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DRFnet: Dynamic receptive field
network for object detection
and image recognition

Minjie Tan, Xinyang Yuan, Binbin Liang and Songchen Han*

School of Aeronautics and Astronautics, Sichuan University, Chengdu, China

Biological experiments discovered that the receptive field of neurons in the

primary visual cortex of an animal’s visual system is dynamic and capable of

being altered by the sensory context. However, in a typical convolution neural

network (CNN), a unit’s response only comes from a fixed receptive field,

which is generally determined by the preset kernel size in each layer. In this

work, we simulate the dynamic receptive field mechanism in the biological

visual system (BVS) for application in object detection and image recognition.

We proposed a Dynamic Receptive Field module (DRF), which can realize the

global information-guided responses under the premise of a slight increase in

parameters and computational cost. Specifically, we design a transformer-style

DRF module, which defines the correlation coe�cient between two feature

points by their relative distance. For an input feature map, we first divide the

relative distance corresponding to di�erent receptive field regions between

the target feature point and its surrounding feature points into N di�erent

discrete levels. Then, a vector containing N di�erent weights is automatically

learned from the dataset and assigned to each feature point, according to

the calculated discrete level that this feature point belongs. In this way, we

achieve a correlation matrix primarily measuring the relationship between the

target feature point and its surrounding feature points. The DRF-processed

responses of each feature point are computed bymultiplying its corresponding

correlation matrix with the input feature map, which computationally equals

to accomplish a weighted sum of all feature points exploiting the global and

long-range information as the weight. Finally, by superimposing the local

responses calculated by a traditional convolution layer with DRF responses,

our proposed approach can integrate the rich context information among

neighbors and the long-range dependencies of background into the feature

maps. With the proposed DRF module, we achieved significant performance

improvement on four benchmark datasets for both tasks of object detection

and image recognition. Furthermore, we also proposed a new matching

strategy that can improve the detection results of small targets compared with

the traditional IOU-max matching strategy.
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receptive field, neural network, object detection, image recognition, biologically
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1. Introduction

A large number of biological experiments discovered that

the receptive field (RF) of the primary visual cortex of the

visual system is dynamic and can be modified by the sensory

environment (Hubel and Wiesel, 1962; Cavanaugh et al., 2002;

Angelucci et al., 2017). A neuron can be activated by a simple

stimulus (e.g., a light spot within RF), but its response can also

be modulated by a stimulus located outside RF, meaning that

the neuron’s response to local image properties is influenced by

the context in which the local feature is embedded. The well-

known center-surround RF theory (Series et al., 2003) shows

the rather complicated but intelligent behavior of neurons in the

primary visual cortex, revealing that the dynamic response arises

from co-stimulation of CRF (classical receptive field) excitation

and peripheral nCRF (non-classical receptive field) inhibition.

These show that the receptive field and its corresponding

information-processing mechanisms are dynamic in a biological

visual system. However, in most CNN networks, the responses

of a unit usually come from a kernel (e.g., equal to a receptive

field of a visual neuron) with a fixed size (but also see Dai et al.,

2017), where a deformable convolutional network is developed.

This is a simple simulation of visual neurons but not enough

to capture the dynamic properties of a real neuron and possess

the capability of processing the hierarchical and comprehensive

information.

In general, traditional CNN-based object detection models

only capture local information within one layer (Simonyan and

Zisserman, 2014; Szegedy et al., 2015; He et al., 2016). Intuitively,

a large receptive field is more beneficial for object detection

and instance segmentation tasks because the comprehensive

information from distant neighborhoods can be used to learn

the relationship between the object and the context (Hu H.

et al., 2018). Nevertheless, directly increasing the kernel size

will greatly increase the computational complexity and memory

footprint. Therefore, the remote dependencies between object

and context are generally captured by repeated local operations

such as increasing the network depth, which may also introduce

other issues, such as gradient disappearance and optimization

difficulties (Nielsen, 2015; He et al., 2016).

The inception network (Szegedy et al., 2015) attempts to

achieve diverse information from a larger and adaptive RF by

juxtaposing branches of different kernel sizes and increasing the

network width at the cost of huge computing costs. SKNet (Li

et al., 2019) provides an earlier attempt to imitate themechanism

of adaptive RF, but its implementation uses parallel convolution

kernels of different sizes to generate multiple feature maps, and

then uses an attention structure to learn the channel weights

of different feature maps generated from kernels of different

sizes. It just fuses information from a very limited number

of branches (e.g., 2 or 3). The method based on the self-

attention mechanism (Vaswani et al., 2017; Wang et al., 2018;

Srinivas et al., 2021) considers all the global information when

calculating the excitation output of a spatial position, which

can be considered to greatly increase the size of RF. However,

the memory and computational cost are quadratic with the

dimension of the feature map, which is very challenging for

training in some computer vision tasks, such as object detection.

Our motivation is to develop a method to simulate the

dynamic RF mechanism of visual neurons as shown in Figure 1,

which can adaptively generate excitatory or inhibitory responses

to different receptive fields in one operation module. Our model

mainly simulates the dynamic receptive field mechanisms of

neurons in V1 due to the rich studies of center-surround

interaction properties in V1 neurons according to various

stimulus conditions, which are considered to be very important

for context information processing of vision (Cavanaugh et al.,

2002; Angelucci et al., 2017). Inspired by the center-surround RF

theory (Series et al., 2003) that points out the RF mainly consists

of a central region and a surrounding region (Figure 1A), we

abstract the RF of a unit in the neural network into a shape

made up of multiple concentric regions. For different concentric

circle regions, the proposed DRF module is learned to generate

the adaptive responses that can play the roles of enhanced,

suppressive, or irrelevant effects on the feature responses,

and hence achieve the effects of adaptive RF (Figure 1B).

