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Introduction: Through remote sensing images, we can understand and

observe the terrain, and its application scope is relatively large, such as

agriculture, military, etc.

Methods: In order to achievemore accurate and e�cientmulti-source remote

sensing data fusion and classification, this study proposes DB-CNN algorithm,

introduces SVM algorithm and ELM algorithm, and compares and verifies their

performance through relevant experiments.

Results: From the results, we can find that for the dual branch CNN network

structure, hyperspectral data and laser mines joint classification of data can

achieve higher classification accuracy. On di�erent data sets, the global

classification accuracy of the joint classification method is 98.46%. DB-CNN

model has the highest training accuracy and fastest speed in training and

testing. In addition, the DB-CNN model has the lowest test error, about 0.026,

0.037 lower than the ELM model and 0.056 lower than the SVM model. The

AUC value corresponding to the ROC curve of its model is about 0.922, higher

than that of the other two models.

Discussion: It can be seen that the method used in this paper can

significantly improve the e�ect ofmulti-source remote sensing data fusion and

classification, and has certain practical value.

KEYWORDS

remote sensing image, convolutional neural network, double branch structure,

hyperspectral, DB-CNN algorithm, lidar data

1. Introduction

As a depth detection technology, remote sensing is applied to space exploration,

urban planning, rescue and disaster relief. It combines multi-disciplinary technologies

such as earth science, space science, and computer, so it has different characteristics in

terms of scope of use and technical tools (Demir and Ulke, 2020; Zhou et al., 2021c;

Du et al., 2022; Lu et al., 2022). However, facing different application scenarios, remote
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sensing image classification needs higher accuracy, and the

accuracy and performance of image classification determine

the quality of the application effect. Remote sensing images

usually contain a lot of spectral information, which can be

used in image recognition and classification (Hu et al., 2021).

In remote sensing, classification and recognition of related

images is an important function, and different classification

and recognition methods have different effects (Yu, 2020). The

previous classification methods can not classify well, and the

classification results are poor. The classification technology

based on the deep learning algorithm has been studied by

many scholars because of its high classification effect and

performance. Convolutional neural network (CNN) has shown

good performance in image feature extraction and classification.

In this paper, it is applied to remote sensing image classification

to improve its classification accuracy and performance.

2. Related work

In the study of remote sensing images, the main content

focuses on the fusion and classification of remote sensing data.

During this period, different scholars adopted different research

methods. For example, Du et al. (2021) applied methods such as

integrated hyperspectral images to extract and analyze remote

sensing image features. After verification, it is found that the

proposed method can achieve effective classification (Du et al.,

2021). In the process of classifying multi-source remote sensing

data, Pastorino et al. (2021) designed a hierarchical probabilistic

graphical model, which combines Markov framework and

decision tree method, which has certain effectiveness and

feasibility (Pastorino et al., 2021). In order to improve the

classification effect of remote sensing images, Luo et al. (2021)

designed a combination strategy based on sorting batch mode,

combined with spectral information divergence, and good

classification effect can be obtained (Luo et al., 2021). Dong R.

et al. (2020) proposed a fast depth-aware network that combines

multiple advantages to achieve simultaneous extraction of deep

and shallow features (Dong R. et al., 2020). Zhang and Han

(2020) used the multi-target classification recognition model

when carrying out remote sensing image segmentation and

feature extraction. Through correlation verification, it can better

perform correlation recognition and has strong robustness

(Zhang and Han, 2020). Bazi et al. (2021) proposed a remote

sensing image classificationmodel based on the vision converter,

in which the context relationship is represented through the

multi head attention mechanism. After relevant verification,

it is found that the classification effect of this method is

better (Bazi et al., 2021). In the process of remote sensing

image classification, there will be a problem of data feature

distortion. Face this problem, Dong Y. et al. (2020) designed

a spectral space weighted popular embedded distribution

alignment method, and proved its effectiveness and practical

value through experiments (Dong Y. et al., 2020). On the basis

of multi-scale feature fusion, Zhang C. et al. (2020) proposed

the corresponding remote sensing image classification method,

which uses a new weighted eigenvalue convolutional neural

network to segment images, and achieved good experimental

results (Zhang C. et al., 2020). Xu Y. et al. (2019) analyzed the

data fusion contest held in 2018, summarized a variety of multi-

source optical remote sensing, analyzed its related land cover

classification applications, and the machine vision algorithms

involved. The effective combination of machine learning and

observation data has become a good data analysis method (Xu

Y. et al., 2019). Jin and Mountrakis (2022) classified the land

cover types through the random forest algorithm, during which

the remote sensing data sources were involved. The results show

that the highest overall accuracy of the algorithm is 83.0%, which

is much higher than the accuracy of other sensors (Jin and

Mountrakis, 2022).

