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Robust robot image
classification toward
cyber-physical system-based
closed-loop package design
evaluation

Shacheng Liu*

Hunan Institute of Science and Technology, Yueyang, China

The package design can transmit the value of a product to consumers visually

and can therefore influence the consumers’ decisions. The traditional package

design is an open-loop process in which a design can only be evaluated

after the products are sent to the market. Thus, the designers cannot refine

the design without any helpful advice. In this paper, a robust robot image

classification is proposed to help the designers to evaluate their package

design and improve their design in a closed-loop process, which is essentially

the establishment of a cyber-physical system for the package design. The

robust robot image classification adopts the total variation regularization,

which ensures that the proposed robot image classification can give the right

answers even if it is trained by noisy labels. The robustness against noisy

labels is emphasized here since the historical data set of package design

evaluations may have some false labels that can be equivalently regarded as

disturbed labels from the true labels by noises. To validate the e�ectiveness

of the proposed robot image classification method, experimental data-based

validations have been implemented. The results show that the proposed

method exhibits much better accuracy in classification compared to the

traditional training method when noisy labels are used for the training process.

KEYWORDS

robust classification, robot image classification, noisy labels, total variation

regularization, package design, cyber-physical systems

1. Introduction

1.1. Background and motivations

A product’s value is first transmitted to the consumers by package design visually. A

good design can significantly improve the sale performance of a product. Therefore, it is

important for a designer to provide a design from the consumers’ view of consumption.

As shown in Figure 1, the traditional package design is an open-loop process. A

designer must figure out the consumers’ preferences according to the market survey.
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FIGURE 1

Comparison of the processes of traditional open-loop package design and robot-assisted interactive package design.

The evaluation of the package design for the products can

only be implemented after sending the product to the market

and obtaining the results of the market survey. The designer

cannot refine the design with any helpful evaluation which

reflects the preferences during the design process. This hurts

the efficiency of the design and also brings risk to the sale

performance. Robot image classification makes the interactive

package design possible. In robot-assisted interactive package

design, a robot image classifier can give an evaluation of the

design. The evaluation can reflect the market preferences since

the classification models are trained by the historical data of

the market survey. Deep learning models have been applied to

improve the package design evaluation performance (Shi, 2022).

According to Zhao et al. (2018), a graphic design-based model is

developed to predict the score of a design. According to Jolly

et al. (2018), the conventional neural network has been used

to classify a type of design. Definitely, the performance will be

good with deep learning models if the labels are correctly given.

However, there are lots of unclear or incorrect labels in the data

set of market surveys (Xia et al., 2022), which can be regarded

as noisy labels. Noisy labels can cause severe over-fitting issues

in deep learning models. It is very important to improve the

robustness of deep learning-based robot image classification for

package design evaluation toward noisy labels.

1.2. Related research

Robot classification for package design aims to enable

robots or computers to make esthetic decisions about images

of the package design in a way of imitating human vision

and esthetic thinking (Zhang et al., 2022). The image esthetic

quality assessment methods can be categorized into two main

streams. The traditional esthetic quality assessment is based

on artificial design features. Nowadays, deep learning-based

esthetic assessment methods are becoming popular.

In the traditional method of evaluating esthetic quality based

on features of artificial designs, the image esthetics are assessed

by the two-layer design by an expert. The lower layer has

visual features and the higher layer has composition esthetic

features. Images can be categorized into high and low esthetics

by methods such as support vector machine, which has color

matching, the contrast of images, and other features as inputs

(Kumar et al., 2019; Wu et al., 2021).

In recent years, with the development of deep learning

models, many researchers have started to apply convolutional

neural networks to the tasks of image esthetic assessment. For

example, according to Wang et al. (2019), convolutional neural

networks have been used to specify some high-level abstract

features from big data of the image. Furthermore, the structure
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of the convolutional neural networks is adapted for image

esthetic assessment by Darmawahyuni et al. (2019). However,

the above methods assume that the used data for training are

clean. However, according to the results of Xia et al. (2022), the

classification based on esthetic assessment is different from the

classification from the viewpoint of the consumers. The labels

that reflect the viewpoint of the consumers can be obtained from

themarket survey. However, the labels obtained from themarket

survey may suffer the issue of having uncertainties, which makes

the labels noisy. It is important to consider how to improve the

accuracy in the establishment of robot image classification for

package design when using noisy labels for training.