By modeling DRF mechanisms of BVS, our proposed DRF

module can effectively integrate both global and local context

information for feature extraction and representation under the

premise of a slight increase in parameters and computational

cost.

2. Related work

We deliberate the related work from three aspects that

are dynamic RF, attention mechanism, and transformer in

computer vision, respectively. In a biological neural processing

mechanism, when the photoreceptors are stimulated, the nerve

impulses coding various light information are transmitted to

the downstream neurons through the receptive field processing

and integration (Chen et al., 2013; Angelucci et al., 2017). The

receptive field is generally defined as a specific region of sensory

space where a visual stimulus can elicit electronic responses of a

neuron in a specific visual area (Kuffler, 1953; Hubel andWiesel,

1962). The canonical RF mechanism exists in the peripheral

sensory neurons, relay nucleus neurons, and neurons in the

cerebral cortex sensory area of organisms. However, the nature

and size of the receptive fields in different neural processing

stages are not consistent, and the RF mechanisms in the same

location of different organisms can also differ. For example, the

receptive fields of the optic ganglion cells of cats and monkeys

are composed of both excitatory and inhibitory fields that form

concentric circles (Cavanaugh et al., 2002; Series et al., 2003),
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FIGURE 1

Our proposed dynamic receptive field module (B) imitates the biological mechanisms of center-surround receptive fields of both On-center

and O�-center neurons (A). A simulated dynamic receptive field can be divided into various regions of N discrete levels where each region is

assigned a weight indicating enhancement, suppression, or no change. (C) Visualization of eight weight maps with positive and negative values

learned from the dataset. We can see that the automatically learned weight matrix based on DRF is quite similar to (B).

while for the receptive fields of optic ganglion cells of frogs,

rabbits, pigeons, etc., except for the concentric circles, there are

also receptive fields that can only react to special stimulus such

as a moving bar with the specific orientation.

The RF imitated in CNN (Simonyan and Zisserman, 2014;

Hu et al., 2019) generally shares similar concepts as the biological

one but with some key differences. The size of RF in CNN is

generally determined by the size of the convolution kernel, the

pooling layer, and the depth of the network. Various strategies

can be used to increase the size of RF, such as increasing the

kernel size, stacking more layers (e.g., increasing the network

depth) (Szegedy et al., 2015), implementing sub-sampling, and

dilated convolution (Chen et al., 2017). Simply increasing

the kernel size or deepening the network depth, although

theoretically a larger receptive field can be obtained and more

information can be extracted, the number of parameters and

calculations are significantly increased either, which will lead

to the over-fitting and even performance degradation (Nielsen,

2015). Furthermore, not all receptive fields in CNN are effective

and make the same contribution to the output feature responses

(Luo et al., 2016; Dai et al., 2017).

Another pipeline to implement the dynamic function of

a BVS is adopting the attention mechanism, which also takes

inspiration from the early visual information processing in

the biological visual system. Attention mechanisms adopted

in deep learning can be generally divided into two categories:

channel domain and spatial domain. By assigning different

weights to various channels or regions in the space, instead

of treating spatial locations or all channels as having the same

importance when performing convolution or pooling operations

in the past, many approaches exploiting attention mechanisms

make the network focus on the extraction of more important
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information. SENet (Hu J. et al., 2018) tried the first attempt

to adaptively adjust the feature responses of each channel using

the Squeeze-and-Excitationmodule from the channel-wise level.

BAM (Park et al., 2018) and CBAM (Woo et al., 2018) produced

a spatial attention module, which introduces the dynamic

spatial representation by global pooling. However, this method

can only capture local information. Self-attention mechanism

transplanted from natural language processing (NLP) (Hu

H. et al., 2018; Hu et al., 2019; Zhao et al., 2020; Srinivas

et al., 2021) takes all global information into account during

one operation can further capture the long-range dependence

compared with traditional convolution neural networks. For

example, the non-local neural networks (Wang et al., 2018)

employ self-attention as an additional block interspersed in

the Resnet backbone and Bottleneck transformers (Srinivas

et al., 2021) replaces the spatial convolution with multi-head

self-attention in the final three bottleneck blocks of Resnet.

Both approaches obtain significant performance improvement

in object detection. The conventional self-attention mechanism

primarily measures the correlation between pixels by calculating

the inner product of the feature vector corresponding to a pixel,

then generating a weight matrix based on this correlation, and

performing a weighted summation of features to capture the

dependencies of distant pixels. Although many self-attention-

based models tried to reduce the memory and computation

cost by reducing the number of channels in the embedding

matrix or performing self-attention computations only on low-

resolution abstract features, the computational complexity is still

huge because one performance requires two times vector inner

product calculations for all feature vectors.

Hence, some recent works (Hu et al., 2019; Zhao et al.,

2020) tried to design variants of self-attention and just employ

self-attention within a patch area with fixed size instead of

crossing all the image, which significantly reduces the amount

of computation. However, the patch size is an intermediate

variable that needs to be designed manually based on experience

and cannot be changed adaptively. Contextual transformer (Li

et al., 2022) simplifies the production of dynamic attention

matrix by abandoning the learning of query–key relationship.

Their network captures contextual information using larger

kernel convolution and obtains dynamic spatial attention by

superimposing two 1×1 convolutions. Although this method

made up of the shortcoming of the limited receptive field

of traditional CNN by acting on a global dynamic spatial

attention, it is still inferior in capturing long-distance interaction

compared with the original transformer module.

