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In recent years, visual tracking algorithms based on Siamese networks have

attracted attention for their desirable balance between speed and accuracy.

The performance of such tracking methods relies heavily on target templates.

Static templates cannot cope with the adverse e�ects of target appearance

change. The dynamic template method, with a template update mechanism,

can adapt to the change in target appearance well, but it also causes new

problems, which may lead the template to be polluted by noise. Based on

the DaSiamRPN and UpdateNet template update networks, a Siamese tracker

with “dynamic–static” dual-template fusion and dynamic template adaptive

update is proposed in this paper. The new method combines a static template

and a dynamic template that is updated in real time for object tracking. An

adaptive update strategy was adopted when updating the dynamic template,

which can not only help adjust to the changes in the object appearance, but

also suppress the adverse e�ects of noise interference and contamination of

the template. The experimental results showed that the robustness and EAO

of the proposed method were 23% and 9.0% higher than those of the basic

algorithm on the VOT2016 dataset, respectively, and that the precision and

success were increased by 0.8 and 0.4% on the OTB100 dataset, respectively.

Themost comprehensive real-time tracking performancewas obtained for the

above two large public datasets.

KEYWORDS

object tracking, Siamese network, template update, dynamic–static dual-template

fusion, deep learning

1. Introduction and motivation

Video object tracking, which refers to continuously tracking the state of an object in

subsequent frame sequences by using the initial position and scale information of the

object, is the basis for high-level visual tasks such as visual inspection, visual navigation,

and visual servo (Nousi et al., 2020; Wang et al., 2020; Karakostas et al., 2021; Sun et al.,

2021). In engineering practice, interference such as changes in the posture and scale of

the object, noise interference, background occlusion, or variation of light conditions may

lead to tracking failure, so object tracking remains a challenging task (Zhang et al., 2020;

Zhang H. et al., 2021; Liu et al., 2022).
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Object tracking methods can be roughly divided into

generative methods and discriminative methods (Zhang Y. et al.,

2021; Dunnhofer et al., 2022). Generative methods first build

the model of the object and then search for the area which

is most similar to the object in subsequent frames through

iterating to achieve target positioning. Discriminative tracking

algorithms transform the object tracking problem into a binary

classification problem about the object and the background,

and find the predicted object position by training a classifier

to distinguish the object from the background. In general,

generative methods do not rely on training samples and are

easy to implement, while discriminative ones are stronger

in robustness.

To handle various challenges, a significant amount of

research has been focused on visual tracking in recent years.

With the continuous advancement of machine learning and

signal processing technology, algorithms based on correlation

filters (Zhang J. et al., 2022; Ly et al., 2021) and deep learning

(Haisheng et al., 2019; Voigtlaender et al., 2020; Tan et al.,

2021; Zhang X. et al., 2022) have gradually replaced traditional

methods as the mainstream object tracking algorithms. Both of

these methods are discriminative methods. The basic idea of

correlation filter tracking is to use a designed filter template for

the correlation operation with the target candidate area, and

the position where the maximum output response is located

is the target position of the current frame. Before the advent

of object tracking algorithms based on correlation filters, all

tracking operations were completed in the time domain with

a large amount of data and a long period of calculation time.

However, the object tracking algorithms based on correlation

filters convert the operation from the time domain to the

frequency domain, reducing the amount of computation while

ensuring the integrity of data. Early correlation filter object

tracking algorithms include theMOSSE (MinimumOutput Sum

of Squared Error Filter) algorithm (Bolme et al., 2010), the

CSK (Circulant Structure with Kernels) algorithm (Henriques

et al., 2012), the KCF (Kernelized Correlation Filter) algorithm

(Henriques et al., 2015), and the SAMF (Scale Adaptive Multiple

Feature) algorithm (Li and Zhu, 2014), etc. All the above

algorithms usemanual features. Later, people began to introduce

deep learning into correlation filtering, mining more robust

depth features from the original data to replace traditional

manual features, thereby further improving the robustness

of correlation filtering algorithms. Typical object tracking

algorithms which combine correlation filtering with deep

learning include the Deep SRDCF (Convolutional Features for

Correlation Filter Based Visual Tracking) algorithm (Danelljan

et al., 2015a), the C-COT (Continuous Convolution Operators)

algorithm (Danelljan et al., 2016a), and the ECO (Efficient

Convolution Operators for Tracking) algorithm (Danelljan

et al., 2017a), etc.

