
TYPE Original Research

PUBLISHED 20 December 2022

DOI 10.3389/fnbot.2022.1086578

OPEN ACCESS

EDITED BY

Yan WU,

Institute for Infocomm Research

(A∗STAR), Singapore

REVIEWED BY

Xinxing Chen,

Southern University of Science and

Technology, China

Ningbo Yu,

Nankai University, China

*CORRESPONDENCE

Wei Dong

dongwei@hit.edu.cn

RECEIVED 01 November 2022

ACCEPTED 23 November 2022

PUBLISHED 20 December 2022

CITATION

Wang J, Wu D, Gao Y and Dong W

(2022) Interaction learning control

with movement primitives for lower

limb exoskeleton.

Front. Neurorobot. 16:1086578.

doi: 10.3389/fnbot.2022.1086578

COPYRIGHT

© 2022 Wang, Wu, Gao and Dong.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Interaction learning control with
movement primitives for lower
limb exoskeleton

Jiaqi Wang, Dongmei Wu, Yongzhuo Gao and Wei Dong*

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

Research on robotic exoskeletons both in the military and medical fields has

rapidly expanded over the previous decade. As a human–robot interaction

system, it is a challenge to develop an assistive strategy that makes the

exoskeleton supply e�cient and natural assistance following the user’s

intention. This paper proposed a novel interaction learning control strategy for

the lower extremity exoskeleton. A powerful representative tool probabilistic

movement primitives (ProMPs) is adopted to model the motion and generate

the desired trajectory in real-time. To adjust the trajectory by the user’s real-

time intention, a compensation term based on human–robot interaction force

is designed and merged into the ProMPs model. Then, compliant impedance

control is adopted as a low-level control where the desired trajectory is put

into. Moreover, the model will be dynamically adapted online by penalizing

both the interaction force and trajectory mismatch, with all the parameters

that can be further learned by learning algorithm PIBB. The experimental results

verified the e�ectiveness of the proposed control framework.

KEYWORDS

human–robot interaction, hierarchical control, lower limb exoskeleton,

reinforcement learning, movement primitives

Introduction

Technological improvements have led to the prosperous development of lower

extremity exoskeletons for the physical assistance and recovery of human locomotion

since the 1960s (Mosher, 1967). Major gains in robotic hardware, electronics, actuators,

sensors and energy supplies have propelled the use and acceptance of viable prototypes

further. A significant issue that still remains is how to effectively control the exoskeletons

to maximize the benefits of these robotic devices. Unlike with other technologies,

there is not a general convergence of solutions for exoskeleton control as a very wide

variety of controls are used (Young and Ferris, 2016). The intended use and the target

individuals vary, as well as the development of a single control strategy for each

particular design. Therefore, the control strategies should be considered from the actual

application requirements.
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For the exoskeletons that are used for walking assistance in

daily living for able-bodied and elderly individuals, which is the

focus of this paper, the aim of control is not only to provide

appropriate assistance but also to make the robots actively

cooperate with the human user. In this case, it is important for

the exoskeleton to possess the cognition of human movement

and encode it intelligently in order to achieve flexible and

coordinated human-robot cooperation.

Human movement modeling has been extensively

investigated by researchers in the field of bipedal walking.

The most classic strategy that is based on dynamic model and

stability criteria, like the link model (Hirai et al., 1998; Fu and

Chen, 2008), inverted pendulum model (Yokoi et al., 2001;

Komura et al., 2005; Kazemi and Ozgoli, 2019), zero-moment

point (Kagami et al., 2002; Vukobratović and Borovac, 2004;

Huang and Nakamura, 2005; Al-Shuka et al., 2016; He et al.,

2017) have been widely used. This kind of method has over-

reliance on the model, mostly expensive computation, and

poor adaptability to the environment (Kazemi and Ozgoli,

2019). Besides, the exoskeletons are wearable and literally work

in parallel with humans which leads to higher requirements

for flexibility. In order to encode and reproduce human

motion rather than just copy, the approaches learning from

the demonstration have gained considerable interest in robot

systems (Deng et al., 2018; Yang et al., 2018).