Ma et al. (2020) used improved CNN to classify seismic

remote sensing images, and verified the method. After

verification, it can have a high accuracy, and its excellent

performance has an important role in earthquake prevention

and disaster relief (Ma et al., 2020). Pan et al. (2020) corrected

the high-resolution remote sensing classification results through

end-to-end localization post-processing. This method can

achieve effective correction and make the classification results

have high accuracy (Pan et al., 2020). Han et al. (2020)

designed a classification method combining 3D-CNN and

squeeze excitation network to classify relevant sea ice remote

sensing images. The practical value of this method has been

proved through relevant research (Han et al., 2020). Qing et al.

(2021) designed an end-to-end Transformer model and applied

it to hyperspectral image classification, and the experimental

results showed that it has high performance (Qing et al., 2021).

Sun et al. (2021) designed a ConvCRF model with boundary

constraints, which was used to improve the classificationmethod

of synthetic aperture radar images, thereby improving the

classification accuracy of remote sensing images (Sun et al.,

2021). Samat et al. (2020) improved the extreme gradient

boosting (XGBoost) algorithm and proposed a Meta-XGBoost

algorithm, which integrated the advantages of multiple methods

and improved the effect of hyperspectral remote sensing image

classification (Samat et al., 2020). He et al. (2020) combined a

fully convolutional network with a popular graph embedding

model and applied it to PolSAR image classification, which

proved to have high application performance (He et al., 2020).

The above studies have used different deep learningmethods

to classify and identify different types of remote sensing

images, and have achieved good application results. Although

some methods can achieve good experimental results, the

experimental process is more complicated, so there is still room

for improvement in efficiency. The research adopts CNN based

classification method, which can classify efficiently and has high

classification accuracy.
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3. Multi-source remote sensing data
fusion and classification based on
CNN

3.1. Build CNN model

With the continuous progress of remote sensing technology,

the application scope of remote sensing image data is expanding.

The application of remote sensing image data is conducive to

better urban planning. Before that, it is necessary to classify

multi-source remote sensing data to perform other operations.

CNN algorithm has strong feature extraction ability and is

widely used in data classification. Therefore, CNN is applied

in multi-source remote sensing data fusion classification. As

a feedforward neural network, CNN includes convolution

structure and multilayer non-linearity. The algorithm can

extract middle and high level abstract features from remote

sensing images under the action of convolution layer and

pooling layer (Deng et al., 2020; Huang et al., 2022; Zhong

et al., 2022; Zhou et al., 2022). The convolutional neural network

represents the target by building a multi-layer network, and its

structure is shown in Figure 1.

In Figure 1, CNN includes multiple layers, such as

convolution layers. At the same time, in this algorithm, features

can be extracted and classified. In a convolutional neural

network, each image can be represented by a matrix of pixel

values. Meanwhile, in the convolution layer, the neurons are

connected in a special way, and the image edges and features are

extracted (Zhang et al., 2020). And the convolution operation

can process image noise, and can also enhance some features.

Under complex conditions, through the action of activation

function, the non-linear ability of the network is strengthened.

For the binary classification problem, the Sigmoid function is

used, while for the image recognition classification, the ReLU

function is used (Chung et al., 2020; Zhou et al., 2021a,b;

Zhang et al., 2022). Finally, the model needs to be downsampled

to reduce its complexity, which is done through a pooling

operation. The fully connected layer belongs to the classification

and recognition part, which performs weighted summation

of the extracted features and performs the final output. As a

key part of the convolutional neural network, the convolution

layer mainly performs feature extraction and dimensionality

reduction processing operations. It contains many convolution

kernels, which convolve with the input and generate new feature

maps. Convolution usually contains both single-channel and

multi-channel types (Feng et al., 2021). Among them, the

one-dimensional convolution usually plays the role of signal

processing. Assuming that the input signal is listed as xt , and t =

1, 2, · · · , n, then its output expression is shown in Formula (1).

yt =

K
∑

k=1

wkxt−k+1 (1)

In Formula (1), wk is the convolution kernel, and K is the

length of the convolution kernel. In the processing of images and

videos, two-dimensional convolution is used more frequently.