The deep learning object tracking algorithm based on the

Siamese network has received extensive attention due to its good

performance in testing various benchmark tracking datasets.

SiamFC (Fully Convolutional Siamese Networks for Object

Tracking; Bertinetto et al., 2016b), an earlier object tracking

algorithm based on a fully convolutional Siamese network, uses

a fully convolutional network structure to learn the similarity

measurement between the target area and the search area,

thus viewing tracking as a problem of searching for target

objects across the entire image. Based on SiamFC, Bo et al.

(2018) proposed SiamRPN (High Performance Visual Tracking

with Siamese Region Proposal Network), an object tracking

algorithm based on the region proposal network. The method,

with a classification network for foreground and background

estimation and a regression network for anchor bounding box

correction included, estimates the position and size of the

object through a bounding box with a variable aspect ratio,

so that a more accurate bounding box can be obtained. Zhu

et al. (2018) proposed a Siamese network tracking algorithm

based on distractor aware, DaSiamRPN (Distractor-Aware

Siamese Networks for Visual Object Tracking), which improves

the discrimination ability of the model by introducing a

distractor-aware module. Based on SiamFC or SiamRPN, Zhang

and Peng (2019) proposed the SiamDW (Deeper and Wider

Siamese Networks for Real-Time Visual Tracking) algorithm,

which further improves tracking accuracy and robustness by

introducing internal clipping units of residual blocks into

deeper and wider networks. The SiamMask (Fast Online Object

Tracking and Segmentation: A Unifying Approach) algorithm

proposed by Wang et al. (2019) can simultaneously implement

video object tracking and video object segmentation, and a

predictive bounding box of an adaptive mask can be obtained

during object tracking, which greatly improves the accuracy

of tracking.

The above tracking algorithms based on the Siamese

network achieved the optimal performance at that time, but

all these algorithms use the position of the object in the

first frame image as a fixed template throughout the tracking

process, which makes them unable to deal well with the

adverse effects of a change in the appearance of the object.

In response to this problem, a template update mechanism

was introduced into object tracking. Danelljan et al. (2015b)

improved tracking efficiency by building a Gaussian hybrid

model of the training sample together with a conservative

template update strategy (updated every five frames). Galoogahi

et al. (2017) proposed a background-aware correlation filter

algorithm that achieves object tracking with high accuracy and

real-time performance by intensively extracting real negative

samples from the background to update the filter. The above

studies use linear interpolation for template updating, which are

prone to causing tracking drift, resulting in tracking failures. The

UpdateNet (Learning the Model Update for Siamese Trackers)

algorithm proposed by Zhang et al. (2019) implements template

tracking through a trained convolutional neural network, which

greatly improves the tracking performance. Wang W. et al.

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1094892
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Sun et al. 10.3389/fnbot.2022.1094892

(2020) introduced a sparse update mechanism in the tracking

framework, which could help adaptively select the appropriate

level for object tracking. Such an update strategy reduces the

complexity of the model to a certain extent. Huang et al.

(2019) proposed a correlation filter tracker based on transfer

learning, which updates the model by migrating historical filter

data to improve the robustness of the tracker. Han et al.

(2020) proposed a spatial regularization update method with

content perception, which adjusts the weight distribution map

by optimizing the constraint problem to better adapt to the

changes in the object and background, so that reliable tracking

can be achieved. Zhang Y. et al. (2022) proposed a dual-

stream collaborative tracking algorithm combined with reliable

memory updates, which realizes real-time tracking speed and a

superior tracking performance.