In our case, lower limb exoskeletons can possess a better

understanding of human behavior and reproduce it by learning

human movements. Movement primitives (MPs) is a well-

established approach to modular robot movement (Schaal et al.,

2003; Schaal, 2006; Kulić et al., 2012). Dynamic movement

primitives (DMPs) presented by Ijspeert et al. (2002, 2013) has

been widely used in exoskeleton systems (Huang et al., 2018;

Yang et al., 2018). In Huang et al. (2018), motion trajectories

are modeled with DMPs and learned with locally weighted

regression method. Except for a powerful representative model,

it is also necessary that themodel should be adjustable online, for

the benefit of the different users (Tran et al., 2014), and to reduce

the effect of uncertainties and disturbances. The exoskeleton is

required to continuously improve the trajectory generation by

optimizing the objective function. Reinforcement learning (RL)

(Schmidhuber, 2015) is one of the most general frameworks

of learning control to provide truly self-autonomous learning

systems. PI2 (Theodorou et al., 2010) is a reinforcement learning

policy improvement algorithm that combines optimal control

and dynamic programming. Lots of works have illustrated the

functionality of PI2 in a complex robot learning scenario (Tran

et al., 2014; Huang et al., 2018), it offers currently one of themost

efficient, numerically robust, and easy to implement algorithms

for RL. Yuan et al. (2019) proposed a trajectory-learning scheme

based on PI2 combined with DMP for motion generation.

The combination of DMPs and PI2 performs well, but there’s

still room for improvement. DMPs has some limitations, like

the generalization to new situations (Paraschos et al., 2018).

To this effect, a novel ProMPs is proposed by Paraschos et al.

(2013, 2018), which incorporates a variety of advantages from

other well-known previous MP representations (d’Avella and

Bizzi, 2005; Schaal et al., 2005; Kober et al., 2010). As for

PI2, the exploration and parameter update methods are slightly

complicated for an online system. Stulp and Sigaud (2012)

proposed a new algorithm PIBB, which is a simplified version

of PI2 but has better performance. PIBB belongs to black-box

optimization in essence, and it has been proven that PIBB

outperform PI2 in terms of convergence speed and final cost.

Therefore, in our previous work, ProMPs combined with PIBB

are innovatively adopted to model the motion in lower limb

exoskeletons, and the effectiveness has been verified under zero-

mode control that themotion generation process is more quickly

and accurately.

In this paper, we present an interaction learning control

strategy for the lower limb exoskeleton, which is based on

previous work motion generation research. The motion learning

part is still based on the powerful representative tool ProMPs

to generate desired trajectories. For considering the current

intention of the user, the human–robot interaction (HRI)

shouldn’t be ignored in assistive mode control, which is an

important indicator of the naturalness and comfort of the

exoskeleton HRI system. Therefore, we integrate the real-

time HRI force into motion online generation. In specific, a

compensation term modeled by HRI force, which can reflect

the user’s current intention, is designed and incorporated in

ProMPs. Also, the learning algorithm PIBB is adopted to tune

the parameters of the whole new model for different gait

patterns. In this way, the exoskeleton will not only have a better

understanding and reproduction of human motion, but also can

quickly respond to the new situation. And based on that, to

complete the entire hierarchical control for assistive mode, then

the very efficient and often adopted method, impedance control,

is used in low-level control, endowing compliance between the

exoskeleton actuators and the user (Hogan, 1984). Experimental

results reveal that our method can model the present motion

more precisely and quicken the convergence of HRI force. The

performance of the method meets the practical requirements in

the application of the lower limb assistant exoskeleton.

The structure of this paper is organized as follows. Section

Methods introduces the process and the details of the proposed

interactive motion learning strategy. In Section Experiments

and analyses, the experiments are carried out, and the results

are presented and analyzed. Finally, the paper is concluded in

Section Conclusion and future work.