The classification with noisy labels was first addressed by

Angluin and Laird (1988) and has just become a very hot topic

in the machine learning community (Goodfellow et al., 2016).

The first model for noisy labels, proposed by Angluin and Laird

(1988) and Rooyen et al. (2015), is for binary classification,

which is named the noise model of random classification. The

random classification noise model has been extended to the

noise model conditioned on classes in Natarajan et al. (2013),

which is also known as the class-conditional noise model. The

multi-class case has been developed in recent years (Goldberge

and Ben-Reuven, 2017; Patrini et al., 2017). The research on

classification with noisy labels has the followingmain streams:

• For class-conditional noise models, one popular method is

to adopt robust loss functions to alleviate the issue caused

by noisy labels (Ghosh et al., 2017; Feng et al., 2020; Lyu and

Tsang, 2020; Ma et al., 2020). The method using robust loss

functions works well under simple noises. When the noise

is complex and with the high rate, the method performs

very poorly.

• Another kind of method tries to improve the robust

against label noise by sampling methods (Malach and

Shalev-Shwartz, 2017; Han et al., 2018; Wei et al., 2020).

In the sampling process, some samples are rejected to

improve the robustness, which can be regarded as a semi-

supervised learning process (Nguyen et al., 2020). The

sampling methods suffer high computational cost and high

model complexity.

• The third kind of method is based on estimating the noise

transition matrix based on the assumption of the existence

of anchor points (Liu and Tao, 2015; Patrini et al., 2017;

Yu et al., 2018). The transition matrix is identifiable only

if anchor points exist in all classes. When the transition

matrix is obtained, the probability of the true labels can

be recovered.

1.3. Contributions of this article

This paper extends the noise transition matrix estimation

method into the robot image classification and proposes a robust

robot image classificationmethod for package design evaluation.

The main contributions of this article are as follows:

• We adopt a problem formulation of the total variation

regularization. The solution to the problem of total

variation regularization is consistent with the real

transition matrix and the probability distribution of the

true labels.

• The stochastic gradient descent can be used to approach

the solution that recovers the probability distribution of the

true labels from the noisy labels.

• For the first time, a noisy label-aware package design

evaluator can be established to help the designer improve

their compositions in a closed-loop way.

The research of this article is a big step to establish

a computer-vision cyber-physic system for package design

evaluation since the issues raised by the noisy labels in the

training process of a robot image classifier are resolved.

2. Problem description

Let x ∈ X be a package design composition. Let y ∈

Y = {1, ...,C} be the discrete score of the package design,

which reflects the consumers’ view toward the design. Note

that X and Y represent the design space and score space,

respectively. A high score of y means a high satisfaction with

the design. The positive integer C represents the highest score.

Note that the evaluation is stochastic which obeys a true

probability distribution

ptrue(y|x) : = Pr{y|x}, (1)

for every x ∈ X , different consumers have different opinions. Let

P(Y) be the set of all possible probability measures defined onY .

Let Etrue :X → P(Y) be the underlying function that outputs

the probability distribution of true score by the consumer for a

given design x ∈ X , namely, Etrue = ptrue(y|x). In this article,

we call Etrue(·) a real evaluator. Essentially, the evaluator Etrue(·)

can be regarded as a classifier that gives a label of class y ∈ Y to

each design. Although the basic function in mathematics is the

same, we adopt the terminology “evaluator” here since there is

an order that larger ymeans a better design.

Note that the real evaluator is unknown. It is necessary to

construct an estimated evaluator from the available data set

DT = {x(t), ỹ(t)}t=1,...,T . Here, we use ỹ(t) to denote the noisy

score of the design x(t). The noisy score ỹ(t) represents the

randomness in the process of collecting data by market survey.