The introduction of the template update mechanism

effectively improves the performance of the Siamese network

object tracking algorithm. However, there are various noise

interferences in actual application situations. The template

updatemechanism brings new problems while better adapting to

the changes in the appearance of the target, causing the template

to be polluted by noise interference (Su et al., 2022).

In order to further improve the performance of object

tracking algorithms, a Siamese tracker with the “dynamic–static”

dual-template fusion and dynamic template adaptive update is

proposed based on the DaSiamRPN and UpdateNet template

update network in this paper. The newmethod combines a static

template and a dynamic template that is updated in real time

for object tracking. An adaptive update strategy is applied when

updating the dynamic template, which helps decide whether to

update the dynamic template by using the similarity between the

tracking result of the current frame and the dynamic template,

as well as the no reference evaluation results of the current

frame image, to judge the necessity of updating the template

and the possibility of template pollution if the template is

updated. In this way, it can suppress the adverse effects of noise

interference and pollution of the template while adapting to

changes in the object appearance. The new method achieved the

best comprehensive and real-time tracking performance on the

two large public datasets, VOT2016 and OTB100.

2. Proposed method

Based on the DaSiamRPN algorithm, the proposed method

introduces the “dynamic–static” dual-template fusion and

dynamic template adaptive update mechanism. Its overall

network architecture is shown in Figure 1, including the

feature extraction module, RPN (Region Proposal Network),

dynamic template update module, and the “dynamic–static”

dual-template fusion module. In order to ensure the real-time

performance of target tracking, the AlexNet shallow network

used by the DaSiamRPN algorithm was also adopted by the

feature extraction module. RPN consists of a classification

network for foreground-background estimation and a

regression network for anchor bounding box correction. It

uses a bounding box with variable aspect ratio to estimate the

position and size of the object, thus obtaining a more accurate

bounding box. Based on the UpdateNet network, the dynamic

template update module designed an adaptive update strategy

which determined whether to implement template update

network according to two quantitative indicators, so as to

provide the optimal template for the next frame: one was the

similarity between the tracking result of the current frame and

the dynamic template; the other was the no reference evaluation

result of the current frame image. The dual-template fusion

module takes into account the advantages of the initial template

and the dynamic template through the weighted fusion of

the static template and dynamic template, which reduces the

robustness of the tracker.

2.1. The feature extraction module and
RPN

Two neural networks that shared weights formed a Siamese

network for object feature extraction: One was the template

branch for extracting features from the target template frame

TF and the other was the search branch for extracting the

characteristics of the search frame SF. The two branches shared

parameters in a convolutional neural network.

The feature extraction module applied the AlexNet network

used by the DaSiamRPN algorithm, and the RPN was also

consistent with that of the DaSiamRPN algorithm. The feature

map obtained by the feature extraction module was the input

of RPN. RPN was used to obtain a more accurate target

candidate box, including the classification branch ϕcls (·) and the

regression branch ϕreg (·).

Firstly, the first frame image of the video was taken as

the target template (as shown in the blue bounding box in

the video frame in the upper left corner of Figure 1), then

the anchor box was generated by the RPN, and the Softmax

classifier was used to extract the positive anchors to obtain

more accurate Acls
W×H×2K in the classification branch. The

classification branch determined whether each location was

foreground or background:

Acls
W×H×2Kϕcls (SF) ∗ ϕcls (TF) (1)

In Equation 1, Acls
W×H×2K represents the classification

feature map where the target and background score information

of each predefined anchor box is stored. W and H represent

the width and height of the feature map, respectively; K is

the number of anchor boxes; SF represents the search frame;

TF represents the template frame; and ∗ refers to the cross-

correlation operation.
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FIGURE 1

The overall network architecture.

Secondly, the non-maximum suppression (NMS) is used to

determine the predefined anchor box (as shown in the green

bounding box in the video frame at the lower right corner

of Figure 1) from the feature map Acls
W×H×2K obtained in the

classification branch. xan, yan, wan, and han represent the

center coordinates, width, and height of the predefined anchor

box, respectively.