Methods

This section presents the methodology details of the

proposed interaction learning control strategy. Figure 1

illustrates the whole framework, which can be seen as a
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FIGURE 1

The interaction learning control framework.

hierarchical control. In high-level motion learning, the

trajectory generation ProMPs model is firstly built in offline

initial modeling. Besides, the model is incorporated with a

compensation term, which is a transformation of HRI force that

can reflect the user’s current intention. In the actual application,

the real-time position will be put into PIBB and optimize the

model further. Afterward, the low-level control works on a new

generated trajectory. The following Motion generation model,

Motion model compensation, and Motion model adaptive

learning section introduces motion learning sequential, and

the Section Low-level control is the low-level control part. The

meaning of the letters in the figure will be introduced in the

corresponding part.

Motion generation model

The fundamental of the motion learning part is ProMPs

model. The concept of ProMPs introduced in d’Avella and Bizzi

(2005) is a probability distribution over robot trajectories. To

establish ProMPs motion model, the first is the representation of

the probabilistic trajectory. A joint of the limb of the exoskeleton

corresponds to a degree of freedom. To facilitate the description

of the robot’s motion trajectory distribution, qt andq̇tare used

to respectively represent the joint angular position and joint

angular velocity of each degree of freedom at time t. Amovement

trajectory of time length T is modeled by yt =
{

qt
}T
t=1. For

encoding the time-varying variance of movements, ω is used to

compactly represent a trajectory as an underlying weight vector.

The trajectory is given as a linear basis function model,

yt =

[

qt

q̇t

]

= 8T
t ω + εy (1)

where 8t =
[

φt , φ̇t
]

is the N × 2 dimensional time-

dependent basis matrix,N defines the number of basis functions

of each degree of freedom. εy ∼ N(0,
∑

y) Gaussian noise with

0 mean.

Temporal modulation is needed for modeling the human

walking motion because the speed of walking is not fixed.

A phase variable z is introduced to separate the movement

from the time signal. The phase can be any function that

monotonically increases with time zt , and the speed of the

movement can be modulated by modifying the rate of the phase

variable. In this paper, zt is adopted as equation (5),

zt = αt. (2)

At the beginning of the gait movement, phase z0 is defined

as 0 and zE = 1 at the end. The basis function ϕt now directly

depends on the phase instead of time,

φt = φ (zt) . (3)

The choice of the basis functions depends on the type of

movement. For human walking motion, the movement of the

joint is more like a rhythmic movement rather than a stroke-

based. Hence, Von-Mises basis functions bi (Spiegelhalter et al.,

2002) is used to model periodicity in the phase variable z,

bi (zt) = exp

(

cos (2π (zt − ci))

h

)

, (4)

where h denotes the width of the basis and ci is the center of

the ith basis function. Then it is normalized by

φi (zt) =
bi(zt)

∑N
j=1 bj(zt)

. (5)

Then based on Paraschos et al. (2013) the probability of

observing a trajectory yt is introduced as,

p
(

yt |ω
)

=
∏T

t=1
N

(

yt

∣

∣

∣
8tω,

∑

y

)

. (6)

The probability distribution equation (6) depends on the

parameter vector ω. Therefore, vector ω is the essential

parameter for describing the trajectory, and what we mainly

working on in this paper. In specific, according to Paraschos

et al. (2013), a Gaussian distribution is assumed p (ω ; θ) =

N
(

ω
∣

∣µω ,
∑

ω

)

with parameters θ to capture the variance of

the trajectories by learning it. θ = {µω ,
∑

ω} is a set of

parameters that specifies the mean and the variance of ω, which

capture the similarities and differences of different realizations

of the MPs.