For the extraction of the design x(t), the following assumption

holds throughout the rest of the paper.

Assumption 1. The design x(t) is extracted identically and

independently from the design space.
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Although there is a true y(t) for every x(t), the observed

score ỹ(t) is disturbed by noise. Here, we only consider the

class-conditional noise. By adopting the class-conditional noise

model, the following assumption on ỹ(t) holds throughout the

paper.

Assumption 2. The noisy score ỹ(t) does not relate to x and only

depends on the true score y(t). Namely,

Pr{ỹ(t)|y(t), x(t)} = Pr{ỹ(t)|y(t)}, ∀t = 1, ...,T. (2)

Since the available data set DT has noisy score ỹ(t), the

estimated evaluator Ẽ :X → P(Y) constructed by directly using

DT will give the noisy probability distribution p̃(ỹ|x) instead of

true probability distribution p(y|x), where the noisy probability

distribution p̃(ỹ|x) is defined by

p̃(ỹ|x) : = Pr{ỹ|x}. (3)

It is necessary to improve the robustness of the estimated

evaluator and guide the evaluator to give the probability

distribution near the true probability distribution even it is

trained by using noisy data setDT .

Then, the problem we address in this article is summarized

as follows.

Problem 1. Suppose that data setDT has been obtained from the

market survey and Assumptions 1 and 2 hold. To find a robust

evaluator Er by solving the following optimization problem.

min
E

D(E , Etrue). (4)

The challenging issue of solving Problem 1 is that the true

probability distribution is unknown, which makes it difficult to

find the direction of modifying the data setDT for training.

3. Robust robot image classification

3.1. Noisy transition matrix

With Assumption 2, it is able to establish the relationship

between noisy label posterior p̃(ỹ|x) and the true label posterior

p(y|x) as

p̃(ỹ|x) =

C
∑

y=1

py(ỹ|y)p(y|x), (5)

where py(ỹ|y) : = Pr{ỹ|y}. The true label posterior p(y|x) is

essentially a vector-value function from X to [0, 1]C , which is

written as

p(y|x) = [Pr{y = 1|x}, ..., Pr{y = C|x}]⊺. (6)

The noisy label posterior p̃(ỹ|x) is also a vector-valued

function written as

p̃(ỹ|x) = [Pr{ỹ = 1|x}, ..., Pr{ỹ = C|x}]⊺. (7)

On the other hand, py(ỹ|y) is essentially a noisy transition

matrix written as

py(ỹ|y) =







Pr{ỹ = 1|y = 1} ... Pr{ỹ = C|y = 1}

... ... ...

Pr{ỹ = 1|y = C} ... Pr{ỹ = C|y = C}






. (8)

Let Tn be the notation of the noisy transition matrix instead

of py(ỹ|y) and Tn ⊆ [0, 1]C×C be the set of all possible Tn. Then,

we can rewrite Equation (5) by

p̃(ỹ|x) = T
⊺

np(y|x). (9)

If the noisy transition matrix Tn is available and p(y|x) is

identifiable with p̃(ỹ|x) (every p(y|x) generate distinct p̃(ỹ|x)),

we can recover p(y|x) from p̃(ỹ|x) by using Tn according to

Equation (9). It is reasonable to assume that the true label

posterior p(y|x) can be approximated by a parameterized model

p̂(y|x, θ) characterized by θ ∈ 2. Namely, there exists one

θ∗ ∈ 2 such that p̂(y|x, θ∗) = p(y|x) for every y ∈ Y and

x ∈ X . Suppose that p̂(y|x, θ) is differentiable with θ . Note that

it is possible to represent p̂(y|x, θ) by an expressive deep neural

network characterized by θ .

For the learning objective, we adopt the expected Kullback-

Leibler (KL) divergence, which is a standard objective. The

expected KL divergence concerned here is constructed as

follows:

L0,true(θ) : = Ex∼px(x){DKL(p̃(ỹ|x),T
⊺

n p̂(y|x, θ))}, (10)

where px(x) is the probability density function defined on X .

