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Graph convolution networks (GCNs) have been widely used in the field

of skeleton-based human action recognition. However, it is still di�cult to

improve recognition performance and reduce parameter complexity. In this

paper, a novel multi-scale attention spatiotemporal GCN (MSA-STGCN) is

proposed for human violence action recognition by learning spatiotemporal

features from four di�erent skeleton modality variants. Firstly, the original

joint data are preprocessed to obtain joint position, bone vector, joint motion

and bone motion datas as inputs of recognition framework. Then, a spatial

multi-scale graph convolution network based on the attention mechanism is

constructed to obtain the spatial features from joint nodes, while a temporal

graph convolution network in the form of hybrid dilation convolution is

designed to enlarge the receptive field of the feature map and capture

multi-scale context information. Finally, the specific relationship in the di�erent

skeleton data is explored by fusing the information of multi-stream related

to human joints and bones. To evaluate the performance of the proposed

MSA-STGCN, a skeleton violence action dataset: Filtered NTU RGB+D was

constructed based on NTU RGB+D120. We conducted experiments on

constructed Filtered NTU RGB+D and Kinetics Skeleton 400 datasets to verify

the performance of the proposed recognition framework. The proposed

method achieves an accuracy of 95.3% on the Filtered NTU RGB+D with

the parameters 1.21M, and an accuracy of 36.2% (Top-1) and 58.5% (Top-5)

on the Kinetics Skeleton 400, respectively. The experimental results on these

two skeleton datasets show that the proposed recognition framework can

e�ectively recognize violence actions without adding parameters.

KEYWORDS

violence action recognition, skeleton sequence, multi-scale graph convolution

network, attention mechanism, spatiotemporal information
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1. Introduction

Recently, individual and group violence in public places

has seriously threatened the safety of people’s lives and

property. With the widespread deployment of video surveillance

equipment, video motion understanding and recognition based

on computer vision technology has become an effective public

security tool for identifying danger and preventing crime.

However, the detected targets in surveillance scenes are often

affected by background noise, light intensity changes, camera

views, and clothing, which requires not only improving the

accuracy of the model but also considering the computational

cost of the algorithm (Serrano et al., 2018; Ramzan et al.,

2019). The existing recognition methods mainly use different

modalities as inputs, and learn spatiotemporal features by

designing Convolutional Neural Networks (CNN) (Cheng et al.,

2021; Ji et al., 2021; Gadelkarim et al., 2022) and Recurrent

Neural Networks (RNN) (Liu et al., 2018; Song et al., 2018; Jiang

et al., 2020; Shu et al., 2021).

With the development of a graph convolution network

(GCN), the skeleton-based approaches have achieved success

in violent action recognition due to it can better reduce the

model complexity (Senst et al., 2017; Liu Z. et al., 2020; Li M.

et al., 2022). The skeleton data is essentially a topological graph,

where human joints are represented as vertices and bones are

represented as edges of the graph. Although skeleton sequences

has comparative advantages over RGB or depth modalities,

skeleton based recognition methods still face difficulties and

challenges in the following two aspects: (1) In the spatial space,

there is spatial information and a certain strong correlation

between the neighboring nodes in each frame, and it is necessary

to mine the action structure information. (2) In the temporal

space, the motion structure of the joint points is important for

characterizing the action, which needs to model the long-range

temporal information.

As existing work mainly considers a series of convolution

operations on a single feature map (Liu Z. et al., 2020; Li M.

et al., 2022), which to some extent fails to obtain larger receptive

field information. We use the design of a multi-scale approach

to obtain larger and more receptive field information, which

is beneficial for feature learning of the model and expression.

The attention mechanismmainly focuses the model on the main

joint points or skeletal edges where certain movements occur,

which helps to eliminate redundant dependency information

between joint point features, thus effectively capturing the

main association information between joint points. Meanwhile,

thanks to advanced pose estimation methods (Openpose,

Cao et al., 2021) the skeleton information may be extracted

from the RGB video easily and efficiently. To improve the

recognition accuracy and reduce the computational cost, this

paper proposes a multi-scale GCN with data preprocessing

and attention modules to extract spatiotemporal information

and combine multi-stream features for skeleton-based violent

action recognition. Firstly, the spatial GCN with the attention

module is constructed to extract the multi-scale spatial features

by learning the adjacency information between the multi-

order joints and build the channel-based dependencies with

a low number of parameters. And then, a temporal GCN in

the form of hybrid dilation convolution to obtain different

sizes of perceptual fields and extract the multiscale contextual

information by setting different dilation convolution rates.

Finally, the accuracy of recognition is further improved by fusing

the multi-stream features related to human joints and bones.