To generate more reasonable motion, p (ω ; θ) need to

be learned from multiple demonstrations. Assuming there are

M demonstration trajectories, M sets of weight vectors can

be obtained by linear fitting of the basis function. In this

case, the weights for each trajectory are estimated using linear

ridge regression,

ωm =

(

8
T
8 + λI

)−1
8

T
Ym. (7)
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where Ym represents the position of all steps for the mth

demonstration trajectory, and λ = 0.1. Then the parameters

θ = {µω ,
∑

ω} are obtained by the maximum likelihood

estimation algorithm. The mean µω and covariance
∑

ω are

computed from samples ωm,

{

µω = 1
M

∑M
m=1 ωm

∑

ω = 1
M−1

∑M
m=1 (ωm − µω) (ωm − µω)T

(8)

Now the trajectory distribution p
(

yt ; θ
)

can be defined by

the hierarchical Bayesian model whose parameters are given by

the parameters θ and the observation noise variance
∑

y,

p
(

yt ; θ
)

=

∫

p (τ |ω) p (ω ; θ)dω

=

∫

N
(

yt |8tω,6y
)

N (ω|µω , 6ω)dω

= N

(

yt|8tµω , 8t

∑

ω
8T
t + 6y

)

. (9)

Motion model compensation

MPs is a well-established approach for representing

modular robot movement generators, due to their compact

representation of the inherently continuous and high-

dimensional robot movements. However, the wearable lower

limb exoskeleton is a typical human-in-loop human-robot

coupled system, so we should adapt ProMPs model to our

local conditions by means of combining HRI with it. This

combination can cooperate the human and exoskeleton

together. Besides, HRI force is the most intuitive and practical

way to estimate the user’s intention, so the user’s intentions

are considered when generating trajectories. In this paper,

the interaction between the user and the exoskeleton has

been modeled, and then innovatively incorporated into the

ProMPs as a compensation term. Then the trajectory generation

for the current step can be affected by the HRI from the

last step. Therefore, the linear basis function model of the

trajectory becomes,

yI
t
=

[

qt

q̇t

]

= 8T
t ω + 9T

t ωI + εy (10)

Where 9t = [ϕt , ϕ̇t] is an N × 2 dimensional time-

dependent basis function matrix. Gaussian function is adopted

in here.

The weight vector ωI is associated with the interaction force

τI on each joint, then the trajectory generation will be affected

by the real-time HRI force. In order to compensate for the track

position more reasonably, discretize the interaction force into a

form corresponding to ωI by zero-order holder (ZOH)

τDI = τI

(

1 (t) − 1
(

t − TL�N

))

(11)

FIGURE 2

PIBB policy improvement process. (13)-(20) Are corresponding

formulas.

Where 1 (·) is a unit step function, and TL is the period of

the last gait step. There are total N force values of FDI that are

arranged in order. These values are denoted as a vector FDI . Now,

we can obtain the weight vector ωI as follows,

ωI = αIτ
D
I (12)

Where αI is the scaling factor.

Motion model adaptive learning

Even though the trajectory can be compensated in real-

time with HRI force, it still lacks agility when the system faces

very different gait patterns. The exoskeleton is required to

continuously improve the trajectory generation by optimizing

the objective function. Hence, the decisive parameters ω in the

motion generation model need to be updated constantly.

Figure 2 is the PIBB motion learning policy improvement

process. One execution of a policy is called a ‘roll-out’. In

each iteration, the policy is perturbed and executed K times.

A total of K alternative trajectories with slightly different is

randomly generated around the last optimal trajectory. Based on

these trajectories, policy improvement methods then update the

parameter vector ω → ωnew such that the policy is expected to

incur lower costs.

First, the policy parameter perturbation during a roll-out is

generated from the model of the trajectory with noise

y
′

t = 8T
t (ω + ε)+9T

t ωI (13)

Where ε is interpreted as a constant exploration noise.

The immediate cost function is the mismatch of the time

point positions of trajectories,

rt =
(

q
′

t − qdt

)2
(14)

where qdt represent the joint angle and the actual position of

the last gait step. The trajectory cost R is,

R =

√

1

E

∑E

t=1
r. (15)
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The cost function formula of each of the kth roll-out

trajectory is computed with noise,

Mt,k =
R−18t,k8

T
t,k

8T
t,k
R−18t,k

, (16)

Sk = φE,k +
∑E−1

t=0
rt,k +

1

2

∑E−1

t=1

(

ω +Mt,kεk
)T
, (17)

whereMt,k is a projection matrix onto the range space of 8t

under the metric R−1. φE,k is the terminal cost of kth trajectory,

and rt,k is the immediate cost of kth trajectory at time t.