Note that L0,true(θ) has connections to the cross-entropy loss

which is defined as

Lce,true(θ) : = E(x,ỹ)∼p(x,ỹ){− log(T
⊺

n p̂(y|x, θ))}

= L0,true(θ)+H(ỹ|x), (11)

where H(ỹ|x) is the conditional entropy, namely, the entropy

of ỹ under x. Note that H(ỹ|x) is a constant with respect

to θ and Lce,true(θ) is minimized if and only if L0,true(θ). If

Lce,true(θ) is optimized, we can say that T⊺p̂(y|x) = T
⊺p(y|x)

and p̂(y|x) = p(y|x). For practice, although it is only possible

to empirically estimate Lce,true(θ), we can still prove the

asymptomatic convergence. Namely, as the number of samples

increases, with probability 1, we have T⊺p̂(y|x) → T
⊺p(y|x) and

p̂(y|x) → p(y|x).

3.2. Classification without noisy
transition matrix

In our case, both Tn and p(y|x) are not available. Therefore,

Tn and p(y|x) are partially identifiable which means that there

might exist multiple pairs of Tn and p(y|x) with the same p̃(ỹ|x).
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FIGURE 2

Concept of estimating the transition matrix and the probability distribution.

Then, it is impossible to identify the true Tn and p(y|x) without

any further assumptions.

Let T̂n ∈ Tn be an estimated noisy transition matrix. Then,

the KL divergence is written as

L0(θ , T̂n) : = Ex∼px(x){DKL(p̃(ỹ|x), T̂
⊺

n p̂(y|x, θ))}. (12)

The cross-entropy loss is then revised as

Lce(θ , T̂n) : = E(x,ỹ)∼p(x,ỹ){− log(T̂
⊺

n p̂(y|x, θ))}

= L0(θ , T̂n)+H(ỹ|x), (13)

In the case without noisy transition matrix, we should

find θ and T̂n to minimize Lce(θ , T̂n) or equivalently make

L0(θ , T̂n) = 0. As the same with the case with noisy transition

matrix, we can empirically obtain the estimation of Lce(θ , T̂n)

based on samples of x, ỹ-pairs and also optimize it by adjusting

θ and T̂n. Although it is possible to ensure the convergence of

T̂np̂(y|x) to Tnp(y|x) with infinite sample size, the convergence

of p̂(y|x) to p(y|x) may not be guaranteed if p(y|x) is not

identifiable with p̃(ỹ|x) (Patrini et al., 2017).

Most of the existing methods adopt a two-step method. In

the first step, the noisy transition matrix is estimated. Then,

the estimated noisy transition matrix is used for neural network

training. The estimation of the noisy transition matrix is based

on the anchor points (Yu et al., 2018; Xia et al., 2022), which are

defined as follows.

Definition 1. An point x is called an anchor point for class i =

1, ...,C if Pr{y = i|x} = 1.

For an anchor point x for class i = 1, ...,C, Equation (9) can be

transformed to

p̃(ỹ|x) = Tnp(y|x) = Tn,i. (14)

Then, it is possible to estimate Tn based on the estimation

of p̃(ỹ|x) from the data with noisy labels. Note that the two-

step method cannot be applied if anchor points can not be

obtained from data clearly. However, estimating the noisy

label posteriors has a dramatically worse overfitting issue than

estimating the true label posteriors. Therefore, the estimation

of the transition matrix suffers from the estimated noisy label

distributions, which are not accurate and the performance

deteriorates sharply.

Transition matrix estimation also suffers from poorly

estimated noisy label posteriors and the performance

deteriorates sharply.

3.3. Construction of equivalence class
and partial order

It is necessary to deeply investigate the generating process of

the class-conditional label noise and establish equivalence class
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and partial order for noisy transition matrix Tn. According to

Zhang et al. (2021), partial order of the transition matrices led

by the contraction property of the stochastic is shown to be

able to find the true class posterior. Here, we summarize the

idea of constructing equivalence class and partial order for noisy

transition matrix, which is the theoretical basis of our proposed

robust robot image classification.