The main contributions of this paper are as follows:

(1) In the spatial space, we design a multi-scale spatial GCN

with a fused channel attention mechanism to extract spatial

information and the correlation features between channels.

(2) In the temporal space, we propose a temporal

convolution network in the form of hybrid dilation

convolution to extract the temporal features from skeleton

sequences, which can be used to capture multi-scale

contextual information and reduce the number of network

parameters.

(3) The model incorporates joint position, joint motion,

bone vector and bone motion information to further

improve the accuracy of violent action recognition.

2. Related works

In the field of computer vision, deep learning approaches

have become the dominant research direction in tasks such as

image classification and target detection since they have a better

ability to capture distinguishing features. In this paper, three

categories of deep learningmethods based on skeleton sequences

are briefly reviewed: CNN, RNN, and GCN.

2.1. CNN-based methods

Since CNNs can learn high-level semantic information

efficiently and effectively, they are usually widely used in image

processing tasks. However, it is difficult and challenging to

balance and make full use of spatiotemporal information for

human action recognition based on skeleton sequences (Kim

and Reiter, 2017). The mainstream approaches usually represent

skeleton sequences as pseudo images as the standard input

of CNNs (Cao et al., 2018; Hou et al., 2018; Xu et al.,

2018; Li C. et al., 2019). In these methods, the spatial

structure and temporal dynamic information of the skeleton

sequences are encoded as columns and rows of a tensor,

respectively. Caetano et al. (2019b) proposed a method to
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represent skeletal motion information based on convolution

neural networks, which first encoded the temporal dynamic

information by calculating the magnitude and direction values

of the joint motion, and then different time scales were used

to filter the noisy motion information for capturing long-

distance joint point dependence. In addition, Caetano et al.

(2019a) introduced reference nodes and tree structures to

represent the skeleton image through the framework of the

SkeleMotion method, the former incorporating different spatial

information among the articulations, but the latter preserving

important spatial relationships by traversing a skeleton tree

with a depth-first algorithm. By considering only adjacent joints

within the convolution kernel to learn co-occurring features,

some potentially associated joints are ignored. Therefore, Li

C. et al. (2018) used an end-to-end network framework

to learn co-occurrence features by a hierarchical approach

in which contextual information is gradually aggregated at

different layers. First, point-level information is encoded

independently for each node. Then, combining them into

semantic representations in the temporal and spatial domains,

respectively.

2.2. RNN-based methods

The RNN-based approaches essentially uses the output

of the previous frame as the input of the current frame,

which allows continuous sequential data to be processed

efficiently. To remedy the gradient disappearance and long-

range modeling problems of standard RNN, researchers have

proposed improved RNNs such as long short-term memory

neural network (LSTM) and gated neural unit (GRU), which

model the spatiotemporal dimension to capture the correlation

features between sequence data (Liu et al., 2018; Song et al.,

2018; Jiang et al., 2020; Shu et al., 2021). Wang andWang (2017)

proposed a two-stream recurrent neural network to model

spatiotemporal information by using 3D transforms-based

data enhancement techniques. To extract more distinguished

spatiotemporal features, Song et al. (2017) proposed two

spatiotemporal attention sub-modules based on LSTM networks

and designed a spatial attention sub-module based on the joint

selection gate, which can adaptively assign attention weights to

the skeleton nodes in each frame. Meanwhile, the temporal

attention sub-module based on the frame selection gate is

designed to assign different attention weights to different frames

for the extraction of keyframes. A longer and deeper RNN

network is proposed by Li S. et al. (2018) to solve the gradient

explosion and disappearance problem, which be constructed

to learn high-level semantic features with better robustness.

Furthermore, due to the strong capability of CNNs for spatial

feature extraction, Li C. et al. (2022) combined RNN and CNN

models to improves the spatiotemporal modeling capability in

complex scenes, as RNN is mainly used for temporal modeling

and CNN is mainly used for spatial modeling.