Then, the coordinate offset of the center point of the

corresponding anchor box (dxreg ,dyreg) and the length and

width ratio of this anchor box to the real target box (dwreg , dhreg)

are selected from the feature map obtained in the regression

branch. The regression branch calculates all the target bounding

boxes that may exist at each location:

A
reg
W×H×4Kϕreg (SF) ∗ ϕreg (TF) (2)

In Equation 2, A
reg
W×H×4K represents the regression feature

map which stores the information such as the coordinate offset

of the center point of the predefined anchor box and the width

and height ratio of the predefined anchor box to the real

target box.

Finally, the prediction box (as shown in the red bounding

box in the video frame in the upper right corner of Figure 1) is

obtained through the bounding box coordinate regression of the

predefined anchor box. xpre represents the abscissa of the center

coordinate of the prediction box:

xprexan + dxreg × wan (3)

ypre represents the ordinate of the center coordinate of the

prediction box:

ypreyan + dyreg × han (4)

wpre represents the width of the prediction box:

wprewan × edw
reg

(5)

hpre represents the height of the prediction box:

hprehan × edh
reg

(6)

2.2. The dynamic template update
module

2.2.1. The UpdateNet network

The convolutional neural network of UpdateNet was used

to implement the dynamic template update, and its network

framework is shown in Figure 2 and can be represented by the

following formula:

T̃i = ζ

(

TGT
0 , T̃i−1,Ti

)

(7)

where T̃i is the cumulative template updated after the current

frame tracking finished; ζ (·) is the function of the UpdateNet

network; TGT
0 is the template given in the first frame; T̃i−1 is

the dynamic template updated after the previous frame image

target tracking finished; and Ti is the object tracking result for
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FIGURE 2

The network framework of UpdateNet.

the current frame. A residual learning strategy is adopted by this

network, which adds a jump connection from the template given

in the first frame to the output. For the first frame of the object

tracking image sequence, both Ti and T̃i−1 are set to TGT
0 . New

tracking results are used by UpdateNet to update the template to

better adapt to the changes in the object appearance.

2.2.2. Adaptive update strategy

The adaptive update strategy proposed in this paper

determined whether to update dynamic templates by judging

the necessity of updating the template and the possibility of

template pollution if the template was updated according to

two quantitative indicators: one was the similarity between each

image region and the other was the no reference evaluation

result of the image quality. In this way, it was able to suppress

the adverse effects of noise interference and pollution of the

template while adapting to the changes in the object appearance.

The similarity between two image blocks was quantified by the

L1 norm between them:

S = ‖M−N‖1 (8)

In Equation 8, ‖·‖ is the L1 norm;M andN are the two image

blocks whose similarity is compared; and S is the quantitative

results of the similarity between the two image blocks. The

smaller the value of S, the more similar the two image blocks are.

In this paper, NIQE (Natural Image Quality Evaluator;

Mittal et al., 2013) was used to evaluate the image quality. The

Mahalanobis distance between the MVG (Multivariate Gaussian

Model) obtained through natural image feature fitting and that

obtained through the feature fitting of the image to be measured

is used by this method to indicate the image quality:

D =

√

(v1 − v2)
T

(
∑

1 +
∑

2

2

)−1

(v1 − v2) (9)

where D represents the quantitative evaluation result of the

image quality, and the smaller its value is, the better the image

quality is. v1 and v2 represent the mean vectors of the MVG

model of the natural image and that of the image to be tested,

respectively.
∑

1 and
∑

2 are the covariance matrices of the

MVG model of the natural image and that of the image to be

tested, respectively.