Let the 2D image input be xij, where 1 ≤ i ≤ M, 1 ≤ j ≤ N.

In the same way, wij represents the convolution kernel, where

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then its output expression is shown in

Formula (2).

yij =

m
∑

u=1

n
∑

v=1

wuvxi−u+1,j−v+1 (2)

In Formula (2), wuv is the convolution kernel, and m, n

is the length of the convolution kernel. In Formula (2), we

know that during the convolution operation, the filter remains

stable and the entire input part is processed. At the same

time, the convolution process can be trimmed by changing the

step size and padding, which has a certain adjustment effect

on the sliding amplitude, thereby making the boundary more

complete. The pooling layer is a non-linearly connected area,

located between convolution layers, and its adjacent layers are

connected to each other through neurons. When extracting

the main features of the image, the pooling layer has a good

performance. First, the pooling layer can effectively reduce

the amount of computation, thereby saving resources. Second,

the pooling layer can reduce the number of parameters and

the complexity of the model, thereby avoiding overfitting and

ensuring scale and space invariance (Li et al., 2020). Average

pooling and max pooling are the two most common methods

of pooling operations, which can effectively retain the original

image features. The structure diagram is shown in Figure 2.

In Figure 2, these two operations can reduce the error of

feature extraction, the variance of estimated value caused by the

domain, and the shift of estimated mean value caused by the

error of convolution parameters. After two operations, activate

the data through the activation function, which is a key step

in CNN. Neural networks are generally linear calculations, and

complex functions are not generated during the calculation

process. The activation function can add complex models to

it and effectively enhance the non-linear expression ability

of the network. These functions of the activation function

can play a good role in solving complex network problems,

while improving the fitting ability of the model. Common

activation functions are Sigmoid, Tanh, and ReLU. Among them,

the definition of the sigmoid activation function is shown in

Formula (3).

Sigmoid (z) =
1

1+ e−z
(3)

In Formula (3), the output value of the sigmoid activation

function is between (0, 1) and has monotonicity. Its image

is similar to the sigmoid, which has the advantage of stable

optimization. The definition of the Tanh activation function is
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FIGURE 1

Convolutional neural network structure diagram.

FIGURE 2

Average pool and maximum pool structure.

shown in Formula (4).

Tanh (z) =
ez − e−z

ez + e−z
(4)

In Formula (4), the output value of the Tanh activation

function is between (−1, 1) and is centered at 0. At the same

time, its image curve is also similar to the S-shape, and the

convergence speed is faster. The relevant expression of ReLU

activation function is Formula (5).

Re LU (z) = max (0, z) (5)

In Formula (5), when the input value is positive, the

derivative of the function is always 1. Therefore, compared

with the Sigmoid activation function and the Tanh activation

function, it has a faster calculation speed and can effectively

save resources. After the above operations are completed, the

data is normalized to eliminate the influence of the index on

the value. In the normalization processing operation, Faced

with the problems of slow convergence speed and scattered

characteristics, it is necessary to process each batch of data. For

the same batch of data XB = {x1, x2 · · · , xn}, the mean and

variance expressions are shown in Formula (6) and Formula (7).

µB =
1

m

m
∑

i=1

xi (6)

σ 2
B =

1

m

m
∑

i=1

(xi − µB)2 (7)

In Formula (6) and Formula (7), µB and σ 2
B are the

mean and variance, respectively, and a new mapping x̂i can be

obtained after normalization xi, and its expression is shown in

Formula (8).

x̂i =
xi − µB
√

σ 2
B + ε

(8)

In Formula (8), ε > 0 and the value is smaller. In

order to obtain the real and effective distribution of network

data, scale transformation and offset processing are added after

normalization, and its expression is shown in Formula (9).

yi = γ x̂i + β (9)

In Formula (9), γ and β are parameters in network training,

and the update methods are shown in Formula (10) and

Formula (11).