The definition of transition matrix equivalence is as follows.

Definition 2. Transition matrix equivalence is essentially an

equivalence relation of a pair of matrices with an ordered product.

We say (U ,V) ∼ (U ′,V ′) if UV = U
′
V
′. Besides, for a given

matrixW, the equivalence class associated withW is defined by

[W] : = {(U ,V) :UV = W}. (15)

For noisy transition matrix Tn, there is also an equivalence

class [T]. For a pair (U ,V) ∈ [T], we can form an optimal

solution that minimizes (Equations 12, 13) by setting

T̂n = V , (16)

and

p̂(y|x, θ) = U
⊺p(y|x). (17)

Note that the potential optimal solutions are infinite and

only (I,T) is the true pair for our interest. Thus, it is important to

investigate other conditions to direct us to the pair (I,T) among

infinite optimal solutions.

For any given optimal solution T̂n, p̂(y|x, θ) of Equations

(12) and (13), there exists a matrix U that satisfies p̂(y|x) =

U
⊺p(y|x) if anchor points exists in data set DT for each class

i (Zhang et al., 2021). Thus, we have the following assumption

throughout the paper.

Assumption 3. The obtained data setDT has at least one anchor

point for each class i = 1, ...,C.

With the absolute existence of anchor points as stated in

Assumption 3, it is able to find a condition to break the transition

matrix equivalence and obtain the desired pair (I,T).

Let v and w be two categorical probabilities. For any v and

w, the total variation distance is defined by

Definition 3. The total variation distance between two

categorical probabilities is

DTV(v,w) : =
‖v − w‖1

2
, (18)

where ‖ · ‖1 is the ℓ1 norm.

Based on the theory of Markov chains (Moral et al., 2003), we

have that v 7→ U
⊺
v is a contraction mapping with the total

variation distance, namely,

DTV(U
⊺
v,U⊺

w) ≤ DTV(v,w),∀v,w,∀U ∈ Tn. (19)

Inputs: data set DT; step size α; exponential

decay rates β1,β2; update rate ǫ;

Initialization: initial parameter vector θ̂ (0);

initial noise transition matrix T̂
(0)

n ; initial

first moment vectors m
(0)
θ = 0,m

(0)
Tn

= 0; initial

second moment vectors v
(0)
θ = 0, v

(0)
Tn

= 0;

1: for s = 1, 2, 3, ..., S do

2: randomly extract Ds ⊂ DT (update Ds in

every iteration)

3: get gradients g
(s)
θ = ▽θL(θ̂ (s−1), T̂n

(s−1)
) and g

(s)
Tn

=

▽TnL(θ̂ (s−1), T̂n
(s−1)

) based on Ds

4: calculate prior first moment estimate

m
(s)
θ = β1m

(s−1)
θ + (1− β1)g

(s)
θ

5: calculate prior first moment estimate

m
(s)
Tn

= β1m
(s−1)
Tn

+ (1− β1)g
(s)
Tn

6: calculate prior second raw moment estimate

v
(s)
θ = β2v

(s−1)
θ + (1− β2)(g

(s)
θ )2

7: calculate prior second raw moment estimate

v
(s)
Tn

= β2v
(s−1)
Tn

+ (1− β2)(g
(s)
Tn

)2

8: calculate corrected first moment estimate

m̂
(s)
θ = m

(s)
θ /(1− βs

1), m̂
(s)
Tn

= m
(s)
Tn

/(1− βs
1)

9: calculate corrected second moment estimate

v̂
(s)
θ = v

(s)
θ /(1− βs

2), v̂
(s)
Tn

= v
(s)
Tn

/(1− βs
2)

10: update parameter θ̂ (s) = θ̂ (s−1) − αm̂
(s)
θ /

√

v̂
(s)
θ + ǫ

11: update parameter T̂
(s)

n = T̂
(s−1)

n − αm̂
(s)
Tn

/

√

v̂
(s)
Tn

+ ǫ

12: end for

Output: solution θ̂ (S) and T̂
(S)

n

Algorithm 1. One-step algorithm for estimating T̂n and p̃(y|x, θ ) based

on stochastic gradient descent.