In this study, we simulate the dynamic receptive field (DRF)

mechanism of the biological visual system to design a more

effective receptive field processing strategy in CNNs, which can

reflect the strong adaptability of biological neurons for different

inputs. The proposed DRF module can obtain long-range

responses encoding useful contexture information through

global feature guidance. At the same time, the proposed DRF

module also achieves a relative position encoding mechanism,

which adaptively assigns different levels of importance to

the global feature pixels in different receptive field regions,

and hence achieves the purpose of dynamically adjusting the

receptive field.

3. Proposed method based on DRF
mechanisms

The structure of the proposed network for object detection

is shown in Figure 2. Generally, our model builds on the

Feature Pyramid Network (FPN) (Lin et al., 2017a), which

consists of the backbone, where the proposed DRF module is

incorporated into each stage (e.g., C5 is shown in Figure 2) of

the backbone for enhancing the capability of feature extraction

and representation. We deliberate each component as follows in

detail emphasizing the proposed DRF module.

3.1. Dynamic receptive field module

The proposed module generally includes the following four

core steps: First, for an input feature map processed by DRF, we

divide the relative distance corresponding to different receptive

field regions into N different discrete levels and assign a weight

that is learned by the neural network to each level. Second, for

each feature point, we calculate the relative distance between

the feature point and its surrounding feature points, divide the

calculated relative distance into N different levels, and then

assign the corresponding learned weight in step 1 to each level.

By this operation, we obtain a weight matrix encoding the

distance relation information of all other feature points related

to this target feature point. Third, we multiply the weight matrix

of the feature point obtained in step 2 by the feature map to

obtain the excitation output of this target feature point. For

an input feature map, we finally obtain the global guidance

response of each feature point based on the relative positional

relationship. Fourth, to preserve the local information in the

excitation output, the feature map is input to a convolutional

layer with a fixed convolution kernel to obtain the local response

output of the feature map. Then, we add the local response

output of each feature point and its global guidance response

obtained in step 3 together to obtain the final output feature. The

mathematical details for each step are as follows:

Taking a target feature point f (xtarget , ytarget) on the feature

map F as an example, (xtarget , ytarget) represents the spatial

position of the target feature point. f (xother , yother) represents

other feature points surrounding the target feature point on the

feature map F, and (xother , yother) represents the spatial position

of other feature points. The relative spatial distance between the

target feature point and the surrounding feature points is defined
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FIGURE 2

The structure of network built on our proposed DRF module for object detection.

as follows:

dist(ftarget , fother) =
√

(
xtarget − xother

H
)2 + (

ytarget − yother

K
)2

(1)
K and H, respectively, represent the length and width of

the feature map F, and the maximum value of the relative

distance calculated according to Equation (1) is
√
2, due to that

we calculate the normalized distance. We divide the maximum

normalized relative distance into N discrete levels and assign

each level a weight value ω, which will be learned by the gradient

back-propagation algorithm. Hence, different learned weight

values form a vector ω∈RN .
For the feature point at each spatial position in the feature

map F, we calculate the relative distance between the target

feature point and other surrounding feature points according

to Equation (1) and map the calculated relative distance

dist(ftarget , fother) into N different levels. The weight value

assigned to each level is calculated as follows:

ρ(ftarget , fother) = ωk if
(k ·

√
2)

N
≤ dist(ftarget , fother)

<
((k+ 1) ·

√
2)

N
, k∈ [0, 1, · · · ,N]

(2)

According to Equation (2), we assign the weight value ωk

in the corresponding weight vector ω ∈ RN to all feature

points on this level, so as to obtain a weight coefficient matrix

P ∈ RHK×HK of each feature point on the entire feature map

relative to its surrounding feature points. Several examples of

visualized weight maps learned from the dataset are shown in

Figure 1C. Finally, the weight coefficient matrix is normalized

point-to-point by a Softmax function as follows to obtain a

weight coefficient matrix S ∈ RHK×HK within the values of [0,

1].

s(ftarget , fother) =
exp(ρ(ftarget , fother))

∑

other exp(ρ(ftarget , fother))
(3)

For an input feature map FC×H×K , where C denotes the

number of channels, we first pass the feature map into a

convolutional layerWv with the size of 1×1.

V = F ⊗Wv (4)

Then, for each feature point in the featuremap, we calculated

the product of the feature map V and the weight coefficient

matrix S, so as to obtain the excitation output of the feature point

after the weighted average of the calculated feature map V and
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FIGURE 3

The computation flowchart of proposed multi-head DRF.

the weight coefficient matrix S.

o = STV (5)

We perform the operations of the above Equations (1)–(5)

on each feature point in the feature map FC×H×K , and finally

obtain the output of the entire feature map OC×H×K . Finally,

OC×H×K is further passed into a 1×1 convolutional layer ofWv

to get the global response output of the feature mapG=O⊗Wv.

To further retain the local context information, we pass

the input feature map FC×H×K into a convolutional layer

Wl, with a fixed convolution kernel with the size of 3 × 3

to obtain the local response L = F ⊗ Wl. The final output

of the feature map after being processed by the convolutional

neural network module based on the biological visual dynamic

receptive field mechanism described in this study is the addition

of the global response output G with the local response L.

Figure 2 shows the details of biologically inspired DRF module.

In practical computation, to reduce computation and memory

consumption of the proposed DRF module, first, we designed

our DRF model as a bottleneck-like architecture by reducing

the number of feature channels through a convolution with

kernel size 1, and then feeding the output into the DRF module

and restoring the number of feature channels through another

convolutional layer.

