the

robustness of the convergence of Algorithm 1 on the parameters

Q and R.

4.3. Testing

In the accompanying video, the trained controllers are

updated to the robot online after the data collection. Here,

we compare the initial controller and the result controller
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FIGURE 4

Images during the training. Many more maneuvers in action and experimental data are shown in the accompanying video. (A) Height = 0.33 m,

(B) height = 0.5 m, (C) height = 0.5 m with the load, and (D) height = 0.5 m on the slope.

FIGURE 5

Training data for height = 0.33 m. (A) Pitch angle θ , (B) pitch velocity θ̇ , (C) line velocity ẋ, and (D) input torque τ .

of AOOR directly to avoid the effect on the visual sense

caused by the movement and exploration noises in the

training process.

In the first experiment, the robot is at the height 0.33 m,

with experimental data given in Figure 8. The initial controller

K0 is used at first, and the experimenter uses the remote

controller to force the robot to stand still. Then, after releasing

the remote controller, the robot moves forward continuously in

the first 2 s, which is indicated by the red line in Figure 8C.

Then, by enabling the updated controller with K∗
a and La at

t = 2 s, the robot decelerates sharply and stays still in the

following 6 s, which is indicated by the blue line in Figure 8C.
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FIGURE 6

Training data for height = 0.5 m on the slope. (A) Pitch angle θ , (B) pitch velocity θ̇ , (C) line velocity ẋ, and (D) input torque τ .

FIGURE 7

Convergence of the feedback gain K. (A) Height = 0.33 m, (B) height = 0.5 m, (C) height = 0.5 m with the load, and (D) height = 0.5 m on the

slope.

In order to realize the fast regulation, the motor input is a little

oscillating, but the effects on the pitch angle (Figure 8A) and

the linear velocity (Figure 8C) are acceptable. The still image

of the testing process is shown in Figure 9A. Combining the

still image and the testing data, it is clear that the average

velocity when using the AOOR is much slower than the initial

case, reflected by the smaller displacement during a longer time.

The small displacement during the AOOR period is caused

by the convergence from the initial velocity to zero, which is

naturally inevitable.

The testing processes when the robot is at the height

0.5 m and with the load are similar. By the testing data

(Figures 10, 11), the robot decelerates and stands still

(ẋ → 0) after the AOOR is enabled. The small displacement,
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FIGURE 8

Testing results for height = 0.33 m. (A) Pitch angle θ , (B) pitch velocity θ̇ , (C) line velocity ẋ, and (D) input torque τ .

FIGURE 9

Still images during the testing. Many more maneuvers in action and experimental data are shown in the accompanying video. (A) Height = 0.33

m, (B) height = 0.5 m, (C) height = 0.5 m with the load, (D) height = 0.5 m on the slope.

including the deceleration phase, is demonstrated in

Figures 9B, C respectively.

For the testing on the slope, the method is similar.

The difference is that the AOOR is used in the beginning

to compare with the initial control latter. The reason

is that, if the initial control is used in the beginning,

the robot may leave the slope quickly before enabling

the AOOR. The outstanding regulation performance is

indicated by the data (Figure 12) together with the still image

(Figure 9D).

The comparison of the controllers are summarized in

Table 1. The much smaller displacement within the longer

time by the AOOR indicates the strong regulation. The

nonzero displacement includes the deceleration phase after
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FIGURE 10

Testing results for height = 0.5 m. (A) Pitch angle θ . (B) line velocity ẋ.

FIGURE 11

Testing results for height = 0.5 m with the load. (A) Pitch angle θ . (B) line velocity ẋ.

FIGURE 12

Testing results for height = 0.5 m on the slope. (A) Pitch angle θ . (B) line velocity ẋ.

enabling the AOOR, and any slight error in the regulation

term L may also cause a small displacement in the

steady state.