2.3. GCN-based methods

The human skeleton sequence is inherently a topological

graph, rather than a Euclidean spatial image based on CNNs or

a segment of sequence vectors based on RNNs methods. The

spatiotemporal dependencies between the associated vertices

cannot be fully expressed by simply transforming the sequence

into a two-dimensional pseudo-image or sequence vector. The

GCN is developed based on CNN (Gao et al., 2019; Si et al., 2019;

Wu et al., 2019; Degardin et al., 2021; Tu et al., 2022), which

can be used to efficiently capture spatial features information by

adjusting the convolution kernel size with different neighbors of

each vertex. Yan et al. (2018) proposed a spatiotemporal graph

convolutional neural network (ST-GCN) for human behavior

recognition, which consider human joints as vertices of a graph

and connections between joints and different frames of the same

joints as edges of the graph. By designing different convolutional

kernel strategies for modeling, the spatiotemporal features

between joints are captured and the action is predicted by a

Softmax classifier. As the skeleton graph used in ST-GCN, there

is an implicit problem of missing node-dependence. To obtain

richer inter-joint dependencies, Li M. et al. (2019) proposed

an action-structural graph convolutional neural network (AS-

GCN) with an actional-links module to extend the skeleton

graph to represent higher-order dependencies and capture the

potential dependencies of a specific action. Shi et al. (2019b)

proposed a two-stream adaptive graph convolution network

(2s-AGCN) for adaptive learning of spatiotemporal features

from skeleton sequences in end-to-end networks. Similarly, Li

B. et al. (2019) proposed a spatiotemporal graph routing (ST-

GR) approach to capture the intrinsic higher-order connectivity

relationships among the skeleton joints, which added additional

edges to the network skeleton graph through a global self-

attentivemechanism. Liu Z. et al. (2020) proposed a decomposed

multiscale aggregation method and a spatiotemporal graph

convolution operator (G3D) to implement a powerful feature

extractor. Zhang et al. (2020) proposed a simple effective

semantics-guided neural network (SGN) to obtain higher-order

semantic information of the nodes for skeleton-based action

recognition. To reduce the computational cost of the GCN,

Cheng et al. (2020) designed a Shift-GCN that employs a shift-

graph operation and a point-level convolution form instead of

using standard graph convolution. Along this line of research,

Song et al. (2022) proposed a multi-stream GCN model that

incorporates input branches including joint position, motion

velocity and skeletal features at an early stage, and utilizes

separable convolutional layers and a composite scaling strategy

to reduce significantly redundant trainable parameters while

increasing model capacity. Recently, Chen et al. (2021) proposed
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a channel-level topology refinement graph convolution (CTR-

GC) based on dynamic topology and multi-channel feature

modeling. Specifically, CTR-GC takes the shared topology

matrix as the entire prior for a channel and then refines it

by inferring channel-specific correlations to obtain a channel-

level topology. Li et al. (2021) proposed an Elastic Semantic

Network (Else-Net), which consists of a GCN backbone model

and multiple layers of elastic units for continuous human

behavior recognition. In particular, each flexible unit contains

several learning blocks to learn diverse knowledge from different

human behaviors, with a switch block to select the most

relevant block for the newly entered behavior. Chi et al. (2022)

proposed InfoGCN that includes an information bottleneck goal

to learn maximally informative action representations and an

attention-based graph convolution to infer contextually relevant

skeletal topology.

3. Proposed method

3.1. Overall framework

Inspired by the success of the two-stream framework and

graph convolution (Shi et al., 2019b, 2020), this paper proposes a

multi-scale attention spatiotemporal graph convolution network

(MSA-STGCN) to recognize violence human actions from

different perspectives, as shown in Figure 1. First, the original

joint data are preprocessed to obtain joint position, bone vector,

joint motion and bone motion information. Then, these four

categories of data are input into our designed MSA-STGCN,

respectively. Finally, the four-stream features are fused using a

weighted summation method to predict the action category.

3.2. The proposed MSA-STGCN

The proposed MSA-STGCN consists of nine spatiotemporal

feature extraction modules, as shown in Figure 2. Given a

skeleton sequence X ∈ R
C×T×V , where C, T, and V are the

number of channels, sequences and joint points of the input

data, respectively. Among them, the batch normalization layer

(BN) normalizes the input data X, the output feature size of

modules B1 to B3, B4 to B6, and B7 to B9 are B × C × T ×

V , B × C × T/2 × V , and B × C × T/4 × V , respectively,

where B is the number of batch size, and the number of

output channels of modules are 96, 96, 96, 192, 192, 192,

384, 384, and 384, respectively. Modules B1, B4, and B7 adopt

the multi-scale attention enhanced spatial graph convolution

network (MSA-SGCN) to extract the spatial features, while

modules B2, B3, B5, B6, B8, and B9 use multi-scale temporal

graph convolution networks (MS-TGCN) to obtain the temporal

feature from skeleton sequences. Then, global average pooling

(GAP) layer is applied to aggregate the spatiotemporal features

and unify the feature graph size of the samples. Finally, the

Softmax layer is used to obtain the classification probability and

prediction category.