3.2. Multi-head DRF

Inspired by multi-head self-attention, we also devised a

multi-head DRF module as shown in Figure 3. Concretely, we

increased the learned weight vector ω ∈ RN by one more

dimension ω ∈ RN×d, and d indicates the head-dim. Hence,

we get the multi-head weight coefficient matrix S ∈ Rd×HK×HK

and the multi-head feature map V
C
d
×d×HK . The final results

of multi-head DRF are obtained by multiplying S ∈ Rd×HK×HK

withV
C
d
×d×HK using the regularmatrixmanipulation as shown

in Figure 3. The proposed multi-head design allows the DRF

module to extract feature information from multiple subspaces

and facilitate the representation capacity of features. The total

computational cost of the multi-head DRF is similar to that of a

single-head DRF.

3.3. The object detection network

As shown in Figure 2, we adopted the Feature Pyramid

Network (FPN) as the detection network and use FPN levels

from 2 to 5 for feature extraction. We transformed the output of

FPN levelsC2,C3,C4, andC4 to the new featuremapsR2,R3,R4,

and R5 using one convolutional layer with kernel size 1. The

feature maps R3,R4, and R5 are upsampled using the nearest

neighbor by a factor of 2, and then the upsampled R3,R4, and

R4 are merged with the corresponding original feature maps

C3,C4, and C4 through element-wise addition. Finally, we feed

the summation result into another 1×1 convolutional layer to get
the final detection results. To reduce the number of parameters,

we set the group number as 8 for each convolutional layer.

Experiments show that the grouped convolution does not

reduce the final detection effect while reducing the number of

parameters sufficiently. This process is described by Figure 2.

The output of each feature map point is a one-dimensional

vector whose dimension is A× (NC + m), A represents the

number of anchors, NC refers to the number of categories of

the training data, and m indicates the number of confidence

value and the transformation of the width and height relative

to the corresponding anchor. To evaluate the performance of

the proposed DRF module, we incorporate the DRF module

into each stage of the backbone as shown in Figure 2, where

the structure of a specific module is amplified for better

visualization.

3.4. Loss function

The loss function used in our model includes three parts as

follows:

(1) We adopt the conventional Binary Cross Entropy (BCE)

as our first classification loss function. When calculating the

classification loss function, only the loss of positive samples

is considered. The positive samples are determined by the

proposed anchor matching strategy, which will be described

later in detail. In the following formula, y is the classification

output vector, and y′ is the target one-hot label, which has been

smoothed (Müller et al., 2019).

Lclass = BCELoss(y, y
′) (6)

(2) Focal Loss (Lin et al., 2017b) was usually designed to

down-weight easy examples in object detection, and thus focus
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training on hard negatives. Hence, we also use the focal loss to

deal with the imbalance of difficult and easy samples.

Lconf = FL(p, p′) = −(1− abs(p− p′))γ × BCELoss(y, y
′) (7)

Where p is the confidence output, and p′ is the target

confidence output. We set the confidence value to 1.0

corresponding to the positive sample, and 0.0 corresponding to

the negative sample. The focal factor γ was set as 2.0 in our

experiment to adjust the importance of easy/hard examples.

(3) Generally, L1 or L2 norm is used to regress the four

coordinate points of the predicted box and use IOU (Intersection

over Union) to evaluate the accuracy of the prediction. However,

both measures are not completely positively correlated. Many

variants of IOU loss have been proposed (Yu et al., 2016;

Rezatofighi et al., 2019; Zheng et al., 2020) to address this

issue. Here, we use CIOU loss (Zheng et al., 2020) as the final

regression loss function.

Lreg = LCIOU (b, b
gt) (8)

Where b and bgt , respectively, indicates the predicted

coordinates of the box and the corresponding ground truth. In

summary, our loss function can be expressed as following.

LOSS = 1objLclass + (1obj & 1noobj)Lconf + 1objLreg (9)

1obj is the positive sample mask and 1noobj is the negative

sample mask, which is determined by our matching strategy.

3.5. Proposed matching strategy

We benchmarked the max-IOU assigner strategy with some

improvements. First, for each ground truth, we calculate the

IOU with all anchors and select the top N with the largest

IOU as the candidates. Then, referring to ATSS (Zhang et al.,

2020), we calculate the L2 distance between the center points

of the candidate anchors and the center point of the ground

truth and select the first k anchors with the smallest distance as

the further candidates. Finally, to make the anchors match the

ground truth more, we remove the anchors whose center point

is located outside the ground truth box. In particular, when the

same anchor is accidentally selected by multiple ground truths,

we assign it to the ground truth with the largest IOU.

In addition, we found through experiments that in a few

cases, some ground truth cannot match any anchors, which

is extremely unfavorable for target detection. To avoid such a

situation, we additionally take out the anchor, which has the

largest IOU with each ground truth and make it responsible

for predicting the position offset. In this way, ground truth can

match up to k anchors. In our experiment, we set N to 10 and k to

5 to achieve a relatively good test effect. The proposed matching

strategy process is shown in Algorithm 1.

1: Calculate IOU between all the ground truths

and anchors

2: for each ground truth gi do

3: Select top N anchors with largest IOU as

candidate set 2i

4: In 2i, select first k anchors with smallest

L2 distance between candidate anchors and gi as

further candidate set �i

5: In �i, remove anchors whose center point is

located outside the gi box and get candidate

anchor set 1i

6: end for

7: for each anchor αk do

8: If αk ∈ 1i ∪ 1j (1j is the candidate anchor

set for gj), remove αk from 1i if the IOU

between αk and gi is smaller than IOU between

αk and gj

9: end for

10: for each ground truth gi do

11: Get the anchor with the largest IOU, assign

it to gi, and put it into the collection 1i

12: end for

13: Output: the candidate anchor set 1i, i = 1, 2 . . .

for each ground truth gi, i=1, 2 . . .