With the above two quantitative evaluation indicators, the

whole process of the proposed adaptive update strategy is

shown in Figure 3. In order to accurately determine whether

the template should be updated, a total of three similarity

thresholds, λ1, λ2, λ3, and an image quality threshold, δ,

are set. Among them, λ1 is the abnormal threshold value

of the target appearance, and when the similarity between

the tracking object of the current frame and the dynamic

template Sc is > λ1, it indicates that the target appearance

characteristics have changed beyond the normal range. λ2 is

the obvious-change threshold value of the target appearance,

and when Sc is > λ2, it indicates that the target appearance

characteristics have changed significantly. λ3 is the changing

threshold value of the target appearance and when Sc is

> λ3, it indicates that there are some changes in the

target appearance characteristics that have a certain impact

on the target tracking, and conversely, the target appearance

characteristics are almost unchanged. δ is the good image quality

threshold, and when the quality evaluation result of the current

target sub-image block Dc is <δ, it indicates that the target

sub-image block of the current frame is high in quality and

that the noise interference almost does not adversely affect the

image acquisition.

In this process, the threshold value λ1 is first

used to judge whether there is a serious abnormity

in the current image acquisition and target tracking.

If Sc is ≥λ1, the dynamic template will not be

updated to avoid the template being contaminated by

abnormal data.

If Sc is < λ1, it is supposed to further judge whether

it is ≥λ2. If so, it indicates that the object appearance has

been changed obviously under normal circumstances and

in order to cope with these changes, the template must

be updated.

If Sc is < λ2, it needs to continue to judge whether Sc

is ≥λ3. At this time, if Sc is smaller than λ3, it indicates that

the object appearance feature is almost unchanged so there

is no need to update the dynamic template. If Sc is ≥λ3, it

indicates that there are some changes in the object appearance

under normal circumstances that have a certain impact on

the target tracking, thought the changes are not significant

enough to update the template. Then, there is a need to judge

whether Dc is ≥δ. If so, it indicates that the image is poor in

quality so the dynamic template will not be updated to avoid

template pollution, and conversely, the dynamic template will

be updated.
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FIGURE 3

The adaptive update strategy.

2.3. “Dynamic-static” dual-template
fusion module

The method in this paper fuses the feature map

obtained by using static and dynamic templates in the

RPN classification branch.

A = αAW×H×2K
cls + (1− α)A′

W×H×2K
cls (10)

In Equation 10, A is the feature map of the classification

branch after fusion andA′
W×H×2K

cls represents the feature map

obtained from the static template in the classification branch:

A′cls
W×H×2Kϕcls (SF) ∗ ϕcls (TF0) (11)

where ϕ
cls

(TF0) represents the feature of the initial frame in

the classification branch, and W, H, K, and SF have the same

meaning as in Equation 11.

αǫ[0, 1], which represents the weight coefficient

during fusion:

α =
So

Sd + So
(12)

where Sd represents the quantization result of the similarity

between the dynamic template of the previous frame

and the object obtained by the previous frame tracking,

and So is the similarity between the object obtained

by the previous frame tracking and the templates of the

initial frame.

The introduction of this module can give the object tracking

algorithm the advantage of using static and dynamic templates,

andmake it suppress the adverse effects of noise interference and

contamination of the template while adapting to the changes in

the object appearance.

3. Experiment results and analysis

3.1. Implementation details and
parameters

All the algorithms in this experiment were carried out using

the Pytorch 1.7.1 deep learning platform on the deep learning

workstation. The deep learning workstation uses the Windows

10 operating systemwith Intel R© Xeon(R) Gold 6139MCPU, 128

GB RAM, and the Nvidia GTX3080 GPU, which is equipped to

perform parallel computing.

The ImageNet VID (Russakovsky et al., 2015), YouTube—

BoundingBoxes (Real et al., 2017), ImageNet DET, and COCO

(Lin et al., 2014) datasets were used as training sets to train

the feature extraction network to learn the similarity between

objects. Ten sequences were randomly selected from the LaSOT

(Fan et al., 2019) dataset as training sets to train the template

update network. A batch of 64 samples were trained in each

training phase, with a total of 50 epochs, and the learning rate

of each epoch decreases logarithmically from 10−7 to 10−8. The

stochastic gradient descent method with momentum was used

for optimization, and in the actual optimization process, the

difficulty of optimization gradually increased as the depth of

feature extraction increased. In order to prevent the loss function

of each layer from gradient explosion, the momentum was set to

0.9; the weight decay parameter was set to 0.0005; and the size of

the template image and the search image were set to 127 × 127

and 271× 271, respectively.