3.2.1. Multi-scale attention enhanced spatial
graph convolution network

The effectiveness of the attention mechanism has been

demonstrated in tasks such as target detection and image

classification, which has been gradually introduced into the

field of action recognition. In this paper, we design a

channel attention module based on the Squeeze-and-Excitation

Networks (SE-Net) (Hu et al., 2020), named multi-scale

attention Spatial Graph Convolution Network (MSA-SGCN),

to automatically learn the correlation and significance between

feature map channels. The SE-Net improves the feature

description capability by modeling the dependencies of each

channel, which enhances useful features and suppress non-

useful features by adaptively adjusting the feature response

values of each channel. Motivated by these advantages, we insert

the Squeeze-and-Excitation module to a spatial graph of the

convolution neural network to obtain more contextual feature

through automatically learning the importance of different

channel features. The earliest application of GCNs to human

action recognition tasks is ST-GCN, where spatiotemporal

graph convolution and spatial division strategies are used

to model skeleton sequences to extract feature information

in the spatial space (Yan et al., 2018). In contrast, a

multi-scale spatial and motion graph convolution modules

are designed in STI-GCN (Huang et al., 2020) to extract

and merge features for topological graphs from multiple

perspectives.

Based on the success of these models, we design a multi-

scale attention spatial graph convolution network to learn spatial

features from skeleton sequences, as shown in Figure 3. The

feature extraction for each input layer is performed by

Xl+1
t

= ReLU(
∑

k

D
−

1
2

k
AkD

−
1
2

k
Xl
tW

l
k) (1)

where k controls the scale size of the whole network and also

represents the shortest distance between the nodes Vi and

Vj. Ak represents the relationship matrix between the current

node and the k-hop neighbors, which includes the self-loop

connections. It allows the model to learn information about the

neighbor’s features between each node. Dk denotes the square

root of the inverse of the degree matrix of the neighborhood

matrix Ak, which is used for symmetric normalization of the

neighborhood matrix Ak. In the calculation, the features of the

node itself have been calculated as well as the weighted sum

of the features of all neighbors. Xt represents the input of the

frame and denotes the number of layers of the network. Wk

is the current node, Wk is a learnable weight matrix between
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FIGURE 1

Multi-stream fusion violence action recognition framework.

FIGURE 2

Multi-scale attention spatiotemporal graph convolution network.

FIGURE 3

Multi-scale attention enhanced spatial graph convolution

network.

the k-hop neighbors of the current node, which implements

the edge importance weighting. Relu() represents the activation

function.

In the proposed MSA-SGCN, the scale of each model is

adjusted by k to obtain different scale feature information

in the spatial space, and the multi-order neighborhood

information is aggregated to obtain all the neighborhood

feature information of each joint. In addition, attention

operations are performed on each scale output feature

in the channel dimension to automatically learn the

correlation contextual information between feature map

channels.

3.2.2. Multi-scale temporal graph convolution
network

Existing methods usually use standard convolution with

fixed kernel size throughout the network module to model

the temporal information (Yan et al., 2018; Li M. et al.,

2019; Shi et al., 2019a,b). In this paper, we proposed a

multiscale aggregation learning method by introducing hybrid

dilation convolution to improve the traditional temporal

convolution module (Ople et al., 2020). Because of the

exponential expansion of the perceptual field with guaranteed
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coverage, the proposed MS-TGCN can effectively aggregate

multi-scale contextual information without loss of resolution

by using dilation convolution. However, the result of a

certain layer of null convolution is not dependent on the

information of the previous layer due to the grid effect

problem of the dilation convolution, and the information

obtained from the long-distance convolution lacks relevance.

Therefore, this model avoids the grid effect problem by

introducing a hybrid form of dilation convolution (Wang

et al., 2018). At the same time, the model takes the feature

map X as input without introducing additional parameters

and generates a feature map of the same size with the

same dimension, which is passed to the next network

module.

As shown in Figure 4, the number of model parameters

is reduced by adopting a multi-branch structure and passing

each branch through a convolution kernel of size 1 × 1. The

size of the convolution kernels in each branch is modified to

5× 1, which gives a larger perceptual field than the convolution

kernel size of 3 × 1. In addition, we also set the convolution

rate of different sizes of holes, 1, 2, and 3 to obtain different

scales of the same feature map for avoiding the problem of

gradient disappearance. Finally, the aggregation layer fuses the

multi-scale information and passes it to the next module of the

network. The proposedmodel can learn richer temporal features

and reduce the number of parameters after replacing the regular

temporal convolution method.