The probability of the kth roll-out trajectory is obtained by

mapping the cost of each trajectory to [0,1] through the Softmax

function, as shown in equation (18),

Pk =
e
− 1

γ
Sk

∑K
k=1

[

e
− 1

γ
Sk

] , (18)

where the parameter γ is a constant coefficient within (0, 1].

It can be seen from equation (18) that the higher the cost, the

lower the probability, thus ensuring PIBB converges to the value

with low cost.

For PIBB, the parameters are updated based on the scalar

aggregated cost. Therefore, the parameter updating through

reward-weighted averaging is,

δω =
∑K

k=1

[

Pkεk
]

. (19)

The final parameter updates with,

ωnew = ω + δω. (20)

There are many index notations in this paper, so for the

convenience of the readers, they are concluded: ith represents

N basis functions; The tth of E number of time steps; The kth of

K roll-out trajectories; Themth ofM demonstration trajectories.

Low-level control

The hierarchical control scheme needs a compliance control

to work with motion learning results as a low-level control

layer. The impedance control strategy emphasizes the active

compliance of the exoskeleton system by establishing the

dynamic relationship between the interaction force and the

position. It can provide the exoskeleton with certain compliance

while following the generated trajectory, and also allow the user

to actively deviate from the desired trajectory to his comfortable

way. In the application, the desired force τd is generated

according to the position difference and the desired impedance

model, then the desired force added to the compensation force

τc calculated by the robot dynamics model is the joint driving

force τr, as shown in Figure 1 lower-level control. In this way,

the robot system exhibits the desired characteristics of the

impedance model. As for the mathematical description, a typical

formulation of the impedance model is

τd = M
(

q̈d − q̈
)

+ B
(

q̇d − q̇
)

+ K
(

qd − q
)

(21)

Where M is the target impedance inertia parameter matrix;

B is the damping, and K is the stiffness. q̈d, q̇d, qd are the desired

acceleration, velocity, and position of the exoskeleton, andare

the corresponding actual values.

It can be seen from the formula that the choice of parameters

directly determines the quality of the system control effect.

The target impedance inertia parameter matrix M reflects the

smoothness of the system response. B can reflect the energy

consumed by the system. K measures the contact stiffness of the

robot with the external environment. In our case, M is 1, B is 5

and K is 10.

As mentioned before, the dynamic model of the exoskeleton

is required for this kind of impedance control. There are many

ways to analyze robot dynamics. In this paper, the Lagrange

equation is adapted which is standardized,

τc = H
(

q
)

q̈+ C
(

q, q̈
)

q̇+ G
(

q
)

+τf (22)

Where H(q) is the Inertia matrix, C
(

q, q̈
)

is the Centrifugal

force and the Coriolis force matrix, G(q) is about gravity. τf is

the friction.

The human gait dynamicmodel is complex, and the dynamic

model varies with different gait phases. For the swing phase

and standing phase, the models are simplified as two connecting

rods and three connecting rods respectively. The process of the

calculation and identification are not exhibited here in detail.

Experiments and analyses

Hardware

To verify the control scheme, real-time implementations

were performed on an exoskeleton system named HEXO.

Figure 3 shows the main components of the HEXO (Wang et al.,

2022). The backpack is equipped with the ARM control board

(ARM-Cortex-A9, ARM, UK), the power supply, and the data

acquisition card. The lower limb exoskeleton is designed as an

anthropomorphic device, so it has the same DOFs as the human

lower limb. There are seven DOFs of the exoskeleton in total,

four of which are active DOF (hip and knee flexion/extension

DOFs). The actuation system is powered by a brushless DC

motor (EC 60 flat, Maxon Motor, Switzerland), which is

efficient and reliable. The incremental encoder (MILE Encoder

1024 CPT, Maxon Motor, Switzerland) is integrated into the

motor. The servo drivers of these motors are arranged on the
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FIGURE 3

The hardware system of HEXO exoskeleton. 1. Backpack; 2. SFS;

3. Encode and torque sensor; 4. Hip joint; 5. IMU; 6. Thigh limb;

7. Knee joint; 8. Calf limb.

thigh segment and the shank segment respectively (G-SOLTWI

10/100SE, ELMO, Israel). The lower limb motion is measured

by the inertial measurement unit (IMU) (LPMS-CU2, ALUBI,

China) mounted on the thighs and shank carbon-fiber limbs

to avoid the signal burrs caused by the angular difference. The

torque sensors (type: 2210C, SRI, China) are placed at hip and

knee joints, which are used to measure the torque of the joint.