In addition, the average similarity between the tracking

object of the current frame and the dynamic template Sc

obtained by the training template update network was 0.0017,

the variance was 0.0023, the standard deviation was 0.048, and

the maximum value was 7. After many studies, we found that

the threshold value of appearance abnormality λ1 should be

more than four times the standard deviation. The threshold of

appearance variation λ2 can be about 0.01 times the standard

deviation. The appearance change threshold λ3 can be about

0.005 times the standard deviation. By calculating the image

quality of more than 20,000 frames, we found that the image

quality below 15 is significantly better. Therefore, when using

the method in this paper, the thresholds λ1, λ2, λ3, and δ were

set to 0.5, 6× 10−4, 1× 10−4, and 15.
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3.2. Evaluation on benchmarks

3.2.1. VOT2016 benchmark experiment

The VOT series dataset is one of the most used datasets

for visual object tracking. The VOT2016 dataset includes 60

video sequences with multiple challenges, each of which is

labeled with the visual properties of that sequence. There are

six properties: camera motion, variation of light condition,

occlusion, size change, motion change, and no degradation. The

performance evaluation indicators used by the dataset include

Expected Average Overlap (EAO), accuracy (A, Accuracy), and

robustness (R, Robustness). Among them, EAO can better reflect

the comprehensive performance of the tracking algorithm and

is generally considered as the most important indicator. The

accuracy, which describes the average overlap score, is obtained

by calculating the ratio of intersection over union (IOU) of the

prediction box and the truth box. Robustness is an indicator

used to evaluate the stability of the tracking algorithm and the

smaller its value is, the more stable the algorithm is.

The performance of this method and the current

mainstream object tracking algorithms (SiamFC, SiamRPN,

SiamDW-RPN, SiamMask, C-COT, DaSiamRPN, and

UpdateNet) in the VOT2016 dataset is shown in Table 1.

As can be seen from the table, the robustness of this method

has been greatly improved compared with other algorithms, at

0.183. This is 23% higher than the basic algorithm DaSiamRPN

and 8.9% higher than the second-ranked UpdateNet algorithm.

Its EAO score, which reflects the comprehensive performance

of the object tracking algorithm, is also the highest, with a score

of 0.449. It is 9.0% higher than the DaSiamRPN algorithm and

0.2% higher than the second-ranked UpdateNet algorithm. The

accuracy rate ranks third among all algorithms, which is 1.8%

lower than the DaSiamRPN algorithm and 3.4% lower than the

SiamMask algorithm with the highest accuracy. Above all, the

method in this paper has the best comprehensive performance

among all the compared algorithms, especially in terms of

robustness in complex environments. Figure 4 shows the visual

sorting plot of accuracy and robustness, and Figure 5 shows the

score sorting diagram of average overlap expectations.

3.2.2. OTB100 benchmark experiment

The OTB100 dataset contains 100 video sequences, and

the tracking scenes involved in these video sequences can be

divided into 11 labeled properties. The two indicators, precision

and success of tracking, are used by the dataset to evaluate

the performance of the algorithm. Tracking precision refers

to the ratio of the estimated number of frames with center

position error to the total number of frames within 20 pixels,

and the success refers to the percentage of the number of frames

where the intersection over union of the target prediction box

and the real bounding box is >0.5 to the total number of

frames. The proposed method was compared with the current

TABLE 1 Performance comparison on the VOT2016 benchmark.