3.3. Representation of skeleton
sequences

The position of the joint points of the human skeleton is

defined as:

Vi,t =
(

xi,t , yi,t , zi,t
)

,∀i ∈ N, t ∈ T (2)

where N is the number of joints in the human skeleton, T is the

total number of sequences, and i represents the joints at time

t. In 3D skeleton sequences, the joint positions consist of three

position coordinates (x, y, z), which are usually captured directly

by a depth camera or extracted from RGB video data.

Bi,j,t = Vj,t − Vi,t = (xj,t − xi,t , yj,t − yi,t , zj,t − zi,t) (3)

In particular, the joint near the center of gravity of the

human skeleton is defined as the source node with coordinates

denoted as Vi,t , while the joint far from the center of gravity is

defined as the target node with coordinates denoted asVj,t . Since

each joint has no self-loop, each bone can be assigned a unique

joint point, forming a directed acyclic graph. In addition, since

the root node does not have any bones assigned to it, to simplify

the network design, the vector of bones assigned to the root node

is set to 0.

FIGURE 4

Multi-scale temporal graph convolution network.

The definition of human joint motion information is defined

as:

J−Mi,t+1 = Vi,t+1−Vi,t = (xi,t+1−xi,t , yi,t+1−yi,t , zi,t+1−zi,t)

(4)

where Vi,t represents the position coordinates of the ith joint

at time t :(xi,t , yi,t , zi,t), and Vi,t+1 represents the position

coordinates of the ith joint at time t + 1 :(xi,t+1, yi,t+1, zi,t+1),

and the position of the same joint in adjacent frames are

difference to obtain the sequence of joint motion information.

The definition of human bonemotion information is defined

as:

B−Mi,j,t,t+1 = Bi,j,t+1 − Bi,j,t (5)

where Bi,j,t represents the skeletal vector information at time t,

and Bi,j,t+1 represents the skeletal vector information at time

t + 1. We capture the skeletal motion information by the

difference of adjacent skeletal vectors. The fusion strategy is used

to gather the features of nodal position information, skeletal

vector information, nodal motion information, and skeleton

motion information streams.

3.4. Implementation details

The configuration information of the experimental platform

is Intel Xeon Silver 4210R CPU with 2.40GHz, 80G memory,

1TB SSD storage, and RTX3090. The number of samples

per training batch (Batch size) is set to 32, and the cross-

entropy function is used as the loss function for gradient back

propagation. The number of iterations (Epoch) is set to 80, and

the weight decay parameter is set to 0.0005.The initial learning

rate is set to 0.05, and the learning rate is adjusted at a given
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FIGURE 5

Visual representation of 10 types of human violence actions.

interval by dividing the learning rate by 10 when the 30th Epoch

and 40th Epoch are reached, respectively.

4. Experiments

4.1. Datasets

In this paper, we conducted experiments on two datasets:

Filtered NTU RGB+D and Kinetics Skeleton 400. The Filtered

NTU RGB+D dataset is based on the NTU RGB+D 120

dataset (Liu J. et al., 2020) by discarding other daily movements

and filtering out 10 types of movements to form a skeleton

dataset. The Kinetics Skeleton 400 dataset is based on

the Kinetics-400 dataset (Carreira and Zisserman, 2017) by

preprocessing each frame of the original RGB video with a pose

estimation algorithm to extract the skeleton sequence data to

form a 400 classes normal motion dataset.

4.1.1. Filtered NTU RGB+D

The NTU RGB+D 120 is the largest and most widely

used indoor motion dataset, containing 114,400 motion clips

in 120 categories. Each clip was performed by 40 volunteers

ranging in age from 10 to 35 years old, and each action was

filmed from different angles using three Kinect V2 cameras. The

previous violence dataset is mainly RGB, depth information,

and optical flow modality, while NTU RGB+D 120 is 3D

skeleton data, which contains 3-dimensional coordinates of

25 body joints in each frame. Meanwhile, to compare the

traditional graphical neural network in a violence recognition

task, this paper takes 120 classes of NTU RGB+D 120 dataset

for filtering, and finally selected 10 classes of skeleton data

about human interaction actions, and the final action types are

visualized as shown in Figure 5, including walking, pushing,

punching, pointing, slapping, shaking hands, touching, hugging,

giving and kicking, among which pushing, punching, kicking,

pointing and slapping are the five kinds of video the common

violent actions in surveillance. In this paper, we mainly study

the recognition of violent actions in surveillance video, and

the application scenario is usually the recognition of actions

from a certain viewpoint for different objects. Therefore, we

adopt a Cross-subject (X-Sub) protocol from the recommended

benchmark of the original paper and reports the Top-1 accuracy

in the experiment.