∇γ =

m
∑

i=1

∇yi
∂yi

∂y
=

m
∑

i=1

∇yi · x̂i (10)

∇β =

m
∑

i=1

∇yi
∂yi

∂β
=

m
∑

i=1

∇yi · 1 =

m
∑

i=1

∇yi (11)
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In Formula (10) and Formula (11), the two are updated by

means of derivation, and the input xi gradient expression is

shown in Formula (12).

∇xi = ∇x̂ ·
1

√

σ 2
B + ε

+∇σ 2
B ·

2 (xi − µB)

m
+ ∇µB ·

1

m
(12)

In Formula (12), there is a certain relationship between xi,

X̂I , µB and σ 2
B . At the same time, in the back-propagation

process, calculate the gradient of X̂I , µB and σ 2
B to xi, as shown

in Formula (13), Formula (14), and Formula (15).

∇x̂i = ∇yi · γ (13)

∇µB =

m
∑

i=1

∇x̂ ·
−1

√

σ 2
B + ε

+ ∇σ 2
B ·

1

m

m
∑

i=1

−2 (x2 − µB) (14)

∇σ 2
B =

m
∑

i=1

∇x̂ · (xi − µB) ·
−1

2

(

σ 2
B + ε

)− 3
2

(15)

After the feature extraction and classification and

recognition are completed, the results are output, thus

completing the entire convolutional neural network steps.

3.2. Multi source remote sensing data
fusion and classification based on CNN

Multi-source remote sensing data includes hyperspectral

data (HSI) and lidar data (LiDAR), due to their different types

and applicable directions, there are certain challenges in fusion

and classification (Qu et al., 2021). Therefore, the research

uses CNN to extract its features, and proposes a dual-branch

convolutional neural network (DB-CNN), which is convenient

for organically combining multiple data sources. The multi-

source remote sensing data fusion and classification process

based on CNN is shown in Figure 3.

In Figure 3, a dual-channel CNN network is used to extract

spectral information. In HSI branch, Conv2D3 of 2-D channel

is 256, Conv2D3 is 512, Max Pool is 2 ∗ 2, Conv1D11 of 1-D

channel is 256, Conv1D3 is 512, Max Pool is 2 ∗ 1; In the HSI

branch, the value of Conv2D3 is 64, the value of Cascade2D

is [128, 64,128, 64], the value of Max Pool is 2 ∗ 2, and the

value of Cascade2D is [256128256128]. For hyperspectral data

extraction, the spatial information is extracted by 2-D CNN,

and the central pixel information is extracted by 1-D CNN.

For LiDAR and Visible Light Image (VIS) data, because of

their strong spatial information, the same network can be used

for feature extraction. The overall network structure consists

of three parts, namely spectrum, spatial channel and space-

spectral fusion. The spectral channel can be divided into three

parts, including convolution layer, pooling layer, etc., and batch

normalization. When performing the convolution operation,

a one-dimensional convolution method is adopted to process

the one-dimensional vector of the spectral data. At the same

time, in order to correct the data distribution, the Leaky

ReLU activation function is selected to perform the correction

operation. Therefore, the spectral dimension feature extraction

process can be expressed as: firstly, input the spectral vector

H
spec
ij into the network, then, perform correlation operation

through it, and finally output the feature F
spec
ij , and expand the

feature into a one-dimensional vector at the same time.

For spatial dimension feature extraction, the processing

object is usually r the image block with radius around the center

pixel, so the output feature F
spat
ij is the information of the center

pixel and its surrounding radius r. It will also expand F
spat
ij into a

one-dimensional vector and fused with F
spec
ij each other. When

extracting relevant features, the consistency of the depth and

structure of the dual channel network shall be ensured to make

the extracted features more complete. The two kinds of features

are fed into the fully connected layer after fusion, and they are

reorganized and selected by learning. For the features with too

little contribution, the Dropout method can be used to discard

them, and the whole process can be represented by Formula (16).