Algorithms EAO↑ A↑ R↓

DaSiamRPN 0.412 0.620 0.238

UpdateNet 0.448 0.609 0.201

SiamFC 0.238 0.539 0.522

SiamRPN 0.303 0.581 0.387

SiamDW-RPN 0.376 0.565 0.281

SiamMask 0.430 0.630 0.206

C-COT 0.329 0.529 0.276

Ours 0.449 0.609 0.183

FIGURE 4

Accuracy-robustness ranking plots on the VOT2016 benchmark.

mainstream object tracking algorithms [SiamFC, SiamRPN,

Staple (Bertinetto et al., 2016a), SRDCF (Danelljan et al., 2016b),

CFNet (Valmadre et al., 2017), fDSST (Danelljan et al., 2017b),

DaSiamRPN, and UpdateNet] on the OTB100 dataset, and

Figure 6 shows the precision and success of each tracking

algorithm. Among all the compared tracking algorithms, the

proposed method ranks first, with a precision score of 86.4%

and a success score of 64.7%. Compared with the basic algorithm

DaSiamRPN, the precision and success of the proposed method

increased by 0.8 and 0.4%, respectively. Compared with the

UpdateNet algorithm, the precision and success of the proposed

method increased by 0.6 and 0.9%, respectively. Overall, the

performance of the proposed method was better than that of the

current mainstream object tracking algorithms.

In particular, we present the comparison curves for

deformation, occlusion, and out of plane rotation attributes

on the OTB100 dataset in Figure 7. Obviously, in the

precision plots, our trackingmethod outperformed all compared

competitors on the deformation and out of plane rotation

attributes. Compared with the UpdateNet algorithm, the
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precision increased by 0.8 and 1.4% and compared with

the DaSiamRPN algorithm, the precision increased by 2.7

and 1.3%, respectively. However, in the occlusion attribute

of the precision plots, our tracking method was 0.4% lower

than the UpdateNet algorithm, but 2.6% higher than the

DaSiamRPN algorithm. In the success plots, our tracking

method obtained the highest success score on the deformation,

occlusion, and out of plane rotation attributes. Compared with

the UpdateNet algorithm, the precision increased by 2.1, 0.5,

FIGURE 5

Expected overlap curves on the VOT2016 benchmark.

and 2.1%, and compared with the DaSiamRPN algorithm,

the precision increased by 3.0 1.9, and 1.1%, respectively. It

can be seen that our method can overcome challenges in

object tracking.

3.3. Qualitative evaluation

In order to visually display the tracking effect, several video

sequences with various tracking difficulties were selected from

the VOT2016 dataset and compared with the DaSiamRPN and

UpdateNet algorithms to verify the experiment, as shown in

Figure 8.

The main difficulty of tracking fish2 video sequences lies

in the similar object interference. In the 92nd frame, the rapid

movement of the object caused blurring, so the DaSiamRPN

algorithm failed to track, while the method in this paper and the

UpdateNet algorithm could track the object more accurately. In

the 275th frame, there is an interfering object which is similar to

the target, and the DaSiamRPN algorithm misjudged the analog

as the tracking target. However, under the same conditions, the

algorithm in this paper overcame the interference and achieved

robust tracking. In the 309th frame, an interfering object which

is similar to the target appears again, and the proposed method

could track the target more accurately than the DaSiamRPN and

UpdateNet algorithms.

The main difficulties of tracking handball2 video sequences

are target occlusion, similar object interference, and posture

changes. In the 279th frame, the tracking object is blocked

by another moving object and due to the blurring of the

target caused by its rapid movement, the DaSiamRPN algorithm

tracked the target mistakenly. However, the proposed method

FIGURE 6

Precision and success plots of all compared trackers on OTB100.
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FIGURE 7

Precision and success plots of all compared trackers on deformation, occlusion, and out of plane rotation attributes on OTB100.
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FIGURE 8

Qualitative evaluation on six challenging video sequences.

could still track the object despite the occlusion caused by

another moving object.

The main difficulties of tracking matrix video sequences

are similar object interference and changes in light conditions.

In the 35th frame, similar object interference appears, so the

DaSiamRPN algorithm tracked the targetmistakenly. In the 77th

frame, the DaSiamRPN algorithm had a tracking drift due to

the complex background and the significant changes in light

conditions. However, the proposed algorithm could track the

object more steadily in spite of the above difficulties.