Algorithm 1. Proposed matching strategy

Figure 4 shows the comparison of the number of

anchors matches between our proposed matching strategy

(Figures 4A, C) and the common max-IOU matching strategy

(Ren et al., 2015; Liu et al., 2016) (Figures 4B, D) on two

benchmark datasets. It can be seen that the number of anchors

matched by our method is more balanced. The red area indicates

that the ground truth does not match any anchors at all. This

part has a huge impact on the detection. Hence, the matching

strategy needs to avoid the situation where the ground truth

cannot completely match the anchor as much as possible.

Moreover, the closer the distance between the ground truth and

the matching anchor, the greater the intersection of IOU, and

the better and faster return of the target location information by

matching the anchor during training. Subsequent experiments

are shown in Table 5 also show that our proposed matching

strategy significantly improves the detection results of small

targets compared with the traditional IOU-max method (Ren

et al., 2015; Liu et al., 2016).

4. Experimental settings and results

We test the proposed model on four datasets with tasks

for object detection and image recognition. Concretely, we

conduct experiments on our airport scene dataset and the public

benchmark KITTI dataset (Geiger et al., 2012) to verify the
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FIGURE 4

Comparison of the number of matched anchors for di�erent categories between our proposed matching strategy [(A) for the airport dataset, (C)

for the KITTI dataset] and the commonly used max-IOU matching strategy [(B) for the airport dataset, (D) for the KITTI dataset]. Di�erent

concentric circles represent various categories of ground truth, and di�erent colors indicate the number of anchors matched by each ground

truth.

benefits of the proposed DRF/M-DRF for object detection. We

also report results using CIFAR-10 and CIFAR-100 datasets

(Krizhevsky and Hinton, 2009) for image recognition to prove

that our proposed DRF/M-DRF module can effectively extract

the target information for representation. The airport scene

dataset containing 5,549 images is extracted from the public

surveillance videos of the civil airport scene and the videos shoot

by dozens of camera positions distributed around the airport

terminals in China. The biggest challenge on this dataset is the

small target detection of the human category shown in Figure 5,

which occupies a quite small area in the image. The average

value of the size of the human target is only 1,276 pixels and

the smallest target occupies only 9 pixels. It is easy to lose the

characteristic information of the small target during the down-

sampling process of the neural network, and hence resulted in

false and missed detection.

The KITTI dataset (Geiger et al., 2012) is currently the

largest dataset for computer vision algorithm evaluation in

autonomous driving scenarios. KITTI contains images collected

from different scenes with various degrees of occlusion and

truncation. There are a total of 7,481 fully annotated images. We

simplify the categories of the KITTI dataset to three categories,

which are ‘car’, ‘pedestrian’, and ‘cyclist’ at different scales for

detection. Among them, the categories of ‘pedestrian’ and

‘cyclist’ are obviously small targets. For the image classification

task, we used CIFAR-10 and CIFAR-100 (Krizhevsky and

Hinton, 2009) consisting of 120,000 colored natural scene

images with the size of 32 × 32 pixels to verify the feature

extraction ability of our module on the quite low-resolution

image.

4.1. Experimental details

Our experimental hardware platform is NVIDIA TI 2080

GPU and Intel I7-9700 CPU with Cuda 11.1 and Cudnn 7.65.

Our network is based on pytorch 1.4.0, and the weight of the

convolutional layers adopts a normal distribution initialization

with a mean value of 0.0 and a standard deviation of 0.1, all

bias is set to be a constant of 0.0. The weight of the regularized
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FIGURE 5

Several examples of detection results on the airport dataset. We can see that the objects with very small size such as pedestrians have been

clearly detected by our proposed model.

BatchNorm (Ioffe and Szegedy, 2015; Santurkar et al., 2018)

layers is designed to be constant 1.0, and the deviation is 0.0.

4.2. Experiments on target detection

In this section, we build a target detection framework to

verify and analyze the effectiveness of our proposed DRF/M-

DRF module. The complete network architecture is shown in

Figure 2. The FPN structure and loss design have been detailed

in Sections 3.3, 3.4, respectively. We use the SGD optimizer

with momentum of 0.9 and weight decay of 0.0005 to train

our network, and the learning rate decay strategy uses a cosine

decay scheduler (Takahashi et al., 2019), with a warmup of two

epochs in the beginning (Goyal et al., 2017). Specifically, our

total training epoch number is 30, the initial learning rate is set

as 0.01, and the end learning rate is 0.0001.

4.2.1. Experiments with a single M-DRF block

Tables 1–3 exhibit the detection results on both the airport

dataset and the KITTI dataset by replacing a single original

residual block of ResNet50 and ResNeXt50 backbone with our

proposedM-DRF block. The replacement location is right before

the last residual block of each stage. Experimental results clearly

showed that exploiting a single M-DRF module can effectively

improve the performance of target detection on two datasets.

As shown in Tables 1, 2, the test results on different backbones

show that adding our module to any stages of the backbone

can produce a significant improvement. When adding a high-

resolution stage (e.g., res2 and res3), the improvement effect

is weaker, but the increase in the number of parameters is

more. Therefore, we suggest that the replacement position of

the DRF module should be in the last two stages (e.g., res4

and res5) to obtain a balance between the performance and

the number of parameters. In our subsequent experiments, the

DRF insertion position is also placed in the latter two stages.