Besides, three six-axis force sensors (SFS) (M3715D, SRI, China)

are installed at the back and sensing shoes between the user

and the exoskeleton to perceive the human–robot interaction

force. The sensing shoes also have four load cells (AT8106,

AUTODA, China) for each shoe. All sensor data is transmitted

to ARM (type: ARM-Cortex-A9, ARM, UK) through the CAN

(Controller Area Network) bus, whose transmission rate is up

to 1Mbits.

Experimental protocol

Six healthy subjects (average height: 1.77± 0.07m; averaged

weight: 67.7 ± 10.1 kg) volunteered to participate in the

experimental activities. As shown in Figure 1, in the process

of adaptative motion learning, there is an initial modeling

procedure need to be done before online application. A

fundamental parameter set of ProMPs will be acquired in this

offline procedure, and then the parameters will be updated

in real-time. The walking data for the network modeling are

collected from subjects 1#, 2#, and 3# by performing the defined

track under the zero-torque mode of the exoskeleton at a self-

selected pace. Figure 4 exhibited part of the walking data profiles.

As can be seen, the differences between each step are inevitable

FIGURE 4

The walking trajectory data of subjects 1#, 2#, 3#.

in walking even though participants are asked to keep their

cadences constant during the execution of their track.

For online experiments, subjects 4#, 5#, and 6# are recrewed.

In order to testify the effectiveness of the proposed method,

comparative experiments with different strategies are set up.

Subjects 4#, 5#, and 6# are asked to perform and repeat

the track under different assistive-mode utilization at a self-

selected pace. In both offline and online procedures, the system

works at 100Hz. The four joints of the HEXO are processed

simultaneously. All angle profile figures in this paper are from

the right leg.

Initial modeling

After trajectory data are obtained, the first step is to represent

and model the trajectory by ProMPs. The process of ProMPs

modeling the reference trajectory is described in section Motion

generation model. The regression parameter λ in equation (8)

is generally set to 10-12, and the basic function width h in

equation (4) adopts 0.05. The number of basis functions N is

a crucial factor in the representative ability of primitives. Thus,

one step of the walking trajectory is learned firstly for choosing

an appropriate N. Figure 5A shows the learning result under

different N, and Figure 5B is the RMSE (Root Mean Square

Error) between the learned trajectory and target trajectory. It

can be seen that the representation ability is weak when the N

is small which is normal, but it grows extremely faster with the

increase of N compare to other primitives. The shape of the

trajectory can be approximately described by 8 basis functions

with 0.017 RMSE, and converged after 15 basis functions within

0.0046 RMSE. The trajectory learned by 10 basis functions which

is the purple line in Figure 5A completely coincides with the
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FIGURE 5

Trajectory learning results for di�erent number of basis functions. (A) Curve after Learning. (B) RMSE of learning.

FIGURE 6

(A) The cut and normalized walking data of subjects 1#, 2#, 3#. (B) ProMPs learning result.

target dotted blue one. Therefore, the basis function of ProMPs

is adopted 15.

Then the walking data was fed to the ProMPs that were

collected from three subjects 1#, 2#, and 3# in the formal

initial modeling. Figure 6A shows the mean and covariance of

the walking data of three subjects’ right hip, which is cut and

normalized based on the gait cycle. Only the profiles of the right

hip joint are shown in this paper in order to be brief. The red

area of Figure 6B is the result learned by ProMPs from all three

of them, which contains all their possibilities. The red line can be

regarded as the average of all acquired trajectories, so it is more

representative of the characteristics of human gait behavior than

any other ones. Besides, the more trajectories are learned, the

more general the reference trajectory is.