T
(

F
spat
ij , F

spec
ij

)

= f
(

W
(

F
spat
ij

∥

∥

∥
F
spec
ij

)

+ b
)

(16)

Formula (16), � ‖� denote feature fusion, W and b denote

the weights and biases of fully connected layers. Then the above

formula can be expressed as Fhsi and input into the softmax

classifier. The classifier can predict features as corresponding

probability distributions, as shown in Formula (17).

pred
(

i, j
)

=

1
∑C

n=1

(

exp
(

θ ′nFhsi
))













exp
(

θ ′1Fhsi
)

exp
(

θ ′2Fhsi
)

...

exp
(

θ ′CFhsi
)













(17)

In Formula (17), θn (n = 1, 2, · · · ,C) represents the nth

column parameter of the classifier, which pred
(

i, j
)

∈ RC is a

one-dimensional vector, which represents the prediction result

of the pixel pij. For LiDAR or VIS data feature extraction, a

cascaded CNN network is required, as shown in Figure 4.

From Figure 4, the cascade structure is mainly composed

of basic cascade operations. Before entering the data into the

network structure, it needs to be normalized. In the convolution

operation, the convolution kernel size is set to 3× 3. After going

through the operations of all modules, expand the extracted

feature through FLV to obtain one-dimensional vector, and then

use it as the input part of the fully connected layer. In order to

improve the fusion effect of features at different levels, a Cascade

block structure is designed in which different features can be
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FIGURE 3

Related flow chart.

FIGURE 4

CNN network structure of cascaded modules for LiDAR/VIS feature extraction.

bridged. This structure can be represented by Formula (18).

{

ym = gm (x, {Wi,Bi}) + x

y = gs
(

xs,
{

Wj,Bj
})

+ xs
(18)

In Formula (18), gm (x, {Wi,Bi})and gs
(

xs,
{

Wj,Bj
})

is the

operation between two channels, x and the y corresponding

input and output, indicating the output of themiddle layer. After

the CNN network is constructed, all its parameters need to be

trained and updated. For the network parameters, the feature

map of each layer of the network is set to a power of 2. Since

more parameters need to be trained and the distribution of these

parameters is not uniform, training on two branches at the same

time will have an impact on obtaining the optimal parameter

solution. Therefore, it is necessary to train the parameters

on the two branches separately, and then perform fine-tuning

training after the two are trained. In training experiments, data

and methods are the two most critical parts. Different from

general deep learning training models, remote sensing image

data training has a limited number of labels, and the labeling

process is time-consuming and costly (Gu et al., 2022). To solve

this problem, it is usually necessary to process the data in the

preprocessing stage, such as rotating the image, adding Gaussian

noise, etc., to expand the training set. In addition to this, all data

needs to be normalized.

When performing feature extraction on HSI, 1-D CNN is

responsible for extracting spectral features, while 2-D CNN is

responsible for extracting spatial information (Xu et al., 2019).

This dual-channel network design can reduce training update

parameters, so it can save computing resources and improve

training efficiency. In addition, the Cascade block structure

also has certain advantages when extracting LiDAR/VIS data.

This cascaded CNN network structure can transfer low-

level features to high-level features, which can be reused to

improve efficiency.

4. Performance analysis of multi
source remote sensing data fusion
and classification based on CNN

In order to effectively verify the performance of the proposed

dual-channel CNN, the same type of classification models are
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TABLE 1 Comparison of classification accuracy of dual-branch CNN networks on di�erent data sets.

Data DB-CNN(L/V) DB-CNN(H) DB-CNN(H+L/V)

OA (%) Kappa OA (%) Kappa OA (%) Kappa

Houston 55.62 0.5168 83.21 0.8157 86.69 0.8577

Trento 84.81 0.8105 94.98 0.9285 96.83 0.9547

Pavia 92.85 0.9042 96.87 0.9593 98.46 0.9735

Salinas 91.68 0.9107 95.53 0.9487 96.58 0.9576

FIGURE 5

Comparison of classification accuracy of three classification

models on Houston dataset.