In addition, by comparing the improvement effect of each

category for detection, we can observe that the performance

boost of our method is particularly obvious for small object

detection, such as on categories of vehicles, persons, cyclists,

and pedestrians. This means that our DRF module can indeed

improve the feature expression and integration capabilities

of backbones.

4.2.2. Experiments with head-num of M-DRF
block

We further investigate how the head-num of adopted

multi-head-DRF affects the detection performance on the

airport and KITTI datasets. We use ResNet50 as a baseline
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TABLE 1 Detection results on airport dataset by replacing the penultimate residual block of the di�erent stages of Resnet50 backbone with the

proposed M-DRF (M = 8).

ResNet50, image
size 320×320

Airplane Car Person mAP ↑

Baseline 98.8 95.1 55.1 83.0

res2 98.96 (+0.16) 95.43 (+0.33) 53.74 (–1.36) 82.71 (–0.29)

res3 99.14 (+0.34) 95.60 (+0.50) 56.25 (+1.15) 83.66 (+0.66)

res4 99.42 (+0.62) 96.27 (+1.17) 55.98 (+0.88) 83.89 (+0.89)

res5 99.24 (+0.44) 95.64 (+0.54) 58.26 (+3.15) 84.38 (+1.38)

The numbers in parentheses indicate the improvement of our M-DRF over the baseline. The symbol ↑ indicates that the higher the mAP number, the better the performance.

TABLE 2 Detection results on airport dataset by replacing the penultimate residual block of the di�erent stages of ResneXt50 backbone with the

proposed M-DRF (M = 8).

ResNeXt50, image
size 320 × 320

Airplane Car Person mAP ↑

Baseline 98.87 95.34 55.66 83.29

res2 99.17 (+0.3) 95.77 (+0.43) 56.30 (+0.64) 83.75 (+0.46)

res3 99.26 (+0.39) 95.49 (+0.15) 57.66 (+2.0) 84.14 (+0.81)

res4 99.41 (+0.54) 95.53 (+0.19) 56.79 (+1.13) 83.91 (+0.62)

res5 99.11 (+0.24) 95.37 (+0.03) 55.69 (+0.03) 83.39 (+0.1)

The numbers in parentheses indicate the improvement of our M-DRF over the baseline. The symbol ↑ indicates that the higher the mAP number, the better the performance.

TABLE 3 Detection results on KITTI dataset by replacing the penultimate residual block of the last stage of Resnet50 and ResneXt50 backbone with

the proposed M-DRF (M = 8).

KITTI, image size
320×320

Car Pedestrian Cyclist mAP ↑

ResNet50 93.91 62.65 63.66 73.40

ResNet50 + DRF (res4) 94.22 (+0.31) 63.78 (+0.12) 66.61 (+2.95) 74.87 (+1.47)

ResNet50 + DRF (res5) 94.29 (+0.38) 63.23 (+0.58) 68.68 (+5.02) 75.40 (+2)

ResNeXt50 94.78 66.41 70.65 77.28

ResNeXt50 + DRF (res4) 94.80 (+0.02) 65.96 (–0.45) 71.60 (+0.95) 77.45 (+0.17)

ResNeXt50 + DRF (res5) 94.99 (+0.21) 67.60 (+1.19) 70.60 (–0.05) 77.73 (+0.45)

The numbers in parentheses indicate the improvement of our M-DRF over the baseline. The symbol ↑ indicates that the higher the mAP number, the better the performance.

and replace the penultimate bottleneck with M-DRF block

with a different head-num. Table 4 indicates that the detection

results show an upward trend with the increase of numbers

of exploited head-num of M-DRF block, which clearly

proved the effectiveness of the proposed multi-head design

on facilitating the capacity of extracting feature information

with a slight increasing in parameter compared with a single-

head DRF. Compared with the single-head DRF module,

the multi-head mechanism allows different heads to pay

attention to different receptive field areas and realizes multiple

independent attention calculations, meaning allows the

DRF module to extract feature information from multiple

subspaces, which can further improve the expression ability of

the model.

4.2.3. E�ects of proposed matching strategy

We further conduct experiments using different backbones

on the two datasets to verify the effectiveness of the proposed

matching strategy. As shown in Section 3.5, the proposed

matching strategy can make the number of anchors matched

by the ground truth more balanced and effectively avoid

small targets being missed. Experimental results shown in

Table 5 further demonstrate that the proposedmatching strategy
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TABLE 4 Detection results on KITTI dataset and Airport dataset by replacing the penultimate residual block of the last stage of Resnet50 with the

proposed head-num of M-DRF block.

Image size 320×320 KITTI dataset Airport dataset

Car Pedestrian Cyclist mAP ↑ Car Pedestrian Person mAP ↑

ResNet50, basline 93.91 62.65 63.66 73.40 98.8 95.1 55.1 83.0

ResNet50 + DRF (M = 1) 94.14 62.75 66.22 74.37 99.22 95.3 55.53 83.35

ResNet50 + DRF (M = 2) 94.22 63.80 67.91 75.31 99.31 95.27 54.86 83.15

ResNet50 + DRF (M = 4) 94.26 64.87 68.52 75.88 99.31 95.14 53.93 82.79

ResNet50 + DRF (M = 8) 94.09 63.74 66.69 74.84 99.24 95.64 58.26 84.38

ResNet50 + DRF (M = 16) 94.10 64.79 68.91 75.93 99.29 95.22 55.03 83.19

The symbol ↑ indicates that the higher the mAP number, the better the performance.