Experiments

For online experiments, the hardware platform is HEXO as

mentioned before, embedding the corresponding control frame.

The trajectory learned in section Initial modeling is regarded

as the reference trajectory at the beginning. In order to test

and verify the performance of the proposed method, we also

set up other two baselines as comparisons. The first strategy
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FIGURE 7

Experimental results of subject 4# with strategy P-I.

FIGURE 8

Experimental result of subject 4# with strategy PP-I.

denoted as “P-I” is the exoskeleton works only with the ProMPs

model as motion learning. The model is unchangeable so the

desired trajectory remains the same. The impedance control

provides adequate compliance which makes sure the subjects

can walk naturally in the way that he wants. In the second

comparison “PP-I”, the motion learning model ProMPs can be

constantly updated by the PIBB. The data from the actual joint

trajectories are imported into the PIBB algorithm to calculate

the corresponding cost value, and the PIBB adjusts the decisive

parameters ω in motion learning according to the cost. Then a

new trajectory with new characteristics is able to be generated.

The last is the proposed interaction learning control strategy,

entitle “PIP-I”. There is a dynamical interaction compensation

term added into the motion learning part compared to the

second “PP-I”, which is promising to reduce human–robot

interaction force timely. Except that, the updating process is

the same.

Figure 7 shows the result of the first baseline P-I. It compares

the generated trajectory and the actual one at the beginning

of the walking of subject 4#. Note that the actual trajectory

FIGURE 9

Experimental result of subject 4# with strategy PIP-I.

FIGURE 10

Comparison of the RMSE of the mismatch error of three

strategies, P-I, PP-I, and PIP-I.

represents the intention of the users’ in this situation. In

practice, the reference trajectories learned by ProMPs still differ

across the users, maybe owing to the learning samples of the

ProMPs model is not enough based on our limited experimental

conditions. However, even though there are much more samples

to learn, the difference cannot be eliminated due to different

physical characteristics and the uniqueness of the human gait.

In addition, it can be seen that the generated trajectory is the

same for every step if there is no adaptation of the model, and

when the step time between the actual and generated one are

unsynchronized then the generated angel keeps the last value.

Usually, the impedance control will drive the actual angle close

to the ideal to a certain extent, but we ask subjects to insist on

their own walking way because the ultimate goal is exoskeleton

actively consistent with the humans instead of the opposite.

Therefore, there are mismatches between the desired trajectory

and the actual one. In this way, it will cost a lot to maintain the

gait of the subjects, and the HRI is not ideal without a doubt. The

HRI force is an intuitive benchmark tomeasure the performance

of synchronization.
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FIGURE 11

The performances of PP-I and PIP-I in RMSE of error profiles. (A) Subject 5#. (B) Subject 6#.

With regard to the second strategy PP-I, the experimental

result is demonstrated in the Figure 8. The updating rate is one

step, which is also the minimal unit because of the motion

trajectory that ProMPs modeled is for every step. For the first

step, there still is a big difference. Nevertheless, with the help of

the adaptation, the generated trajectory is adjusting constantly

by the PIBB, and closely follows the actual after 8-9 steps.

Moreover, the HRI force decreased a lot after convergence, as

a result of trajectory adaptation which decreased the conflict

between human and exoskeleton. That is to say, PP-I is able

to provide a more coordinated HRI for the system and a more

comfort assistant experience.

Up to now, the superiority of dynamic adaptation is

quite apparent. Adjusting the generated trajectory constantly

adds flexibility to the system, by enhancing the ability to

adapt to the new situation. However, the adaptation rule is

only extracted from trajectory mismatch seems inadequate,

which brought the next experiment. Figure 9 illustrates the

adaption performance of PIP-I, which is the proposed method

in this paper. It indicates that the convergence trend is

similar to PP-I, but the convergence speed is improved a lot.

For subject 4#, the convergence only takes 3-5 steps. The

underlying reason is that our adaptation is extracted from a

cost function that penalizes both interaction and trajectory

mismatch, by adding the HRI compensation term into the

motion generation model.