4.1.2. Kinetics Skeleton 400

Kinetics-400 is a large human action dataset with 300,000

video clips from the YouTube video site. It covers 400 human

action categories from daily life, sports scenes, and complex

human interactions. However, this dataset only provides raw

RGB video clips without skeleton data. In this work, since the

concentration is on skeleton-based action recognition, so we

use the OpenPose pose estimation method for preprocessing

to extract the coordinates of human joint positions for each

frame of each clip. For a multi-person action scene, the two

persons with the highest average nodal confidence are selected.

In this way, an RGB segment with T-frames is converted into

a skeleton sequences. The final dataset consists of a training set

of 240,000 segments and a validation set of 20,000 segments. In

this paper, we compare the models on the training set and report

the accuracy of the validation set. Referring to the evaluation

methods proposed in Yan et al. (2018) and Liu Z. et al. (2020),
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FIGURE 6

The accuracy and parameters of the proposed method compared to other methods on the Filter NTU RGB+D dataset.

we trains the model on the training set and reports the accuracy

of Top-1 and Top-5 on the validation set.

4.2. E�ectiveness of the proposed
method

On the Filtered NTU RGB+D dataset, we have done

comparison experiments on two CNN-based methods, namely

Two-Stream CNN and HCN model, and on four GCN based

methods, namely ST-GCN, AS-GCN, 2S-AGCN and Dynamic

GCN network, and the results are shown in Figure 6 and

Table 1. The major evaluation metrics taken include accuracy

and parameters, and the proposed model achieves relatively

great results for both in comparison, with an accuracy of 95.3%

and parameters of only 1.21M, which reflect the effectiveness

and efficiency of the proposed MSA-STGCN. Due to the

limited modeling capability of the compared baseline model,

it lacks consideration of the spatiotemporal dependencies

between skeleton sequences, whereas the proposed model can

obtain the long and short temporal dependencies between

each frame’s articulation points by combining multi-scale and

channel attention mechanisms in spatio-temporal modeling. As

a result, the proposed model shows a significant improvement

in recognition accuracy compared with existing GCNs, and it

improves by 2.1% compared with the best 2s-AGCN. Due to the

multi-branching structure of the model in both temporal and

spatial dimensions, and the eventual aggregation of multi-scale

information, the number of parameters of the proposed model

is substantially reduced. This effectively validates the accuracy

and computational cost advantages of the model proposed for

violent action recognition tasks.

TABLE 1 Comparison of di�erent algorithms on Filtered NTU RGB+D

dataset.

Methods Accuracy (%) Params (M)

Two-Stream CNN 93.4 1.53

HCN 92.7 1.03

ST-GCN 89.3 3.10

AS-GCN 89.1 9.50

J-AGCN 92.6 6.94

B-AGCN 91.1 6.94

2s-AGCN 93.2 6.94

Dynamic GCN 94.0 3.72

Ours 95.3 1.21

The bold values indicate the results of our proposed method (MSA-STGCN).

The main indicators of evaluation include accuracy and

the number of parameters. The compared baseline models

have limited modeling capability and lack the consideration of

spatiotemporal dependencies among skeleton sequences, while

the proposed model can obtain the long-term dependencies of

an active state by combining multi-scale and channel attention

mechanisms in the spatiotemporal modeling. Therefore, the

proposed model has a significant improvement in recognition

accuracy compared with the baseline model, which has

improved by 2.1% compared with the best 2s-AGCN (Shi et al.,

2019b). The proposed multi-information flow fusion method

could fully exploit the specific relationships of the original data

to further improves the recognition performance. The number

of parameters of the proposed model can be reduced to 1.21M

due to the multi-branch structure of the model in time and

space dimensions, which effectively validates the accuracy and

computational cost advantages.
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Meanwhile, the 10 types of actions on the Filtered NTU

RGB+D dataset: punching, kicking, pushing, slapping, pointing,

hugging, giving, touching, handshaking, and walking were

recognized, and the results are shown in Table 2. The recognition

accuracy of these 10 types of actions were 91.1, 96.5, 94.7, 91.0,

93.6, 96.8, 91.5, 90.2, 96.0, and 98.6%, respectively. Normalized

confusion matrix of 10 types of human action as shown in

Figure 7, which illustrates that the method can be applied to

violence recognition tasks in practical applications.

To further validate the generalization capability of

the proposed recognition framework, we further conduct

experiment on the Kinetics Skeleton 400 dataset, and Table 3

shown the results of the comparison experiments with ST-GCN,

AS-GCN, ST-GR and 2s-AGCN. It can be seen that the proposed

model achieves 36.2 and 58.5% accuracy in Top-1 and Top-5,

TABLE 2 Comparison of recognition results for 10 types of human

action on the Filtered NTU RGB+D dataset.