TABLE 5 Detection results on KITTI dataset and Airport dataset using two di�erent matching strategies for comparison.

Image size 320×320 Airport dataset KITTI dataset

Airplane Car Person mAP ↑ Car pedestrian Cyclist mAP ↑

ResNet50 + iou-max 99.40 95.08 51.5256 82.0 87.57 50.14 53.39 63.7

ResNet50 + our strategy 98.8 95.1 55.1 83.0 93.91 62.65 63.66 73.40

ResNeXt50 + iou-max 99.29 95.30 53.48 82.69 88.59 53.95 56.91 66.48

ResNeXt50 + our strategy 98.87 95.34 55.66 83.29 94.78 66.41 70.65 77.28

The symbol ↑ indicates that the higher the mAP number, the better the performance.

significantly improves the detection results compared with using

the traditional max-IOU method (Ren et al., 2015; Liu et al.,

2016), especially for small target detection, such as categories of

person, pedestrian, and cyclist.

4.3. General detection results compared
with SOTAs

We quantitatively compare our method with several SOTA

methods including SSD (Liu et al., 2016), Faster RCNN (Ren

et al., 2015), RetinaNet (Lin et al., 2017b), YOLO v3 (Redmon

and Farhadi, 2018), and YOLO v5 (Jocher et al., 2020). The

main information involved in the comparison includes the

input size of image, the size of parameters, the flops of the

model, and the test results measured with mAP for each class

of the experimental datasets. For a fair comparison with SOTA

backbones, we also report the results of replacing only the

backbone on our detector framework alone. Specifically, we

compared the classic Resnet50, Resnet101 and ResneXt50, and

ResneXt101 backbones of different depths. Among these, for the

Resnet backbone, we directly replace the bottleneck with our

proposedM-DRF. For the ResneXt backbone, we replace the 3×3
convolution inM-DRF for generating the local response with the

same group convolution as in ResneXt.

For Resnet50 and ResneXt50, the replacement position of

M-DRF is the penultimate residual module of the last stage.

For Resnet101 and ResneXt101, we replaced three residual

modules, which are the 5th, 11th, and 17th residual modules

of stage3, respectively. Tables 6, 7 show that our proposed

approach outperforms several recent SOTA approaches on

two benchmark datasets under the same or even lower

parameters and flops. Figures 5, 6, respectively, show several

example detection results on the two datasets. For experimental

comparison in Figures 5, 6, we use the proposed object

detection framework that is generally similar to Yolo v3

but with some key differences. Concretely, we adopt the

Feature Pyramid Network (FPN) as the feature extraction

network and use FPN levels from 2 to 5 for feature

extraction. We use Renet50 as the backbone and incorporate

the proposed DRF into the backbone for experimental

comparison. Furthermore, we also adopt the different loss

function and matching strategy as shown in previous sections

compared with the original Yolo v3. Our proposed model

incorporated into the DRF module is very effective in

detecting small targets compared with the one without the

DRF module in which many small and difficult targets

are missed.

We also design an experiment to compare the deformable

convolutional networks (DCN) (Dai et al., 2017; Zhu

et al., 2019) with the proposed DRF. DCN achieves the

deformable receptive field by adding a two-dimensional

position offset to each sampling point position of the

standard convolution kernel, and learning this offset from

the dataset. DCN enables the trained convolution kernel with
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TABLE 6 Performance comparisons with various SOTA object detection frameworks on the airport scene dataset.

Method Backbone Size Para(MB) Flops(GB) Airport dataset

Airplane Car Person mAP↑

SSD Vgg16 300*300 22.9 30.59 90.74 80.96 23.79 65.17

512*512 88.01 90.78 88.63 38.42 72.61

retinaNet Resnet18 600*600 18.89 18.48 94.49 76.91 25.02 65.48

Resnet50 34.69 36.72 93.62 77.36 21.25 64.08

Faster Rcnn Vgg16 ∼ 130.39 ∼ 90.8 79.9 29.5 66.7

Resnet50 26.98 90.8 80.5 26.2 65.8

YOLO v3 Darknet53 416*416 60.09 65.5 98.0 84.2 35.3 72.5

640*640 155.1 99.1 92.4 42.9 78.1

YOLO v5 YOLOv5s 320*320 6.69 15.8 98.5 84.7 38.4 73.9

YOLOv5m 320*320 19.89 47.9 99.2 87.9 41.4 76.1

YOLOv5l 320*320 43.98 107.7 99.2 90.0 43.9 77.7

YOLOv5x 320*320 82.19 203.8 99.3 90.9 45.2 78.4

Classical Backbone Resnet18 320*320 47.304 14.32 98.52 89.77 36.32 74.87

Resnet50 320*320 22.58 7.99 98.8 95.1 55.1 83.0

RXt50(32×4d) 320*320 22.07 8.27 98.87 95.34 55.66 83.29

SE-Resnet50 320*320 26.189 8.59 99.26 95.56 53.32 82.71

Resnet101 320*320 40.82 15.11 99.10 95.48 55.44 83.34

RXt101(32×8d) 320*320 82.88 31.49 99.23 94.91 53.88 82.67

DRF Backbone DRF-Res50 320*320 23.08 8.04 99.42 96.27 55.98 83.89

DRF- Res101 320*320 41.07 15.21 99.38 96.11 57.86 84.45

DRF-RXt50(32×4d) 320*320 8.47 24.08 99.41 95.53 56.79 83.91

DRF-RXt101(32×8d) 320*320 88.89 33.84 99.28 95.41 54.97 83.22

The symbol ↑ indicates that the higher the mAP number, the better the performance.

variable shapes compared with the standard convolution

kernel with a fixed shape. However, DCN is still a local

operation because it only exploits the local information of

feature points offsetting with the target feature point. As

a comparison, the proposed DRF learns different weight

values for different receptive field positions in a global

scope, and the learned receptive field is larger and can be

adjusted dynamically. We can see from Table 8 that our

proposed method with DRF clearly performs better than

both DCN v1 (Dai et al., 2017) and DCN v2 (Zhu et al.,

2019), especially for small targets such as a person on the

airport dataset.