introduced: SVM algorithm and ELM algorithm. During the

performance analysis, the samples used by the three methods are

the same. Use (H) to represent the experiments and results of the

classification model on hyperspectral, and (H+L) to represent

the experimental results of the combination of hyperspectral

and LiDAR. First, the experimental results of DB-CNN network

using different classification methods on different datasets are

analyzed. The data sets involved are Houston data set, Trento

data set, Pavia data set and Salinas data set. The Houston data

set consists of two parts, namely hyperspectral data and LiDAR

data. Themap size is 349 ∗ 1,905; Trento dataset is shot in Trento

region, Italy, with 600 ∗ 166 pixels; The Pavia dataset was taken

in Pavia, Italy, with a map size of 610 ∗ 340; The Salinas dataset

was taken in the Salinas region of Italy, and the map size is 512 ∗

217. The analysis results are shown in Table 1.

In Table 1, compared with a single HSI or LiDAR method,

the combined method has higher global classification accuracy

in different data sets. For example, on the Pavia dataset, the

global classification accuracy of the three classification methods

is the highest, among which the global classification accuracy of

the joint classification method reaches 98.46%, which is 5.61%

higher than the single LiDAR/VIS classification accuracy and

1.59% higher than the single HSI classification accuracy. At

the same time, the Kappa value of the classification accuracy

index of the joint classification method is 0.9735, which is

0.0693 higher than the Kappa value of the single LiDAR/VIS

classification and 0.0142 higher than the Kappa value of the

FIGURE 6

Accuracy of di�erent classification models.

single HSI classification. This result shows that the classification

effect of the joint classification method is better than that of the

single classification method. Classification method. At the same

time, the Houston data set is taken as an example to verify the

classification accuracy of different classification models on this

data set. The comparison results are shown in Figure 5.

As can be seen from Figure 5, for the three classification

models, the fusion classification method has the best

performance and the highest classification accuracy in the

global classification. For example, the average accuracy of SVM

model using a single HSI classification is about 82.83%, and the

average accuracy of SVMmodel using a combination of HSI and

LiDAR classification is about 89.86%. The average accuracy of

the ELMmodel using a single HSI classification is about 85.57%,

and the average accuracy of the ELMmodel using a combination

of HSI and LiDAR classification is about 91.05%. The average

accuracy of DB-CNN model using a single HSI classification

is about 92.13%, and the average accuracy of DB-CNN model

using a combination of HSI and LiDAR classification is about

95.08%. Therefore, in the three classification models, the average

classification accuracy of the single classification method and

the joint classification method corresponding to the dual branch

CNN network structure is higher than that of the SVM model

and ELMmodel, indicating that the classification effect is better.
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FIGURE 7

Comparison of classification performance of three classification models under di�erent training sample numbers. (A) Training accuracy of the

three classifications of Houston training set. (B) Training accuracy of the three classifications of Pavia training set.

TABLE 2 Comparison of training time of three classification models under di�erent training sample numbers.

Number of training samples Training time (s) Test time (s)

SVM ELM DB-CNN SVM ELM DB-CNN

200 36.4 32.7 25.3 15.7 13.4 8.1

400 68.1 61.5 49.6 28.5 25.3 15.6

600 103.9 92.4 70.6 40.9 35.8 21.5

800 135.7 119.5 91.4 51.2 43.7 26.1

1,000 160.4 142.9 113.8 60.3 49.9 29.8

The classification performance of the DB-CNN model is further

analyzed through the Pavia dataset. The results are shown in

Figure 6.

In Figure 6, according to the trend of the broken line

chart of the accuracy rate of the six classification models,

compared with the classification models corresponding to the

SVM algorithm and the ELM algorithm, the accuracy rate

of the classification model corresponding to the DB-CNN is

higher, especially the classification accuracy rate of the two

branch CNN classification model is the highest, with the highest

accuracy rate of 100.00%; Moreover, the accuracy of the two

branch CNN classification model is above other models, and the

accuracy difference between different data sets is small, that is,

the performance of the two branch CNN classification model

is more stable. In addition, the classification performance of

the three classification models under different training sample

numbers is compared, as shown in Figure 7.

Figure 7A shows the training accuracy of the three

classifications of Houston training set, and Figure 7B shows the

training accuracy of the three classifications of Pavia training

set. According to the trend of the graph, in the process of

increasing training samples, the classification accuracy of the

three classification models shows an overall upward trend.

Among them, the accuracy of the dual-branch CNN network

model has an obvious upward trend, and its training accuracy

is higher than the other two classification models under the

same number of samples. And when the number of training

samples is small, the dual-branch CNN network model can also

achieve better classification accuracy. In Figure 7A, when the

training sample size is 800, the accuracy of DB-CNN model

is 0.862, 0.062 higher than that of SVM model; In Figure 7B,

when the training sample size is 1,600, the precision of ELM

model and DB-CNN model is 89.73 and 97.68, respectively.