The main difficulties of tracking the rabbit video sequences

are the small size of the tracking object and similar background

interference. In the 133rd and 152nd frames, both the

DaSiamRPN algorithm and the UpdateNet algorithm failed to

track the object, while the proposed method in this paper still

located the object stably.

Under tracking object occlusion, similar target interference,

and a complicated environment, the DaSiamRPN algorithm

always uses the predefined target in the first frame as the

template of the tracking in the subsequent frames. The feature

information easily gets lost because of the changes in the

object appearance, resulting in the inability to accurately obtain

the position of the object. The UpdateNet algorithm uses the

template update mechanism to update the templates of each

frame, which can introduce noise polluting templates that then

results in tracking failure. On the other hand, the “dynamic–

static” dual-template fusion and dynamic template adaptive

update method proposed in this paper has the advantages of
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TABLE 2 FPS comparison on the VOT2016 and OTB100 benchmark.

Algorithms
datesets

DaSiamRPN UpdateNet Ours

VOT2016 110 76 87

OTB100 176 79 81

using static and dynamic templates, and it can still present

a good tracking performance despite target occlusion, similar

object interference, image blurring, and changes in light

conditions, etc.

3.4. Real-timeliness of tracking

The tracking speed of the proposed method and the

DaSiamRPN and UpdateNet algorithms on the VOT2016

and OTB100 datasets are shown in Table 2. The DaSiamRPN

algorithm can run at 110 frames per second (FPS) and 176

FPS on the VOT2016 and OTB100 datasets, respectively.

The UpdateNet algorithm can only run at 76 and 79 FPS.

Because the UpdateNet algorithm introduces the template

update mechanism to improve performance, the tracking speed

is significantly lower than DaSiamRPN algorithms, but it can

still meet the requirements of real-time tracking. Our method

achieved a running speed of 87 and 81 FPS on VOT2016

and OTB100 datasets, respectively, and the tracking speed was

slightly higher than that of the UpdateNet algorithm. Unlike the

UpdateNet algorithm, the adaptive update strategy proposed in

this paper does not update the template dynamically in every

frame, so it has better real-time performance.

4. Conclusion

Deep learning object tracking algorithms based on Siamese

networks have received extensive attention for their good

performance in the testing of various benchmark tracking

datasets. However, the earliest Siamese network object tracking

algorithm uses the object position in the first frame image as

a fixed template throughout the tracking, which cannot cope

with the adverse effects of a change in the object appearance.

The introduction of the template update mechanism makes the

subsequent Siamese network better adapted to any change in the

object appearance, though it also brings new problems, namely,

causing the tracking template to be contaminated by external

noise interference.

In order to further improve the performance of the target

tracking algorithm, a Siamese tracker with “dynamic–static”

dual-template fusion and dynamic template adaptive update

is proposed in this paper, based on the DaSiamRPN Siamese

network’s object tracking and the UpdateNet template update

network. The new method combines a static template and a

dynamic one that is updated in real time for target tracking. An

adaptive update strategy is applied when updating the dynamic

template, which helps determine whether to update dynamic

templates by judging the necessity of updating the template

and the possibility of template pollution if the template is

updated according to two quantitative indicators: one is the

similarity between the tracking result of the current frame and

the dynamic template; the other is the no reference evaluation

result of the current frame image. In this way, it can suppress

the adverse effects of noise interference and pollution of the

template while adapting to the change in the target appearance.

The experimental results showed that the robustness and EAO

of the proposed method were 23 and 9.0% higher than those of

the basic algorithm on the VOT2016 dataset, respectively, and

that the precision and success were increased by 0.8 and 0.4% on

the OTB100 dataset, respectively. The best comprehensive and

real-time tracking performance was obtained on the above two

large public datasets.

There are several important thresholds in the adaptive

template update module of this method that make it necessary

to collect samples in its application to statistical determination,

which increases the difficulty of deploying the new method in

the actual system. Therefore, the next step is to introduce an

unsupervised machine learning algorithm so that self-adaption

can be achieved.
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