4.4. Image recognition results on CIFAR

We finally evaluate the proposed DRF on CIFAR-10 and

CIFAR-100 datasets for image recognition. The classification

network has an architecture consisting of a single convolutional

layer, followed by three stages, which have three residual

blocks for each stage. We conduct experiments using ResNeXt-

29(16 × 32d), ResNeXt-29(16 × 16d), SKNet, SE-ResNeXt-

29(16 × 16d),ResNeXt-29(16 × 16d)+DRF, and SE-ResNeXt-

29(16×16d)+DRFwith last three residual blocks that are replaced
by the proposed M-DRF module for comparison. We train our

models for 100 epochs in total, using Adam with a mini-batch

size of 128 and a weight decay of 1e-5. The initial learning rate is

set to 0.001 and decreased by a factor of 10 every 30 epochs. All

experiments shown in Table 9 demonstrate that our proposed

network building on the DRF can also significantly improve the

recognition performance, which proves that our network has a

strong ability to extract target features and good portability to

be integrated into various tasks (e.g., object detection and image

recognition).

5. Conclusion

We propose a new feature extraction module based on

the dynamic receptive field mechanism of visual neurons.
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TABLE 7 Performance comparisons with various SOTA detection frameworks on the KITTI dataset.

Method Backbone Size KITTI dataset

Airplane Car Person mAP↑

SSD Vgg16 300*300 81.04 37.10 40.66 52.93

512*512 86.42 42.00 44.25 57.56

retinaNet Resnet18 600*600 91.46 78.96 79.67 83.36

YOLO v3 Darknet53 416*416 91.4 67.8 70.6 76.6

640*640 94.8 77.3 81.3 84.5

Classical backbone Resnet50 320*320 93.91 62.65 63.66 73.40

Resnet101 320*320 95.53 67.72 76.68 79.98

ResneXt50(32×4d) 320*320 94.78 66.41 70.65 77.28

ResneXt101(32×8d) 320*320 96.20 73.45 81.60 83.75

DRF+Backbone DRF-Resnet50 320*320 94.22 63.78 66.61 74.87

DRF-Resnet101 320*320 95.93 70.38 78.3 81.54

DRF-ResneXt50(32×4d) 320*320 94.80 65.96 71.60 77.45

DRF-ResneXt101(32×8d) 320*320 96.55 75.51 83.42 85.16

The symbol ↑ indicates that the higher the mAP number, the better the performance.

FIGURE 6

Several examples of detection results on the KITTI dataset with and without the proposed DRF using the FPN and the proposed matching

strategy as the object detection framework. We can see that the objects with very small size such as pedestrians in the middle image have been

clearly detected (the second and fourth rows) compared with that of the detection results without DRF (the first and third rows).

Comprehensive experiments on four datasets show that our

proposed method can effectively improve the performance of

target detection and image recognition compared with other

SOTA methods, especially in small target recognition tasks

with low resolution. The experimental results support that the

neuron’s dynamic receptive field mechanism can effectively

capture local and global contextual relations, thereby helping

the network to detect difficult targets with occlusion and low

resolution. Our future work intends to simulate and integrate

more visual neuron information processing mechanisms to

build a neural network that is more in line with the target

detection and recognition mechanism of our visual system,

which has become an important driver of progress for next-

generation artificial intelligence (Zador et al., 2022).
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TABLE 8 Detection results on Airport dataset by replacing the penultimate residual block of the last stage of Resnet50 with the proposed DRF, DCN

v1 (Dai et al., 2017), and DCN v2 (Zhu et al., 2019) for comparison.

Image size 320×320 Airport dataset

Method Airplane Car Person mAP ↑

Resnet50 98.8 95.1 55.1 83.0

Resnet50 + DCN v1 98.83 95.09 53.72 82.54

Resnet50 + DCN v2 99.00 95.41 54.64 83.02

Resnet50 + DRF 99.24 (+0.24) 95.64 (+0.23) 58.26 (+3.62) 84.38 (+1.36)

The symbol ↑ indicates that the higher the mAP number, the better the performance.

TABLE 9 Top-1 accuracy and Top-5 accuracy on CIFAR-10 and CIFAR-100 of the proposed DRF-based network when being evaluated on an image

recognition task.

Models Parameters Flops CIFAR-10 CIFAR-100

Top-1↑ Top-5↑ Top-1↑ Top-5↑

ResNeXt-29,16×32d 23.97M 4.05G 88.51 99.58 74.56 93.53

ResNeXt-29,16×16d 4.92M 826.94M 88.47 99.56 74.16 93.19

SKNet-29 7.19M 874.91M 88.86 99.36 75.23 93.7

ResNeXt-29+DRF,16×16d 6.33M 881.76M 89.26 99.74 75.27 93.92

SE-ResNeXt-29,16×16d 5.32M 826.85M 89.63 99.62 73.67 92.84

SE-ResNeXt-29+DRF,16×16d 6.83M 883.57M 89.94 99.68 73.9 92.77

The symbol ↑ indicates that the higher the mAP number, the better the performance.
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