Classes Samples True Accuracy (%)

Punching 271 247 91.1

Kicking 260 251 96.5

Pushing 281 266 94.7

Slapping 278 253 91.0

Pointing 266 249 93.6

Hugging 278 269 96.8

Giving 281 257 91.5

Touching 287 259 90.2

Handshaking 273 262 96.0

Walking 277 273 98.6

respectively, which are still significant improvements compared

to some of the baseline models. The results demonstrate that

the proposed model can capture more features by combining

multi-scale attention mechanisms, which can effectively identify

more details in multi-frame skeleton sequences.

4.3. Ablation study and discussion

4.3.1. Attention mechanism

This part mainly verifies the effectiveness of the attention

mechanism proposed in the recognition framework by inserting

the attention mechanism in the spatial dimensional to graph

convolution network (ASGCN), and the experimental results

are shown in Table 4. Firstly, the input skeleton sequences were

tested for joints and bones in the spatial graph convolution

layer (SGCN) without the SE Block, which was represented

by J-ASGCN w/o SE and B-ASGCN w/o SE, respectively.

Then, the results of the two data streams are fused and

represented by ASGCN w/o SE. Finally, the SE Block attention

TABLE 3 Comparison of di�erent algorithms on Kinetics Skeleton 400

dataset.

Methods Top-1(%) Top-5(%)

ST-GCN 30.7 52.8

AS-GCN 34.8 56.5

ST-GR 33.6 56.1

2s-AGCN 36.1 58.7

Ours 36.2 58.5

The bold values indicate the best accuracy.

FIGURE 7

Normalized confusion matrix of 10 types of human action. (A) Confusion matrix of 2s-AGCN model. (B) Confusion matrix of our model.
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mechanism is introduced in SGCN, and the model with the

nodal position as input is represented by J-ASGCN, and the

model with the skeletal vector as input is represented by B-

ASGCN.

The variation accuracy of networks and the loss function

values during the whole training process is shown in Figure 8.

The recognition accuracy of J-ASGCN obtain 94.0% in the

joint position information stream (increase of 0.4%), the B-

ASGCN achieve 93.2% (increase of 0.1%) in the bone vector

information stream, and the ASGCN achieved 94.9% (increase

of 0.6%). Throughout the training process of the model, the

accuracy of the test was improved rapidly in the early stage

of the experiment, reaching about 85%, which is due to the

high optimization efficiency of the proposed multi-scale spatial

graph convolution. As the number of iterations increases, the

final test accuracy and loss function converge very well, and

the test accuracy and loss function curves are smoother in

TABLE 4 Comparison of spatial graph convolution layer with and

without SE block on the Filtered NTU RGB+D dataset.

Methods Accuracy (%)

J-ASGCN w/o SE 93.6

B-ASGCN w/o SE 93.1

ASGCN w/o SE 94.3

J-ASGCN 94.0

B-ASGCN 93.2

ASGCN 94.9

The bold values indicate the accuracy of the model incorporating the attention

mechanism.

the later stage. Therefore, the attention mechanism SE Block

does not play a significant role in this layer since the spatial

feature extraction performance of the spatial map convolution

layer itself is very robust. However, adding SE Block to our

model can optimize the learning content and obtain more

useful feature information, thus verifying the effectiveness of

the method.

4.3.2. Hybrid dilation convolution

Without pooling loss, the dilation convolution can increase

the perceptual field of the feature map so that the output of each

convolution contains a larger range of feature information. In

this paper, we consider obtaining different sizes of perceptual

fields in the temporal dimension to achieve a multi-scale fusion

training network. To verify this idea, firstly, we compare the

convolution rates of different sizes of voids, which are set to

1, 2, and 3, and the corresponding accuracy rates are 93.1,

93.2, and 93.5 respectively, as shown in Table 5. It is obvious

TABLE 5 Accuracy comparison of di�erent dilated convolution rates

used in temporal graph convolution layer on the Filtered NTU RGB+D

dataset.

Methods Accuracy (%)

MS-TCN(dilate rate = 1) 93.1

MS-TCN(dilate rate = 2) 93.2

MS-TCN(dilate rate = 3) 93.5

MS-TCN(HDC) 94.0

The bold values indicate the accuracy of the model using hybrid ablation convolution.