With the above discussions, we can define partial order in

the equivalence class [Tn] as follows.

Definition 4. The transition matrix partial order by the total

variation distance is expressed as

(U ,V) � (U ′, v′) ⇔ DTV(U
⊺
v,U⊺

w) ≤ DTV(U
′⊺
v,U ′⊺

w),∀v,w.

(20)

Note that (I,T) is the unique element for the greatest total

variation (Zhang et al., 2021). Therefore, it is able to find (I,T)

by gradually increasing the total variation.

3.4. Total variation regularization

First, we define the expected total variation distance by

R(θ) : = Ex1∼p(x)Ex2∼p(x){DTV(p̂1, p̂2)}, (21)

where p̂i : = p̂(y|x = xi, θ), i = 1, 2. We summarize Theorem 2

in Zhang et al. (2021) here.
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FIGURE 3

Process of implementation of the proposed robust robot classification for evaluating package design.

Theorem 1. Suppose Assumption 3 holds. Let L̃0(θ , T̂n) and

R̃(θ) be the empirical estimates of L0(θ , T̂n) and R(θ) by using

data set DT , respectively. Suppose 2 is compact. Let θ̃ , T̃n be an

optimal solution of the following optimization problem:

max
θ∈2, T̂n∈Tn

R̃(θ) s.t. L̃0(θ , T̂n) = 0. (22)

Then, T̃n is a consistent estimator of Tn, and p̂(y|x, θ̃) → p(y|x)

with probability 1 as T → ∞.

Theorem 1 claims that we can obtain a consistent estimate

of noisy transition matrix by solving (Equation 22). The true

probability distribution can also be obtained. Note that the

constrained problem (Equation 22) can be solved by introducing

Lagrangian

L(θ , T̂n) : = L̃0(θ , T̂n)− λR̃(θ), (23)

where λ ∈ R
+ is a positive number that controls the importance

of the regularization term. Therefore, the unconstrained

problem (Equation 23) is called the optimization problem with

total variation regularization.

3.5. Proposed algorithm

Then, we present the algorithms for estimating the transition

matrix Tn and also the probability distribution simultaneously.

The concept of the simultaneous estimation is illustrated in

Figure 2.

Note that L(θ , T̂n) is differentiable with respect to T̂n.

Therefore, it is possible to use gradient-based optimization to

find a local minimum for T̂n and p̃(y|x, θ). To make sure that

T̂n ∈ Tn, we can use softmax to an unconstrained matrix and

optimize L(θ , T̂n) by stochastic gradient descent. The proposed

algorithm is adapted from Adam algorithm (Kingma and Ba,

2015) and is summarized as follows.

Remark 1. Algorithm 1 solves Problem 1 under Assumptions 1,

2, and 3 by making D(E , Etrue) → 0 with probability 1 if S,T →

∞.

The proposed method can be regarded as a perfect version

of the clustering-based method. In the clustering algorithm-

based method, some of the data with wrong labels are forbidden.

However, there is no existing clustering algorithm-basedmethod

that can make sure that all the data with wrong labels are

forbidden and all the data with correct labels remain, which can

be ensured by the proposed method if Assumptions 1, 2, and

3 hold.
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FIGURE 4

Examples of experimental data set: (A) one example in class 1 (with score 1); (B) one example in class 2 (with score 2); (C) one example in class 3

(with score 3); (D) one example in class 4 (with score 4); (E) one example in class 5 (with score 5).
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FIGURE 5

Illustrative examples of the results: (A) one design with a score of 5 in the test set; (B) one design with a score of 3 in the test set.