The results show that the two branch CNN network model

can achieve better classification accuracy when performing

correlation classification. The training and test times of the three

classification models under different training and test sample

numbers are compared, as shown in Table 2.

In Table 2, when the number of samples becomes large, the

training time and testing time of the three classification models
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FIGURE 8

Test error comparison of three classification models on test set.

FIGURE 9

Comparison of ROC curves of three classification models.

gradually increase, and the growth trend gradually slows down.

When the number of samples used for training and testing is

equal, the training and testing time of the dual-branch CNN

network model is the shortest, followed by the ELM model,

and the SVM model with the longest training and testing time.

For example, when the number of samples used for training

and testing is 1,000, the training time of the dual-branch CNN

model is 113.8 s, which is 29.1 s lower than the ELM model and

46.6 s lower than the SVM model; its test time is 29.8 s, which is

20.1 s lower than the ELM model, which is 30.5 s lower than the

SVM model. Therefore, under the same conditions, the training

efficiency and testing efficiency of the dual-branch CNNnetwork

model are higher, and it has a better effect in the fusion and

classification of multi-source remote sensing data. In addition,

the test errors of the three classification models on the test set

are compared and analyzed, as shown in Figure 8.

In Figure 8, as the number of iterations increases, the

classification errors of the three models gradually decrease and

finally become stable.When the number of iterations is at a small

level, the convergence speed of the dual-branch CNN network

model was faster, followed by the ELM model and the SVM

model. At 100 iterations, the error value of the dual-branch CNN

network model is minimized and stabilized, and its error value is

about 0.026. At 200 iterations, the error value of the dual-branch

CNNnetworkmodel is minimized and stabilized, the error value

of the ELM model is minimized and stabilized, and its error

value is about 0.063, the dual branch CNN network model is

0.100. When the number of iterations reaches 200, the error

value of the SVM model decreases to a minimum and tends to

be stable. According to the results, the two branch CNN network

model has the smallest error value and the best classification

effect. Finally, the ROC curves of the three classification models

are compared, as shown in Figure 9.

In Figure 9, the lower area corresponding to the ROC curve

of the dual-branch CNN network model is the largest, that is,

the AUC value is the largest, followed by the ELMmodel and the

SVM model. The AUC value corresponding to the dual-branch

CNN network model is about 0.922. AUC value of ELM model

is about 0.869, which is 0.053 lower than the dual-branch CNN

network model. AUC value of SVMmodel is about 0.837, which

is 0.032 lower than the ELM model and 0.085 lower than the

dual-branch CNN network model. The ROC curve and AUC

value represent the quality of the classification effect. From the

above results, we can see that the classification effect of the

dual-branch CNN network model is the best, and it can play

a greater role in the recognition and classification of remote

sensing images.

5. Conclusion

CNN can better classify and recognize, and they have been

widely used in many fields. In order to realize the fusion and

classification of multi-source remote sensing data, a dual branch

CNN network structure model is proposed, and ELMmodel and

SVM model are used as comparison models. According to the

results obtained, it can be seen that for the dual branch CNN

network, the HSI and LiDAR joint classification method has the

highest global classification accuracy on different data sets. On

the Pavia dataset, the global classification accuracy of the three

classification methods is the highest. Among them, the global

classification accuracy of the joint classification method is 98.46,

5.61% higher than that of the single LiDAR/VIS classification,

and 1.59% higher than that of the single HSI classification.

In the training experiment, compared with other methods, the

training accuracy of BD-CNN model is higher than that of the

other two classification models with the same sample number.

When the number of samples used in training and testing is the

same, the training time and testing time of BD-CNN model are

the lowest. In the error test experiment, when the number of

iterations of the DB-CNN model is 100, the test error reaches

the lowest steady state, which is about 0.026, 0.037 lower than
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the ELM model. In addition, the ROC curve of the DB-CNN

model corresponds to the largest lower area, that is, the AUC

value is the largest, which is about 0.922, that is, the DB-CNN

model has the best classification performance. Comprehensive

analysis shows that BD-CNN model can effectively fuse and

classify multi-source remote sensing data. However, there is still

room for improvement. In this paper, we can discuss other depth

learningmethods when classifying remote sensing data to obtain

better classification results.
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