4.4. Application

The AOOR is applied when the robot is balancing a

rolling cylindrical water bottle on the top. A PD controller

is used to tune the floating base by the feedback of the

bottle position (sb) and velocity (ṡb) with respect to the

center of the floating base in the x direction by the

following laws

q̈des(5) = −kballp sb − kballd ṡb + kbasep q(5) + kbased q̇(5),

where q(5) denotes the pitch angle of the floating base

of the robot. Hence, the controller aims to regulate the

ball at the target position (s∗
b

= 0) with the PD gain

kballp , kball
d

, and to keep the floating base horizontal

(q(5) = 0) wit the PD gain kbasep , kbase
d

. The signs

depend on the positive directions of the predefined

coordinates. In addition, the state sb is updated by a self-

developed tactile sensor (Zhao et al., 2022) by Tencent

Robotics X.

First, with the initial controller, the robot keeps moving

forward as shown in Figure 13. In consequence, when the bottle
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is placed on the top, the overlarge relative velocity between the

robot and the bottle is a destructive initial condition for the

bottle balancing task. As shown in the figure, the control is not

converging, and the bottle drops in 2 s.

Next, with the AOOR, the robot almost stands still, so the

ignorable relative velocity provides an ideal initial condition for

the bottle balancing task. As shown in Figure 14, the bottle is

controlled to themiddle of the top. Combining with themobility

TABLE 1 Comparison of the controllers during the testing.

Scenario

Initial controller AOOR

Time Displacement Time Displacement

(s) (m) (s) (m)

No. 1 2.0 0.46 5.8 0.15

No. 2 2.9 0.56 7.1 0.15

No. 3 2.5 1.01 5.4 0.04

No. 4 2.3 0.42 2.5 0.10

over complex terrains, this result shows the possibility to apply

the wheel-legged robot to deliver goods for which the contact

with the robot is not closed.

5. Conclusion

The mismatch between the ideal modeling in simulation

and the real robot would cause the deterioration of the control

performance. This is reflected in the experiments of our previous

works, where the robot is balanced but cannot stand still without

extra manual adjustment. Moreover, it is also troublesome

to deal with the possible variations in the robot dynamics

during the operation caused by both internal and external

factors. To solve these problems, the idea of AOOR in the

author’s previous publication is applied in the balance controller

design of the wheel-legged robot Ollie. In the experiments,

by a training process of 6 s using the AOOR, the optimality

of the controller is preserved when the working condition

changes. In addition, the noticed problems in the previous

FIGURE 13

Still images and real-time data obtained during bottle balancing using the initial controller. Many more maneuvers in action and experimental

data are shown in the accompanying video.

FIGURE 14

Still images and real-time data obtained during bottle balancing using the AOOR. Many more maneuvers in action and experimental data are

shown in the accompanying video.
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works are solved, where the robot can stand still when it is at

different heights. Furthermore, more challenging experiments

are designed to test the AOOR-based controller by adding an

eccentric heavy load to the robot, and by driving the robot on

a slope. Finally, the proposed AOOR-based controller improves

the success rate when the robot is balancing a cylinder water

bottle on the top cover. This result makes it possible to apply

the robot to deliver goods for which the limitation on the shape

is relaxed.

Several feasible future studies would be interesting to further

improve the control performance. In this paper, the working

condition of the robot is changed during operation but is not

time-varying. In the case of time-varying disturbances, it is

possible to extend the AOOR algorithm to include the output

regulation term that deals with time-varying disturbances.

Moreover, in our previous research, the robot could be stabilized

from arbitrary (unstable) input by the VI algorithm. Hence, it

is also interesting to explore a VI-based AOOR algorithm to

regulate the robot to its equilibrium point from arbitrary input.

Finally, the robot works in its linearizable region in this work.

However, for a wider working range or formore complex robotic

systems, it is worth studying to extend the AOOR to nonlinear

systems by combining the nonlinear ADP and nonlinear output

regulation, where the computational efficiency would be a

core issue.
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