FIGURE 8

(A) Accuracy comparison of spatial graph convolution layer with or without SE block. (B) Loss function comparison of spatial graph convolution

layer with or without SE block.
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FIGURE 9

(A) Comparison of recognition accuracy with di�erent dilated convolution rates. (B) Comparison of loss function with di�erent dilated

convolution rates.

that the accuracy of the model recognition is in a stable state

with the increase of the hole convolution rate, which is not

a very good training effect. Considering that the increase in

the convolution rate of the dilation will bring about a grid

effect, which will lead to the loss of continuity of a certain part

of the feature information, and even, probably, the important

feature information as well. Therefore, this paper solves the

problem of discontinuity in the convolution kernel by designing

a hybrid dilation convolution (HDC) form of temporal map

convolution network, represented by MS-TCN(HDC). Finally,

the accuracy of the MS-TCN(HDC) model reached 94.0% by

fusing the hybrid dilation convolution form with different

dilation rates.

The variation in the test accuracy of each network and

the variation loss throughout the training process is shown

in Figure 9. In the early stage of the experiment, the speed

of convergence of the loss function increased slightly with

the increase of the hole convolution rate, and the speed

of test accuracy also increased. By adjusting the dilation

convolution rate, the scale of the model is increased and

the parameters of the network are changed, thus slightly

improving the optimization efficiency of the network in the

early stage of training. As the number of iterations increases,

the final validation accuracy increases with the increase of

the dilation convolution rate, and the training loss function

achieves good convergence and a smoother curve in the later

stages of training. The experimental results verify that the

graph convolution network model constructed in the form

of hybrid dilation convolution can learn more time-domain

feature information at multiple scales compared with single

dilation convolution.

TABLE 6 Accuracy comparison of di�erent data stream recognition

on the Filtered NTU RGB+D dataset.

Models Accuracy (%)

J-MSAGCN 94.0

B-MSAGCN 93.2

J-M-MSAGCN 92.1

B-M-MSAGCN 93.4

MS-AGCN(fusion) 95.3

The bold values indicate the accuracy using multi-stream fusion.

4.3.3. Multi-stream fusion

Finally, the proposed multi-stream model incorporating

joint position information, bone vector information, joint

motion information, and bone motion information was tested

and the experimental results are shown in Table 6. As for

the input models of node position information, bone vector

information, node motion information, and bone motion

information, the corresponding accuracy rates were 94.0, 93.2,

92.1, and 93.4% for J-MSAGCN, B-MSAGCN, J-M-MSAGCN,

and B-M-MSAGCN, respectively. The accuracy of MS-AGCN

with a multi-stream fusion model could reach 95.3%.

During the whole training process, the variation in the

accuracy of each network and the variation loss are shown in

Figure 10. As the number of experimental iterations increased,

the accuracy of the original joint position information stream

increased slightly faster than the other three data streams in

the early stage of the experiment, and the loss function also

converged faster. This indicates that the original joint position
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FIGURE 10

(A) Comparison of recognition accuracy of di�erent data streams. (B) Comparison of loss functions of di�erent data streams.

plays an important role in characterizing the movement state,

while the accuracy of the other streams is increased by 1.3%,

which suggests that by calculating the bone vector information,

joint point motion information, and bone motion information,

a higher weight is given to the more variable streams, thus

enhancing the overall model’s characterization of themovement.

The experimental results show that the accuracy of the multi-

stream fusion method is significantly higher than that of the

single-stream method. In particular, the accuracy of the multi-

stream fusion method has improved relative to the performance

of the joint point information stream method. This shows that

the skeleton sequence data can be extracted from different angles

and the final fusion output can be used to fully characterize the

action features.

5. Conclusion

In this paper, we design a novel spatiotemporal graph

convolution network with attention mechanism to combine

multi-stream skeleton features for human violence recognition.

The proposed MSA-STGCN utilizes MSA-SGCN and MS-

TGCN to learn spatial and temporal information from four

types of skeleton data, respectively, and then a average

features fusion mechnism is used to implement violence action

classification. Compared with other traditional GCNs, the

proposed MSA-STGCN achieves 95.3% accuracy on the Filtered

NTU RGB+D dataset with only 1.21M model parameters,

and the accuracy of Top-1 and Top-5 reached 36.2 and

58.5% on the Kinetics Skeleton 400 dataset, respectively.

The experimental results demonstrate that the effectiveness

of MSA-SGCN and MS-TGCN in the proposed MSA-

STGCN recognition framework. Compared with the other

state-of-the-arts, our framework consistently improves the

recognition performance on two large skeleton datasets. In

the future, more effective fusion and combining strategies

that can help to obtain more distinctive complementary

features from multimodal data such as RGB and depth

sequences. Another future work is to expand more challenging

datasets in order to enhance the generalization capability

of the model and design RNN skeleton-based framework

to learn the spatiotemporal features to improve recognition

performance.
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