3.6. Implementation of the proposed
robust robot classification

The process of implementing the proposed robust robot

classification for evaluating package design is illustrated in

Figure 3. First, we construct the data set DT to train the neural

networks. A total of T package designs are collected with

different levels. Then, several evaluators are asked to give labels

to each package design. The evaluators make the labels from the

viewpoint of a customer. Then, total variation regularization is

applied to data set DT to train neural networks that output the

estimated probability distribution. For any given package design,

with the outputted probability distribution by the trained neural

networks, the score or the classification will be determined by

i(x) = argmax
i

p̂(y = i|x, θ). (24)

4. Validations

In this section, the results of experimental data are presented

to validate the effectiveness of the total variation regularization-

based robust robot classification method. The results show

that the proposed method can improve the accuracy of

the classification even using noisy labels compared to the

traditional method.

4.1. Experimental data set and methods

A total of 5,000 different package designs have been

collected. All package designs are categorized into six

classes, namely, C = 5. In every class, there are 1,000

samples. The categorization has been implemented by some

experienced evaluators. In this experiment, we regard the

label given by experienced evaluators as real ones and the

noisy labels are generated by using the following kinds of

label noises:

• (Pair.) defines the pair flipping noise for labeling, which is

introduced by Han et al. (2018);

• (Symm.) represents the symmetric noise for labeling, which

is introduced by Patrini et al. (2017);

• (Rand.) is random noise generated by Dirichlet distribution

mixing with the identity matrix.

Figure 4 shows five examples of experimental data sets from

five different classes. It is reasonable to use the labels given by

experienced evaluators since experienced evaluators can give

relatively precise labels according to their rich experience in the

market and package design. In addition, 70% of the data set

has been used for training and the rest is for testing. The data

for training have noisy labels and the data for testing are with

true labels.
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TABLE 1 Accuracy (%) on test set.

Noise rate Methods Symm. Pair Rand

15% Traditional 94.11 87.24 43.71

Proposed 99.42 99.37 98.02

Baseline 99.67 99.62 99.77

25% Traditional 91.98 83.57 36.22

Proposed 99.38 99.27 97.66

Baseline 99.67 99.62 99.77

35% Traditional 90.65 81.73 32.98

Proposed 99.27 99.15 95.32

Baseline 99.67 99.62 99.77

45% Traditional 88.91 78.31 29.047

Proposed 99.26 99.12 94.29

Baseline 99.67 99.62 99.77

55% Traditional 87.29 77.12 26.97

Proposed 99.21 99.05 93.91

Baseline 99.67 99.62 99.77

In this validation, sequential convolutional neural network

(CNN) has been used for classifier models.

4.2. Results and discussions

Figure 5 gives two illustrative examples of the validation

results with random noise whose noise rate is 35%. (Prop.)

is short for the proposed method. (Trad.) is short for

the traditional method in which noisy labels are used for

training as true labels. The proposed method gives results

that are consistent with the true labels despite using noisy

labels. On the other hand, the traditional method gives

results different from the true labels. Since true labels

and noisy labels both exist, the traditional method gets

confused and sometimes gives results that are not consistent

with both.

In Table 1, the test accuracy is reported. The traditional

method uses noisy labels for training. The baseline is obtained

by using the true labels for training. It is obvious that the

proposed method outperforms the traditional method in

terms of accuracy and shows very close accuracy with the

baseline. As the percentage of noise rate increases, the

accuracy of the traditional method decreases dramatically

while the proposed method only has a very slight deterioration

in accuracy. For the types of noise, even with random

noise, the proposed method still gives very accurate

results. The above results show the effectiveness of the

proposed method.

5. Conclusion

In this paper, a novel robust robot image classification

method for package design evaluation has been introduced.

The proposed method can give high accuracy in classification

even with noisy labels in the training process. In the proposed

method, the loss function for training is total variation

regularization whose optimal solution is consistent with the

true probability distribution of the labels. The proposed method

has been validated by experimental data and it exhibits

outperformed accuracy compared to the traditional method.

With the proposed robot image classification, it is possible to

establish a close-loop package design process, in which the

designers can use the robot to help them improve their design.
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