Figure 10 compares the average mismatch errors of three

strategies. Note that, comparing the errors of the first step is

of no necessity because the value is random. After the first

step, the errors gradually reduced both in PP-I and PIP-I, while

there is no obvious convergence in P-I. There is not much

difference in steady state error of PP-I and PIP-I, but the PIP-

I approaches the stable error faster. The decrease in mismatch

errors indicates that adapted trajectories are more consistent

with the human-exoskeleton dynamics. It is a very promising

result for the proposed method, in terms of the exoskeleton

system can consistent with the different users more quickly.

Figure 11 illustrates the experimental result of error profiles

on subjects 5#, 6#. The results of baseline P-I are the same as

the subject 4#, so it will not be pointed out in further detail.

For the PP-I and PIP-I, PIP-I shows the absolute advantage of

convergence speed in all cases. It is hard to tell which step the

errors converges to, but it is about 7-10 steps for PP-I while only

3-6 steps are needed by PIP-I for all three subjects.

The interaction force was almost proportional to the errors

and followed the same trend as the errors. In Table 1, we

show the average HRI force of the 4–6th step and 9–11th step

respectively. We can see from the Table 1, that the HRI force
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TABLE 1 The comparison of HRI force performance for strategies P-I,

PP-I, and PIP-I.

Average HRI force(N m) 4–6th step 9–11th step

P-I PP-I PIP-I P-I PP-I PIP-I

Subject 4# 1.21 1.20 0.74 2.09 0.48 0.56

Subject 5# 2.65 1.10 0.62 2.12 0.49 0.47

Subject 6# 1.86 0.78 0.55 1.93 0.28 0.44

with P-I is not changed as the number of steps increases. PP-I

reduces the force to stable until the 9–11th step, but PIP-I can

reach the steady states just with only the 4–6th steps needed.

Although there is the effect of the gait randomicity, it is still

can be drawn that PIP-I is able to reduce the adaptation time

nearly by half. As a matter of fact, adjustment time halved has

a great impact on the actual wearing experience. Moreover,

according to the subjects, it is stable and comfortable when

the exoskeleton works on PP-I and PIP-I, and the adaption

process of PIP-I is rapid and hardly conscious. Consequently, the

experiments exhibited that the proposed method can model the

human trajectory and perceive the human intention online with

not only low error but also, most importantly, high efficiency.

With this dynamical interaction learning control, the lower limb

exoskeleton can provide natural and comfortable assistance to

the users in the way that he wants, and the system can also adapt

to different users and situations due to the adaptive updating

procedure. With the HRI compensation term, the flexibility and

coordination of the human-robot system are further improved.

Conclusion and future work

We presented a novel interaction learning control

framework for the lower limb exoskeleton to naturally assist

people. The motion learning model generates desired trajectory

online which is a combination of movement primitives and

human–robot interaction force, and it is adjustable to converge

to human intention and adapt to different users. We firstly

adopted ProMPs to model the human motion trajectory in the

lower limb exoskeleton, and in this paper, it is further integrated

with HRI working on assistive mode. Furthermore, the motion

learning model is constantly updated online by PIBB, which can

ensure the adaptability of the method to different gait patterns of

various users. The experiments reveal that the proposed strategy

can timely provide a smooth and natural trajectory online which

is in line with the user’s pattern so that the exoskeleton system

could cooperate with the human user with smaller HRI. Most

importantly, the convergence time is further reduced by adding

the HRI compensation term, which improved the efficiency of

the system and its comfort. Our analysis and experiment results

show the applicability and effectiveness of the proposed method

and its feasibility to be used in lower limb exoskeletons.

For this paper, the locomotion mode involved in testing is

only level walking. In the future, all basic rhythmic locomotion

modes in daily living will be included, such as stair ascent,

stair descent, ramp ascent, and ramp descent. The performance

of the learning should be similar since there is no essential

difference between these motions. Besides, the situation of speed

changing in walking should be taken into consideration, so the

adaptability of the method for that need to be verified further.
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